
The following paper was originally published in the
Proceedings of the Twelfth Systems Administration Conference (LISA ’98)

Boston, Massachusetts, December 6-11, 1998

For more information about USENIX Association contact:

1. Phone: 510 528-8649
2. FAX: 510 548-5738
3. Email: office@usenix.org
4. WWW URL: http://www.usenix.org

SEPP
Software Installation and Sharing System

Tobias Oetiker
Swiss Federal Institute of Technology, Zurich

SEPP – Software Installation
and Sharing System

Tobias Oetiker – Swiss Federal Institute of Technology, Zurich

ABSTRACT

SEPP is an application installation, sharing and packaging solution for large, decentrally
managed Unix environments. SEPP can be used without making modifications to the
organizational structure of the participants’ servers. It provides consistent application setup,
documentation, wrapper scripts and usage logging as well as version concurrency and clean
software removal. This paper first gives an overview of products already available in this field
and then goes on describing SEPP.

Motivation

The Swiss Federal Institute of Technology in
Zurich (ETHZ) has a fairly large installation of Unix
workstations. At the Department of Electrical Engi-
neering alone, there are more than 400 workstations in
operation. Most laboratories in this Department have
their own system managers and file servers. The
advantage of this distribution of responsibilities is that
management happens close to the users. The disadvan-
tage is that it leads to a multiplication of efforts in
respect to software installation and system configura-
tion.

In an education and research environment, the
diverse user population requires a large variety of soft-
ware packages in their day-to-day work. These range
from little utilities to large applications taking up sev-
eral GB of disk space. The IT Support Group (ISG) of
our department, for example, maintains a software
base of over 40 GB.

The ISG started the SEPP project with the inten-
tion to devise a software installation system which
allows system managers to collaborate closely while
retaining independence between the different laborato-
ries. For the users it should bring better service by pro-
viding structured documentation on all applications,
several versions of the same applications available in
parallel and immediate accessibility for all applica-
tions without the need to alter .login or similar
files.

Existing Solutions

Application installation and packaging has been
an issue for years. Many solutions have been pro-
posed and implemented. Some are mainly concerned
with package installation and have no special support
for networked environments:

• The RedHat Package Manager by RedHat
Inc. [1] is the most widely used package man-
ager in the Linux world. It is geared towards
setting up software packages on stand-alone
workstations, much like the SVR4 package
manager. In addition to this, it provides all the

means for distributing software in source for-
mat, ready for fully automatic compilation and
installation on the target system.
The Redhat Package Manager (RPM) does not
impose any restrictions on package layout.
Files from a package will be placed into the
filesystem wherever the package author sees fit.
RPM keeps track of the installed software in a
database.

• GNU Stow by Bob Glickstein [3] is basically a
link generator. The idea behind stow is to put
every application into its own subdirectory tree
and then generate symbolic links into
/usr/local/ . Stow’s special ability is to optimize
these links. If only one application provides
files in /usr/local/include, the whole directory
will be linked. Once a second package is
installed which also provides files for
/usr/local/include, stow replaces the symbolic
links to a directory with a symbolic link for
each include file.
In an environment with many packages this
link optimization feature will not help much as
most directories will be used by several pack-
ages anyway.

• The Pack Project by Peter Krisensen [2] is
also based on the idea of installing each soft-
ware package into a separate subdirectory and
making the binaries available in a central bin
directory using symbolic links. A special fea-
ture of Pack is that Peter Krisensen maintains a
substantial public collection of ‘Pack’ packages
at Sunsite Denmark.

Other solutions have been developed with a net-
worked environment in mind:

• Xhier from the Math Faculty Computing Facil-
ity, University of Waterloo [4] is a complete
software distribution and maintenance system.
It provides highly automated means for compil-
ing and distributing software in a campus setup.
Xhier requires applications to be organized into
packages of related software. These packages
can then be distributed to a number of

1998 LISA XII – December 6-11, 1998 – Boston, MA 253

SEPP – Software Installation and Sharing System Oetiker

workstations organized in a tree structure. To
provide easy access for the user, all relevant
files are linked into a common directory tree.
One major obstacle to the success of Xhier out-
side of University of Waterloo is that Xhier is
not publicly available due to license restric-
tions.

lisa-12.98-to

bin lib

INSTALL

META
lisabin

localhost:/usr/appsdisk/

usenix-33.4-to

bin

localhost:/usr/pack/

start.pl

SEPP

confbin

lisabin
sepp.conf

stub

lisabin-12.98

lisabin-12.98-to autosepp_indirect

man

localhost:/usr/sepp

html

lisa-12.98-to

usenix-33.4-to

....

...

bob:/usr/bigdisk/

lisa-12.98-to

versionname maintainer

Lisa Package

au
tom

ou
nt

automount

Usenix Package

stu
b r

ea
ds

symbolic link

Figure 1: Components of SEPP.

• CMU Depot by Wallace Colyer and Walter
Wong [5] is the Unix System Configuration
Management component of the Workstation
Administration/Host Configuration Andrew II
project. CMU Depot puts an emphasis on shar-
ing applications across the network. It was
developed for an AFS environment, but works
with NFS as well. Applications are organized
into Collections of related software, each living
in its own directory tree. Users are provided
with a central directory containing symbolic
links to the application binaries.

• Depot-Lite by John P. Rouillard and Richard
B. Martin [9] is a mechanism for managing
software which is designed to be light weight,
easy to learn, and to provide support for multi-
ple installed versions of a package.

• ASIS by Ph. Defert, E. Fernandez, M.
Goossens, O. Le Moigne, A. Peyrat, I. Reguero
is the Application Software Installation Server
developed a CERN. ASIS is in use at CERN
and other High Energy Physics Research Cen-
ters around the world. All ASIS sites work
together by storing their software packages in
one central repository, from where copies are
made to second level servers. From there the
software can either be copied to local machines
or accessed directly via NSF or AFS. Installing

ASIS packages is a particularly simple process
by means of a GUI. Software is made available
to the end-users through symbolic links written
into a central binary directory. The system man-
ager of each participating client can decide
which versions of which package to install
locally.

• LUDE by David Lebel, Duncan Fraser and
Michel Dagenais [8] is the distributed software
library developed at the University of Montreal.
LUDE allows a distributed setup without cen-
tral control. The local system manager can
choose for each package if it should be run over
the network or copied to the local system. Par-
ticipating systems can be both client and server.
Each software package is kept in a separate
subdirectory. The users access packages
through a binary directory from where links
point to the binaries of the individual packages.
Packages themselves are highly structured to
allow the setup of packages which work on
multiple platforms. Management of the system
is performed through a single command-line
tool.

• UPS by William Bliss, Jonathan Streets,
Lourdu Udumula, and Margaret Votava is the
UNIX Product Support and Distribution toolkit
developed at Fermilab for the management and
access of software products on local systems by
the system administrators and users. UPS sup-
ports multiple concurrent versions of the same
product available on the same machine. End
users have to use a special setup program to
prepare their account for each software package
they want to use. Inter-package dependencies

254 1998 LISA XII – December 6-11, 1998 – Boston, MA

Oetiker SEPP – Software Installation and Sharing System

are resolved automatically when running the
setup command. Each package is assigned a
status like current, new, test, devel-
opment or old. The users can use these sta-
tus labels to choose packages on a maturity
level. Information about the available packages
is maintained in an external database in the
form of a special directory tree.

None of these packages addressed all our local
requirements. Most packages were rather large com-
pared to what we had in mind, and none supported
wrapper scripts1 A mix of features from the packages
mentioned above plus some local ideas, however, pro-
vided a suitable software installation and sharing sys-
tem for several Departments of the Swiss Federal
Institute of Technology. We called this system SEPP.

SEPP Overview

SEPP is a package based software distribution
system. Figure 1 shows the major components of a
SEPP installation. Two packages are installed in this
example.

• Every software package is installed into a sepa-
rate subdirectory providing clean encapsulation
of all files belonging to the same product.

• Every package contains a special directory
called SEPP. This directory holds a few files
describing the contents of the package, as well
as a startup wrapper script (start.pl).

• This wrapper script is responsible for preparing
the environment for successful execution of the
binaries contained in the package. Whenever a
program which was installed with SEPP is
started, the program does not get executed
directly, it is rather the wrapper script of the
package which is called and, after preparing the
environment, runs the requested program.

• Packages are made available on the local
machine using the automounter. The package
directories are always mounted below
/usr/pack. This ensures that software which
relies on compiled-in absolute path names finds
its files.
If a package is available from several places,
the automounter map is constructed to use alter-
nate sources for the package if the primary
server is not responding.

• The packages’ binaries are made available to
the end-users trough symbolic links in the
/usr/sepp/bin directory.

• These links do not point directly into the pack-
age directories, but to stub scripts stored in
/usr/sepp/stub. SEPP generates one stub script
for each package it installs. Stub scripts are
written in Perl and are responsible for running
the package’s /usr/pack/package/SEPP/start.pl

1Wrapper scripts are explained in the next section.

file. The stub and the start.pl file together make
up the wrapper script of the package mentioned
above.

• Package names are built from three compo-
nents:

1. The name of the package
2. The version number of the package
3. A shorthand for the name of the package

maintainer
This ensures that package names are unique
and everything can be mounted under
/usr/pack.

Starting from this setup, SEPP adds many convenient
features both for the users as well as for the adminis-
trators of packages.

User Features
While it is good for system managers to have a

clean and well organized software setup on their
servers, the user’s comfort must be the prime objec-
tive. The main user-visible feature of SEPP is there-
fore ease of use:

• To use an application installed under SEPP, no
changes to .login, .cshrc, or .profile are
required, apart from adding /usr/sepp/bin to the
PATH variable. The /usr/sepp/bin directory con-
tains symbolic links representing all installed
applications. Each program is started through a
wrapper script which prepares the environment
according to the requirements of the program.
This includes choosing the appropriate binary
in a multi-architecture environment, setting
special environment variables or creating con-
figuration files before the program is run for the
first time.

• Documentation about all the locally available
packages is provided on a web site and, where
possible, also as manual pages. By design,
SEPP forces the system manager to provide at
least a minimal amount of structured documen-
tation to be present in a package which is then
used to automatically generate a documentation
web site.

• SEPP supports the installation of several ver-
sions of the same package concurrently. The
user can start the default version of a program
by using the plain program name, while other
versions are available through program-
version. This means, for example, that
Emacs 20.2 is started by using the command
emacs. But version 19.23 is also available to
users who start it with emacs-19.23. If two
administrators are maintaining emacs-20.2
packages and set them up differently, both
packages can be installed concurrently on the
same system. The versions are then distin-
guished by a second suffix to the executables,
based on the names of the two persons main-
taining the packages. The system manager of
each system can decide which package and

1998 LISA XII – December 6-11, 1998 – Boston, MA 255

SEPP – Software Installation and Sharing System Oetiker

version is the default and is started by typing
emacs.2

Management Features
The users can only benefit from SEPP’s features

if the system managers actually provide applications
through SEPP. Therefore much effort was spent on
making SEPP easy to use from the system managers
point of view:

• SEPP is primarily an organizational measure. It
does neither require any special daemon pro-
cesses nor root privileges to work. Installing
SEPP does not require altering the whole sys-
tem setup. It takes only about 15 minutes to set
up SEPP on a server, plus some additional time
to update the clients’ automounter maps and
syslog configurations.

• A Perl script called seppadm is provided,
which simplifies the maintenance of SEPP
packages. The seppadm tool sets up skeleton
installation trees for new packages and installs
and removes SEPP packages from a server.
Furthermore the seppadm tool ensures that no
name clashes occur when installing a SEPP
package. This is done both for stock OS bina-
ries as well as other SEPP binaries. If clashes
occur with other SEPP packages, the adminis-
trator can define whether or not the new pack-
age overrides old binaries and manual pages.
Because of the elaborate naming scheme for
binaries, this mechanism provides an ideal test
bed setup for new versions of a package. While
the previous version of the binary remains
available under the normal name, the new ver-
sion can be accessed by appending the version
number to the binary’s name.

• The automounter mounts all package directo-
ries below /usr/pack . This makes the physical
location of a package directory irrelevant. A
package can be stored on any partition of the
local machine or on a remote server. The appli-
cation binaries still appear to be installed under
/usr/pack/package . This even fools setup pro-
grams of commercial applications which use
pwd determine their installation directory.

• Every SEPP installation maintains a catalog file
listing all packages stored locally, together with
their NFS pathname and a short description.
SEPP can be configured to use catalog files
from other servers to gain access to all their

2The wrapper script mentioned above takes care of re-
moving the version number from ARGV[0] so that appli-
cations which depend on being called a certain name work
as expected. The wrapper also adjusts the PATH variable
so that the program finds the correct version of any com-
panion programs it might call during operation. For emacs
this means that it would always use the version of move-
mail which was installed together with the particular ver-
sion of emacs.

locally installed packages. This allows several
SEPP servers to be tied together without requir-
ing central management.

• A package can specify a list of other packages
which are required before it can be installed. In
general, however, it is preferable when a pack-
age contains all the tools and libraries it needs
to run. This takes some additional disk space
but is much simpler to maintained than multiple
packages all cross-linked together. In our expe-
rience this policy usually does not lead to a sig-
nificant growth of package size.

• The application wrapper scripts mentioned
above allow the package maintainer to take any
action required to make the application work,
just prior to launching the program binary,
without making the end-users edit their
.login file. This cuts down support time
because programs ‘‘Just Work.’’

• The wrapper scripts automatically log applica-
tion usage through syslog. This enables
SEPP to track application usage by configuring
the syslog daemons on all clients to forward
their messages to a central logging server.

• Some applications have configuration files
which must be adjusted to the local environ-
ment. SEPP can handle this problem by copy-
ing part of the package’s directory tree to
/usr/sepp/var/package which is a local directory
on every SEPP server. The application itself has
to be configured to pick up its configuration file
from /usr/sepp/var/package .

Using SEPP

The following sections gives a brief example of
how to create and install a SEPP package called
lisa-12.98-to using the seppadm tool.

First a word on the terminology used in this sec-
tion:

• Package Preparation is the first step to make
an application available within a SEPP setup.
It involves using the seppadm tool to create a
skeleton package directory, downloading and
compiling the software, installing the software
into the skeleton directory and finally updating
the files in the package’s SEPP directory to fit
the application.

• Package Installation makes programs con-
tained in a SEPP package visible in the
/usr/sepp/bin directory and therefore available
to all the users who have this directory in their
PATH variable. When installing a package, it
does not matter if the package is stored on the
local system or on a remote server as all file
access is governed by a single automounter
map. A new package only becomes visible to
remote sites after it has been installed success-
fully on the site where it has been prepared.

• Package Mirroring enables the system

256 1998 LISA XII – December 6-11, 1998 – Boston, MA

Oetiker SEPP – Software Installation and Sharing System

manager to make a local copy of a package
which has been installed from a remote server.

Creating a SEPP Package
1. seppadm prepare lisa-12.98-to

creates a skeleton application installation direc-
tory and updates the automounter map to make
the directory available as /usr/pack/lisa-12.
98-to . The physical location of the install direc-
tory is chosen automatically from a list of pos-
sible locations by selecting the location with the
maximum available disk space. The list of stor-
age locations has to be configured when
installing the SEPP base package. It is also
possible to give an absolute location when cre-
ating a package directory.

Figure 2: SEPP generated Documentation Web Site.

2. After downloading and unpacking the source, it
can be compiled. Assuming the example pack-
age uses autoconf, compilation is very simple:
./configure \

-prefix=/usr/pack/lisa-12.98-to
make; make install

This configures, compiles and installs the pro-
gram into the new package directory. The only
change necessary to the standard compilation
procedure is the use of the prefix argument
to guide the program into the right directory

and prevent it from being installed into
/usr/local/bin where it would usually go.

3. The seppadm command in the first step
copied several template files into /usr/pack/
lisa-12.98-to/SEPP/ . These files must now be
edited to fit the application:

• INSTALL contains a detailed descrip-
tion of the steps necessary to compile
and install the package.

• META is a structured text file with infor-
mation about the package. It includes a
one-line description of the package, the
addresses of the local package main-
tainer and support staff, and pointers to
the package’s binaries and documenta-
tion. The seppadm tool reads this file
when installing a package or when
regenerating the SEPP documentation
web site.

• README is a brief description of the
package. It may include information
about local changes, solutions to fre-
quent problems, . . .

• CHANGES lists all changes which were
done to the package after initial installa-
tion within SEPP.

• patches is a subdirectory where

1998 LISA XII – December 6-11, 1998 – Boston, MA 257

SEPP – Software Installation and Sharing System Oetiker

patches are stored which were necessary
to get the package to work.

• start.pl is the wrapper script for the
application. In the simplest case it will
just contain the line:

AppRun "bin/"
More problematic software products
may require the setting of environment
variables or the creation of per user con-
figuration files. When a user starts an
application installed under SEPP, this
script will always be run before the
actual application binary is executed.

Installing a SEPP Package
seppadm install lisa-12.98-to

makes the package available on the local server. Every
user who has /usr/sepp/bin in the PATH can now
access the lisabin, lisabin-12.98 and lis-
abin-12.98-to programs.

Mirroring a SEPP package
Remote system managers can not only install the

application, they can also make a mirror copy of it,
using seppadm mirror lisa-12.98-to to
ensure maximum performance and availability.

Other Functionality of seppadm
Apart from the basic functions shown above,

seppadm can also build a web site which lists all the
applications installed locally (webbuild), as shown
in Figure 2. Further, there are functions to retrieve a
listing of all applications (report) available from
remote sites, for updating the local mirrors (mir-
rorupdate) and for removing old package
(remove).

Real World

As explained in the ‘‘Motivation’’ section, SEPP
had to be an easy-to-use, distributed solution in order
to gain acceptance within the labs. During the devel-
opment phase of SEPP, the ISG kept close contact
with managers from various labs of the department.
An early design document was distributed to get feed-
back on the proposed design and features. This had the
double benefit of getting people interested in the pro-
ject and tidying up the design before it was even
implemented. Once the first release of SEPP was
available, the ISG started to install all new software
under SEPP. This soon led to a substantial amount of
packages being available. There was a lot of interest
when talking about SEPP with the lab system man-
agers. In most cases though it was the need to get
access to some new software package from the ISG
server which led to the installation of the SEPP base
package on a lab server.

SEPP offers the possibility to transparently mir-
ror a package to the local server, to enhance availabil-
ity of the package as well as to reduce load on the net-
work. Comparing the number of packages which are

mirrored to the number of packages which are just
cross-mounted between servers, shows that most sys-
tem manages prefer to keep local copies of smaller
packages while software in the >1GB class is
mostly cross-mounted. This might change in the
future once the ‘‘switched 100 Mbit to the desktop’’
plan of the ETHZ is put into practice.

Future Directions

SEPP was designed to work without external
databases apart from a text file listing the packages
physically available on the local server and the auto-
mounter map. All other information is taken directly
from the SEPP directory inside each package. With an
increasing number of packages installed, the process-
ing of this information can take a considerable amount
of time. A future version of SEPP might use a cache
file with pre-processed information, which has only to
be updated when the CHANGES file of a package has
been altered. Performance is not yet a problem in our
setup. With 90 packages installed it takes 15 seconds
to regenerate the whole documentation web site on the
ISG’s Ultra Enterprise 2 + SSA server. This includes
analyzing all packages and writing out a web page for
each one.

The current implementation of SEPP works best
for user applications which are not required to suc-
cessfully boot a machine. Daemon processes can be
provided as SEPP packages as well, but because of the
transparent automounting feature, this could lead to
unintended dependencies between different servers. In
the worst case, this could make it impossible to boot
when two machines crash at the same time while
depending on packages from each other. To prevent
this problem from occurring, a feature will be added to
SEPP which enforces that crucial packages are always
mirrored to the local server.

With a number of sites using SEPP, it has
become difficult to add major new features to the sys-
tem as packages are cross mounted between different
servers. One idea to alleviate this problem would be to
have version numbers for the package format and
make the administration script check these before
installing a package. If the version number of the
package format was higher than the one handled by
the administration script, the system manager would
be offered to retrieve a new version of the administra-
tion script.

At the Swiss Federal Institute of Technology,
SPARC/Solaris is by far the most widely used Unix
platform. Therefore it has been the SEPP system’s pri-
mary target. The overall design of the SEPP system
takes multi-platform capability into account, and it is
successfully being used in a mixed Solaris/Irix envi-
ronment, but running it in a really mixed environment
with other than SVR4 based Unix variants would be
an interesting test for the systems design.

258 1998 LISA XII – December 6-11, 1998 – Boston, MA

Oetiker SEPP – Software Installation and Sharing System

Conclusion

The potential productivity and quality of service
provided by the system managers of the department
was increased both because more applications are
available to the users in a consistent setup and because
the individual system managers can devote more time
to direct user support and conceptual work. This in
turn also leads to a better quality of life for the system
administrators and thus generates a positive feedback
loop.

Acknowledgments

I would like to thank my fellow system managers
Elmar Heeb, Andi Karrer, Christoph Wicki, and Fritz
Zaucker at the Swiss Federal Institute of Technology
for the feedback during the design process and beta
testing of the final product. And last but not least I
would also like to extend my gratitude to Larry Wall
for creating Perl.

Availability

The SEPP base package as well as details about
the SEPP mailing-list are available from http://
www.ee.ethz.ch/sepp/ . SEPP is distributed under the
terms of the GNU General Public License.

What is in a Name

In case you have been wondering what SEPP
stands for, I must disappoint you: It is not an acronym.
Sepp is a Swiss and Austrian short form for Joseph,
and one might have the image of an old mountain
farmer in mind when hearing the name. Maybe a
future successor to SEPP will be called HEIDI.

Author Information

Tobias Oetiker got a Master’s degree in Electri-
cal Engineering from the Swiss Federal Institute of
Technology, Zurich (ETHZ) in 1995. After working
for one year at De Montfort University in Leicester,
UK doing Unix system management, he returned to
Switzerland and has since been employed by the
Department of Electrical Engineering of the Swiss
Federal Institute of Technology as a toolsmith and sys-
tem manager.

References

[1] RedHat Inc. RedHat Package Manager, http://
www.rpm.org .

[2] Peter Krisensen. Pack Distribution Project,
http://sunsite.auc.dk/pack/ .

[3] Bob Glickstein. GNU Stow application installer,
http://www.gnu.ai.mit.edu/software/stow/stow.
html .

[4] John Selens. ‘‘Software Maintenance in a Cam-
pus Environment: The Xhier Approach.’’ LISA
V, Sept. 30-Oct. 3, 1991.

[5] Wallace Colyer and Walter Wong. The CMU

Depot Project, http://andrew2.andrew.cmu.edu/
depot/ .

[6] Anne Heavey. UPS and UPD v4 Reference Man-
ual, http://www.fnal.gov/docs/products/ups/ .

[7] Ph. Defert, E. Fernandez, M. Goossens, O. Le
Moigne, A. Peyrat, I. Reguero. ASIS Application
Software Installation Server, http://wwwcn.cern.
pch/dci/asis/ .

[8] David Lebel, Duncan Fraser, Michel Dagenais. A
Distributed Software Library, http://www.iro.
umontreal.ca/lude2/ .

[9] John P. Rouillard and Richard B. Martin.
‘‘Depot-lite: A mechanism for managing soft-
ware.’’ In LISA VIII Proceedings, pages 83-91,
1994.

1998 LISA XII – December 6-11, 1998 – Boston, MA 259

260 1998 LISA XII – December 6-11, 1998 – Boston, MA

