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Abstract

Computer security protocols usually terminate in a com-
puter; however, the human-based services they support
usually terminate in a human. The gap between the hu-
man and the computer creates potential for security prob-
lems. This paper examines this gap, as it is manifested in
“secure” Web services. Felten  et  al  demonstrated  the
potential, in 1996, for malicious servers to impersonate
honest servers. Our  recent  follow-up  work  explicitly
shows how malicious servers can still do this—and can
also forge the existence of an SSL session and the con-
tents of the alleged server certificate. This paper reports
the results of our ongoing experimental work to systemat-
ically defend against Web spoofing, by creating a trusted
path from the browser to the human user.

1 Introduction

In the real world, computer security protocols usually do
not exist for their own sake, but rather in support of some
broader human process, such as shopping, filing govern-
ment forms, or accessing medical services. However,
the computer science community, perhaps because of its
training, tends to focus on the computers involved in these
social systems. If, by exchanging bits and performing
cryptographic operations, the client machine can correctly
authenticate a trusted server machine and correctly reject
an untrusted one, then we tend to conclude the system is
secure.

This tendency overlooks the fact that, in such systems,
the client machine may receive the information, but the
human user typically makes the trust decision. Simply
ensuring that the machine draws the correct conclusion
does not suffice, if the adversary can craft material that
nevertheless fools the human.

In this paper, we examine these issues as they relate to
the Web. The security of the Web relies on Secure  Socket

Layer (SSL)—a protocol that uses public-key cryptogra-
phy to achieve confidentiality and integrity of messages,
and optionally authentication of parties. In a typical “se-
cure” Web session, the client machine authenticates the
server and establishes an encrypted, MAC’d channel using
SSL. However, it is not the human user but the Web
browser that carries out this protocol. After establishing
the SSL channel, the Web browser displays corresponding
signals on its user interface, such as locking the SSL pad-
lock, changing the protocol header to https, and popping
up warning windows to indicate that an SSL session has
been set up. The human uses these signals to make his
or her trust judgment about the server. The adversary can
thus subvert the secure Web session simply by creating
the illusion that the browser has displayed these signals.

The term Web spoofing denotes this kind of “smoke
and mirrors” attack on the Web user interface. To defend
against Web spoofing, we need to create a trusted path be-
tween the Web browser and its human user. Through this
trusted path, the browser can communicate relevant trust
signals that the human can easily distinguish from the ad-
versary’s attempts at spoof and illusion.

1.1 Background: Effective PKI

The research that this paper reports had roots in our con-
sideration of public key infrastructure (PKI).

In theory, public-key cryptography enables effective
trust judgments on electronic communication between
parties who have never met. The bulk of PKI work fo-
cuses on distribution of certificates. We started instead
with a broader definition of “infrastructure” as “that which
is necessary to achieve this vision in practice”, and fo-
cused on server-side SSL PKI as perhaps the most acces-
sible (and e-commerce critical) instantiation of PKI in our
society.

Loosely speaking, the PKI in SSL establishes a trusted
channel between the browser and server. Our initial set of
projects [12, 21, 22, 23] examined the server end, and how



to extend the trust from the channel itself into data storage
and computation at the server. Our immediate motivation
was that, for our server-hardening techniques to be effec-
tive, the human needs to determine if the server is using
them; however, this issue has much broader implications
(as Section 7.2 will discuss).

1.2 Prior Work

In their seminal work, Felten et al [10] introduced the term
“Web spoofing” and showed how a malicious site could
forge many of the browser user interface signals that hu-
mans use to decide the server identity. Subsequent re-
searchers [5] also explored this area. (In Section 2.2, we
discuss our work in this space.)

In related work on security issues of user interfaces,
Tygar and Whitten examined both the spoofing potential
of hostile Java applets [25] as well as the role of user inter-
faces in the security of email cryptography systems [27].
Work in making cryptographic protocols more tenable to
the human—including visual hashes [18] and personal en-
tropy [9]—also fits into this space.

The world of multi-level security [6] has also consid-
ered issues of human-readable labels on information. The
compartmented mode workstation (CMW) [19] is an OS
that attempts to realize this security goal (and others)
within a modern windowing system. However, a Web
browser running on top of CMW is not a solution for Web
spoofing. CMW labels files according to their security
levels. Since the browser would run within one security
level, all of its windows would have the same label. The
users still could not distinguish the material from server
and the material from the browser.

Although CMW itself is not a solution for Web spoof-
ing, the approach CMW used for labeling is a good start-
ing point for further exploration—which we consider in
Section 4.1.

1.3 This Paper

In this paper, we discuss our experience in designing,
building, and evaluating trusted paths between the Web
browser and the human users.

Section 2 discusses the problem. Section 3 develops
criteria for systematic, effective solutions. Section 4 dis-
cusses some solution strategies we considered and the
one we settled on, synchronized random dynamic (SRD)
boundaries. Section 5 discusses how we implemented this
solution and the status of our prototype. Section 6 dis-
cusses how we validated our approaches with user studies.
Section 7 offers some conclusions, and discusses avenues
for future work.

2 Web Spoofing

2.1 Overview

To make an effective trust judgment about a server, per-
haps the first thing a user might want to know is the iden-
tity of the server. Can the human accurately determine the
identity of the server with which their browser is interact-
ing?

On a basic level, a malicious server can offer realistic
content from a URL that disguises the server’s identity.
Such impersonation attacks occur in the wild:

• by offering spoofed material via a URL in which the
spoofer’s hostname is replaced with an IP address
(the Hoke case [15, 20] is a good example)

• by typejacking—e.g., registering a hostname decep-
tively similar to a real hostname, offering malicious
content there, and tricking users into connecting (the
“PayPai” case [24] is a good example)

Furthermore, as is often pointed out [2], RFC 1738
permits the hostname portion of a URL to begin with
a username and password. Hoke [20] could have
made his spoof of a Bloomberg press release even
more effective by prepending his IP-hostname with a
“bloomberg.com” username. Most Web browsers (includ-
ing the IE and Netscape families, but not Opera) would
successfully parse URL http://www.bloomberg.
com@1234567/ and fetch a page from the server
whose IP address, expressed as a decimal numeral, was
1234567.

However, we expected that many Web users might use
more sophisticated identification techniques that would
expose these attacks. Users might examine the location
bar for the precise URL they are expecting; or examine
the SSL icon and warning windows to determine if an au-
thenticated SSL session is taking place; or even make full
use of the server PKI by examining the server’s certificate
and validation information. Can a malicious server fool
even these users?

2.2 Our Initial Study

Felten et al [10] showed that, in 1996, a malicious site
could forge many of the browser’s UI signals that hu-
mans use to decide server identity, except the SSL lock
icon for an SSL session. Instead, Felten et al used a real
SSL session from the attacker server to trick the user—
which might expose the adversary to issues in obtaining
an appropriate certificate, and might expose the hoax, de-
pending on how the browser handles certificate validation.
Since subsequent researchers [5] reported difficulty repro-
ducing this work and since Web techniques and browser
user interface implementation have evolved a lot since



1996, we began our work by examining [29] whether and
to what degree Web spoofing was still possible, with cur-
rent technology.

Our experiment was more successful than we expected.
To summarize our experiment, for Netscape 4 on Linux
and Internet Explorer 5.5 on Windows 98, using unsigned
JavaScript and DHTML:

• We can produce an entry link that, by mouse-over,
appears to go to an arbitrary site S.

• If the user clicks on this link, and either his browser
has JavaScript disabled or he is using a browser/OS
combination that we do not support, then he really
will go to site S.

• Otherwise, the user’s browser opens a new win-
dow that appears to be a functional browser window
which contains the content from site S. Buttons,
bars, location information, and most browser func-
tionality can be made to appear correctly in this win-
dow. However, the user is not visiting site S at all;
he is visiting ours. The whole window is a Web page
delivered by our site.

• Furthermore, if the user clicks on a “secure” link
from this window, we can make convincing SSL
warning window appear and then displays the SSL
lock icon and the expected https URL. Should
the user click on the buttons for security informa-
tion, he or she will see the expected SSL certificate
information—except no SSL connection exists, and
all the sensitive information that the user enters is
being sent in plain text to us.

A demonstration is available at our Web site.

2.3 Overview of Techniques

When we describe our spoofing work, listeners sometimes
counter with the objection that it is impossible for the re-
mote server to cause the browser to display a certain type
of signal. The crux of our spoofing work rests in the fact
that this objection is not a contradiction. For this project,
we assumed that the browser has a set of proper signals
it displays as a function of server properties. Rather than
trying to cause the browser to break these rules, we simply
use the rich graphical space the Web paradigm provides to
generate harmless graphical content that, to the user, looks
just like these signals.

In our initial attempts at spoofing, we tried to add our
own graphical material over official browser signals such
as the location bar and the SSL lock icon. This was not
successful. We then tried opening a new window with
some of these elements turned off, and that did not work
either. Finally, we tried opening a new window with all

of the elements disabled—and that worked. We then went
through a careful process of filling this window with ma-
terial that looked just like the official browser elements,
and correlating this display with the expected display for
the session being spoofed.

This work was characterized by the pattern of trying
to achieve some particular effect, finding that the obvi-
ous techniques did not work, but then finding that the
paradigm provided some alternate techniques that were
just as effective. For one example, whenever it seemed
difficult to pop up a window with a certain property, we
could achieve the same effect by displaying an image of
such a window, and using pre-caching to get these images
to the user’s machine before they’re needed.

This pattern made us cautious about the effectiveness of
simplistic defenses that eliminate some channel of graph-
ical display.

For each client platform we targeted, we carefully ex-
amined how to provide server content that, when ren-
dered, would appear to be the expected window element.
Since the user’s browser kindly tells the server its OS and
browser family to which it belongs, we can customize the
response appropriately.

Our prior technical report [29] contains full technical
details.

2.4 Other Factors

However, our goal was enabling users to make effective
trust judgments about Web content and interaction. The
above spoofing techniques focused on server identity. As
some researchers [7] observe, identity is just one compo-
nent for such a judgment—usually not a sufficient com-
ponent, and perhaps not even a necessary component.

Arguably, issues including delegation, attributes, more
complex path validation, and properties of the page source
should all play a role in user trust judgment; arguably, a
browser that enables effective trust judgments should han-
dle these issues and display the appropriate material. The
existence of password-protected personal certificate and
key pair stores in current browsers is one example of this
extended trust interface; Bugnosis [1] is an entertaining
example of some potential future directions.

The issue of how the human can correctly identify the
trust-relevant user interface elements of the browser will
only become more critical as this set of elements in-
creases. Spoofing can attack not just perceived server
identity, but any element of the current and future browser
interfaces.

In Section 7.2, we revisit some of these issues.



3 Towards a Solution

Previous work, including our own, suggested some sim-
plistic solutions. To address this fundamental trust prob-
lem in this broadly-deployed and service-critical PKI, we
need to design a more effective solution—and to see that
this solution is implemented in usable technology.

3.1 Basic Framework

We will start with a slightly simplified model.
The browser displays graphical elements to the user.

When a user requests a page P from a server A, the user’s
browser displays both the content of P as well as status
information about P , A, and the channel over which P

was obtained. (For simplicity, we’re ignoring things like
the fact that multiple servers may be involved.)

We can think of the browser as executing two functions
from this input space of Web page content and context:

• displaying sets of graphical elements in this window
and others as content from the server

• displaying sets of graphical elements in this window
and others as status about this server content.

Web spoofing attacks can work because no clear differ-
ence exists between the graphical elements of status and
the graphical elements of content. There exist pages
PA, PB from servers A,B (respectively) such that the
overlap between content(PA) and status(PB , B) is sub-
stantial. Such overlap permits a malicious server to
craft content whose display tricks users into believing the
browser is reporting status.

To make things even harder, what matters is not the ac-
tual display of the graphical elements, but the display as
processed by human perception. As long as the human
perception of status and content have overlap, then spoof-
ing is possible.

(Building a more formal and complete model of this
problem is an area for future work.)

3.2 Trusted Path

From the above analysis, we can see the key to systemati-
cally stopping Web spoofing would be twofold:

• to clearly distinguish the ranges of the content and
status functions, even when filtered by human per-
ception, so that malicious collisions are not possible

• to make it impossible for status to have empty out-
put, even when filtered by human perception, so
that users can always recognize a server’s attempt to
forge status information.

In some sense, this is the classic trusted path problem.
The browser software becomes a Trusted Computer Base
(TCB); and we need to establish a trusted path between
users and the status component, that can not be imperson-
ated by content component.

3.3 Design Criteria

We consider some criteria a solution should satisfy.
First, the solution should work:

• Inclusiveness. We need to ensure that users can
correctly recognize as large a subset of the status
data as possible. Browsing is a rich experience;
many parameters play into user trust judgment and,
as Section 7.2 discusses, the current parameters may
not even be sufficient. A piecemeal solution will be
insufficient; we need a trusted path for as much of
this data as possible.

• Effectiveness. We need to ensure that the status
information is provided in a way that the user can ef-
fectively recognize and utilize. For one example, the
information delivered by images may be more effec-
tive for human users than information delivered by
text. For another example, if the status information is
separated (in time or in space) from the correspond-
ing content, then the user may already have made a
trust judgment about the content before even perceiv-
ing the status data.

Secondly, the solution should be low-impact:

• Minimizing user work. A solution should not re-
quire the user to participate too much. This con-
straint eliminates the naive cryptographic approach
of having the browser digitally sign each status com-
ponent, to authenticate it and bind it to the con-
tent. This constraint also eliminates the approach
that users set up customized, unguessable browser
themes. To do so, the users would need to know what
themes are, and to configure the browser for a new
one instead of just taking the default one.

• Minimizing intrusiveness. The paradigm for
Web browsing and interaction is fairly well estab-
lished, and exploited by a large legacy body of sites
and expertise. A trusted path solution should not
break the wholeness of the browsing experience. We
must minimize our intrusion on the content com-
ponent: on how documents from servers and the
browser are displayed. This constraint eliminates the
simplistic solution of turning off Java and JavaScript.



4 Solution Strategies

Having established the problem and criteria for consider-
ing solutions, we now proceed to examine potential strate-
gies. Section 4.1 presents some approaches we considered
but rejected; Section 4.2 presents the strategy we chose
for our implementation. Table 1 summarizes how these
strategies measure according to the above criteria.

4.1 Considered Approaches

No turn-off. As discussed above, one way to defend
against Web spoofing is make it impossible for status to
be empty. One possible approach is to prevent elements
such as the location and status bars from being turned off
in any window. However, this approach would overly
constrict the display of server pages (many sites depend
on pop-ups with server-controlled content) and still does
not cover a broad enough range of browser-user channels.
Furthermore, the attacker can still use images to spoof
pop-up windows of his own choosing.

Customized content. Another set of approaches
consists of trying to clearly label the status material. One
strategy here would draw from Tygar and Whitten [25]
and use user-customized backgrounds on status windows.
This approach has a potential disadvantage of being too
intrusive on the browser’s display of server content.

A less intrusive version would have the user enter an ar-
bitrary “MAC phrase” at the start-up time of the browser.
The browser could then insert this MAC phrase into each
status element (e.g., the certificate window, SSL warning
boxes, etc.) to authenticate it. However, this approach,
being text-based, had too strong a danger of being over-
looked by the user.

Overall, we decided against this whole family of ap-
proaches, because we felt that requiring the user to par-
ticipate in the customization would violate the “minimal
user work” constraint.

Meta-data titles. We considered having some meta-
data, such as page URL, displayed on the window ti-
tle. Since the browser sends the title information to the
machine window system, the browser can enforce that
the true URL always is displayed on the window title.
However, we did not really believe that users would pay
attention to this title bar text; furthermore, a malicious
server could still spoof such a window by offering an im-
age of one within the regular content.

Meta-data windows. We considered having the
browser create and always keep open an extra window just

for meta-data. The browser could label this window to au-
thenticate it, and then use it to display information such as
URL, server certificate, etc.

Initially, we felt that this approach would not be effec-
tive, since separating the data from the content window
would make it too easy for users to ignore the meta-data.
Furthermore, this approach would require a way to corre-
late the displayed meta-data with the browser element in
question. If the user appears to have two server windows
and a local certificate window open, he or she needs to
figure out to which window the meta-data is referring.

As we will discuss shortly, CMW uses a meta-data win-
dow and a side-effect of Mozilla code structure forced us
to introduce one into our design.

Boundaries. In an attempt to fix the window title
scheme, we decided to use thick color instead of tiny
text. Windows containing pure status information from
the browser would have a thick border with a color that in-
dicated trusted; windows containing at least some server-
provided content would have a thick border with an-
other color that indicated untrusted. Because its con-
tent would always be rendered within an untrusted win-
dow, a malicious server would not be able to spoof sta-
tus information—or so we thought. Unfortunately, this
approach suffers from the same vulnerability as above:
a malicious server could still offer an image of a nested
trusted window.

CMW-Style Approach. CMW brought the boundary
and meta-data window approaches together.

We noted earlier that CMW itself will not solve the
spoofing problem. However, CMW needs to defend
against a similar spoofing problem: how to ensure that
a program cannot subvert the security labeling rules by
opening an image that appears to be a nested window of
a different security level. To address this problem, CMW
adds a separate meta-data window at the bottom of the
screen, puts color-coded boundaries on the windows and
a color (not text) in the meta-data window, and solves the
correlation problem by having the color in the meta-data
window change according to the security level of the win-
dow currently in focus.

The CMW approach inspired us to try merging the
boundary and meta-data window scheme: we keep a sep-
arate window always open, and this window displays the
color matching the security level of the window currently
in focus. If the user focuses on a spoofed window, the
meta-data window color would not be consistent with the
apparent window boundary color.

We were concerned about how this CMW-style ap-
proach would separate (in time and space) the window
status component from the content component. This sepa-



ration would appear to fail the effectiveness and user-work
criteria:

• The security level information appears later, and in a
different part of the screen.

• The user must explicitly click on the window to get
it to focus, and then confirm the status information.

What users are reputed to do when “certificate expiration”
warnings pop up suggests that by the time a user clicks,
it’s too late.

Because of these drawbacks, we decided against this
approach. Our user study of a CMW-style simulation
(Section 6) supported these concerns.

4.2 Prototyped Approach

We liked the colored boundary approach, since colors are
more effective than text, and coloring boundaries accord-
ing to trust level easily binds the boundary to the con-
tent. The user cannot perceive the one without the other.
Furthermore, each browser element—including password
windows and other future elements—can be marked, and
the user need not wonder which label matches which win-
dow.

However, the colored boundary approach had a sub-
stantial disadvantage: unless the user customizes the col-
ors in each session or actively interrogates the window
(which would violate the “minimize work” criteria), the
adversary can still create spoofs of nested windows of ar-
bitrary security level.

This situation left us with a conundrum: the browser
needs to mark trusted status content, but any deterministic
approach to marking trusted content would be vulnerable
to this image spoof. So, we need an automatic marking
scheme that servers could not predict, but would still be
easy and non-intrusive for users to verify.

Initial Vision. What we settled on was synchronized
random dynamic (SRD) boundaries. In addition to hav-
ing trusted and untrusted colors, the thick window borders
would have two styles (e.g., inset and outset, as shown in
Figure 1). At random intervals, the browser would change
the styles on all its windows. Figure 2 sketches this over-
all architecture.

The SRD solution would satisfy the design criteria:

• Inclusiveness. All windows would be unambigu-
ously labeled as to whether they contained status or
content data.

• Effectiveness. Like static colored boundaries, the
SRD approach shows an easy-to-recognize security
label at the same time as the content. Since a mali-
cious server cannot predict the randomness, it cannot

Inset Outset

Figure 1 Inset and outset border styles.

provide spoofed status that meets the synchroniza-
tion.

• Minimizing user work. To authenticate a window,
all a user would need to do is observe whether its bor-
der is changing in synchronization with the others.

• Minimizing intrusiveness. By changing the win-
dow boundary but not internals, the server content,
as displayed, is largely unaffected.

In the SRD boundary approach, we do not try to focus
so much on communicating status information as on dis-
tinguishing browser-provided status from server-provided
content. The SRD boundary approach tries to build a
trusted path that the status information presented by the
browser can be correctly and effectively understood by
the human user. In theory, this approach should continue
to work as new forms of status information emerge.

Reality Intervenes. As one might expect, the reality
of prototyping our solution required modifying this initial
vision.

We prototyped the SRD-boundary solution using
Mozilla open source on Linux. We noticed that when
our build of Mozilla pops up certain warning windows,
all other browser threads are blocked. As a consequence,
all other windows stop responding and become inactive.
This is because some modules are singleton services in
Mozilla (that is, services that one global object provides
to all threads in Mozilla). When one thread accesses such
a service, all other threads are blocked. The Enter-SSL
warning window uses the nsPrompt service which is one
of the singleton services.

When the threads block, the SRD borders on all win-
dows but the active one freeze. This freezing may gener-
ate security holes. A server might raise an image with
a spoofed SRD boundary, whose lack of synchroniza-
tion is not noticeable because the server also submitted
some time-consuming content that slows down the main
browser window so much that the it appears frozen. Such
windows greatly complicate the semantics of how the user
decides whether to trust a window.



To address this weakness, we needed to re-introduce
a meta-data reference window, opened at browser start-
up with code independent of the primary browser threads.
This window is always active, and contains a flashy col-
ored pattern that changes in synchronization with the mas-
ter random bit—and the boundaries. If a boundary does
not change in synchronization with the reference window,
then the boundary is forged and its color should not be
trusted.

Our reference window is like the CMW-style win-
dow in that uses non-textual material to indicate security.
However, ours differs in that it uses dynamic behavior to
authenticate boundaries, it requires no explicit user action,
and it automatically correlates to all the unblocked on-
screen content.

Reality also introduced other semantic wrinkles, as dis-
cussed in Section 5.7.2.

5 Implementation

Implementation took several steps. First, we needed to
add thicker colored boundaries to all windows. Second,
the boundaries needed to dynamically change. Third,
the changes needed to happen in a synchronized fashion.
Finally, as noted, we needed to work around the fact that
Mozilla sometimes blocks browser window threads.

In Section 5.2 through Section 5.5 below, we discuss
these steps. Section 5.7 discusses the current status of our
prototype.

Figure 4 shows the overall structure.

5.1 Starting Point

In order to implement our trusted path solution, we need
a browser as its base. We looked at open source browsers,
and found two good candidates, Mozilla and Konqueror.
Mozilla is the “twin” of Netscape 6, and Konqueror is part
of KDE desktop 2.0. We also considered Galeon, which is
an open source Web browser using the same layout engine
as Mozilla. However, when we started our experiment,
Galeon was not robust enough, so we chose Mozilla in-
stead of Galeon.

We chose Mozilla over Konqueror for three primary
reasons. First, Konqueror is not only a Web browser,
but also the file manager for KDE desktop, which make
it might be unnecessarily complicated for our purposes.
Secondly, Mozilla is closely related to Netscape, which
has a big market share on current desktops. Third,
Konqueror only run on Linux; Mozilla is able to adapt
to several platforms.

Additionally, although both of browsers are well doc-
umented, we felt that Mozilla’s documentation was
stronger.

5.2 Adding Colored Boundaries

The first step of our prototype was to add special bound-
aries to all browser windows. To do this, we needed to
understand why browser windows look the way they do.

Mozilla has a configurable and downloadable user in-
terface, called a chrome. The presence and arrangement
of different elements in a window is not hardwired into
the application, but rather is loaded from a separate user
interface description, the XUL files. XUL is an XML-
based user interface language that defines the Mozilla user
interface. Each XUL element is present as an object in
Mozilla’s document object module (DOM).

Mozilla uses Cascading Style Sheets (CSS) to describe
what each XUL element should look like. Collectively,
this set of sheets is called a skin. Mozilla has customizable
skins. Changing the CSS files changes the look-and-feel
of the browser. (Figure 3 sketches this structure.)

The original Mozilla only has one type of window with-
out any boundary. We added an orange boundary into the
original window skin to mark the trusted windows con-
taining material exclusively from the browser. Then we
defined a new type of window, external window, with a
blue boundary. We added the external window skin into
the global skin file, and changed the navigator window to
invoke an external window instead.

As a result, all the window elements in XUL files will
have thick orange boundaries, and all the external win-
dows would have thick blue boundaries. Both the pri-
mary browsing windows as well as the windows opened
by server content would be external windows with blue
boundaries.

(The new chrome feature introduces some wrinkles;
see Section 5.7.2.)

5.3 Making the Boundaries Dynamic

We next need to make the boundaries change dynamically.
In the Mozilla browser, window objects can have at-

tributes. These attributes can be set or removed. When
the attribute is set, the window can be displayed with dif-
ferent style.

To make window boundaries dynamic, we added a bor-
derStyle attribute to the window.

externalwindow[borderStyle="true"]

{ border-style: outset !important;}

When borderStyle is set, the boundary style is outset;
when borderStyle is removed, the boundary style is inset.
Mozilla observes the changes in attributes and updates the
displayed borderStyle accordingly.

With a reference to a window object, browser-internal
JavaScript code can automatically set the attribute and re-
move the attribute associated with that window. We get
this reference with the method:
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Inclusiveness Effectiveness Minimizing User Work Minimizing Intrusiveness
No turn-off No Yes Yes No
Backgrounds Yes Yes No No
MAC Phrase Yes No No Yes
Meta Title No No Yes Yes
Meta Window No No Yes Yes
Boundaries No Yes Yes Yes
CMW-style Yes No No Yes
SRD Yes Yes Yes Yes

Table 1 Comparison of strategies against design criteria.
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Figure 3 The layout engine uses XUL and CSS files to generate the browser user interface.



document.getElementById("windowID")

When browser-internal JavaScript code changes the
window’s attribute, the browser observer interface notices
the change and schedules a browser event. The event is
executed, and the browser repaints the boundary with dif-
ferent style.

Each XUL file links to JavaScript files that specify what
should happen in that window with each of the events
in the browsing experience. We placed the attribute-
changing JavaScript into a separate JavaScript file and
linked it into each corresponding XUL file.

With the

setInterval("function name",

intervalTime)

method, a JavaScript function can be called automatically
at regular time intervals. We let our function be called ev-
ery 0.5 second, to check a random value 0 or 1. If the ran-
dom value is 0, we set window’s borderStyle attribute to
be true; else remove this attribute. The window’s onload
event calls this setInterval method to start this polling.

<window id="example-window"

onload="setInterval(..)">

If the window element does not have an ID associ-
ated with it, we need to give it one in order to make the
JavaScript code work. The JavaScript files need to include
into corresponding jar.mn file in order to be packed into
the same jar as the XUL file.

5.4 Adding Synchronization

All the browser-internal JavaScript files need to look at
the same random number, in order to make all win-
dows change synchronously. Since we could not get the
JavaScript files in Mozilla source to communicate with
each other, we used an XPCOM module to have them
communicate to a single C++ object that directed the ran-
domness.

XPCOM (the Cross Platform Component Object
Model) is a framework for writing cross-platform, mod-
ular software. As an application, XPCOM uses a set of
core XPCOM libraries to selectively load and manipulate
XPCOM components. XPCOM components can be writ-
ten in C, C++, and JavaScript, and are the basic element
of Mozilla structure.

JavaScript can directly communicate to a C++ module
through XPConnect. XPConnect is a technology which
allows JavaScript objects transparently access and manip-
ulate XPCOM objects. It also enables JavaScript objects
to present XPCOM-compliant interfaces to be called by
XPCOM objects.

We maintained a singleton XPCOM module in Mozilla
which tracks the current “random bit.” We defined a

borderStyle interface in XPIDL (Cross Platform Interface
Description Language), which only has a read-only string,
which means the string only can be read by JavaScript,
but can not be set by JavaScript. The XPIDL com-
piler transforms this IDL into a header file and a type-
lib file. The nsIBorderStyle interface has a public func-
tion, GetValue, which can be called by Mozilla JavaScript
through XPConnect. The nsBorderStyleImp class imple-
ments the interface, and also has two private functions,
generateRandom and setValue. When a JavaScript call
accesses the borderStyle module through GetValue, the
module uses these private functions to update the current
bit (from /dev/random) if it is sufficiently stale. The
module then returns the current bit to the JavaScript.

5.5 Addressing Blocking

As noted earlier, Mozilla had scenarios where one win-
dow, such as the enter-SSL warning window, can block
the others. Rather than trying to rewrite the Mozilla
thread structure, we let the borderStyle module fork a
new process, which uses the GTK+ toolkit create a refer-
ence window. When a new random number is generated,
the borderStyle module passes the new random number
through the pipe to the reference process. The reference
window changes its image according to the random num-
ber to indicate the border style.

The idea in the GTK+ program is creating a window
with a viewport. A viewport is a widget which contains
two adjustment widgets. Changing the scale of these two
adjustments enable to allow the user only see part of the
window. The viewport also contains a table which con-
tains two images: one image stands for inset style, the
other stands for outset. When random number is 1, we set
the adjustment scale to show the inset image; otherwise
we show the outset image.

5.6 Why This Works

This SRD approach works because:

• Server material has to be displayed in a window
opened by the browser.

• When it opens a window, the browser gets to choose
which type of window to use.

• Only the browser gets to see the random numbers
controlling whether the border is currently inset or
outset.

• Server content, such as malicious JavaScript, can-
not otherwise perceive the inset/outset attribute of its
parent window.

(Section 5.7.2 below discusses some known issues.)
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We elaborate on the last point above. The DOM is a
tree-like structure to represent the document. Each XML
element or HTML element is represented as a node in
this tree. The DOM tree enables traversal of this hierar-
chy of elements. Each element node has DOM interfaces,
which can be used by JavaScript to manipulate the ele-
ment. For example, element.style lets JavaScript access
the style property of the element object. JavaScript can
change this property, and therefore change the element ap-
pearance.

When the Mozilla layout engine Gecko reads XUL
files and renders browser user interface, it treats the win-
dow object as a regular XUL element, one DOM node in
the DOM tree. Therefore, at the point, browser-internal
JavaScript can set or remove attributes in the window ob-
ject. However, from the point of view of server-provided
JavaScript, this window object is not a regular DOM ele-
ment, but is rather the root object of the whole DOM tree.

This root object has a child node, document. Under this
document object, the server content DOM tree starts to
grow. The root window does not provide the window.style
interface. It also does not support any attribute func-
tions [11]. Therefore, even though server-side JavaScript
can get a reference of the window object, and call func-
tions like window.open, it can not read or manipulate the
window border style to compromise SRD boundaries. Our
experimental tests also proved this statement.

5.7 Prototype Status

We have implemented SRD for the main navigator ele-
ments in modern skin Mozilla (currently Mozilla-0.9.2.1)
for Linux. Furthermore, we have prepared scripts to in-
stall and undo these changes in the Mozilla source tree;
to reproduce our work, one would need to download the
Mozilla source, run our script, then build.

These scripts are available on our Web site.

5.7.1 Inner SRD vs Outer SRD

In the current browsing paradigm, some otherwise un-
trusted windows, such as the main surfing window, con-
tain trusted elements, such as Menu Bar, etc. As far as we
could tell in our spoofing work, untrusted material could
not overlay or replace these trusted elements, if they are
present in the window.

The SRD approach thus leads to a design question:

• Should we just mark the outside boundaries of win-
dows?

• Or should we also install SRD boundaries on indi-
vidual elements, or at least on trusted ones?

We use the terms outer SRD and inner SRD respectively
to denote these two approaches.

Inner SRD raises some additional questions that may
take it further away from the design criteria. For one
thing, having changing, colored boundaries within the
window arguably weakens satisfaction of the minimal in-
trusiveness constraint. For another thing, what about el-
ements within a trusted window? Should we announce
that any element in a region contained in a trusted SRD
boundary is therefore trusted? Or would introducing such
anomalies (e.g., whether a bar needs a trusted SRD bound-
ary to be trustable depends on the boundary of its window)
needlessly and perhaps dangerously complicate the user’s
participation?

For now, we have stayed with outer-SRD. Animated
GIFs giving the look-and-feel of browsers enhanced with
outer-SRD and inner-SRD are available on our Web site.

5.7.2 Known Issues

Our current prototype has several areas that require further
work. We present them in order of decreasing importance.

Alert Windows. The only significant bug we currently
know about pertains to alert windows. In the current
Mozilla structure, alert windows, confirm windows and
prompt windows are all handled by the same code, re-
gardless of whether the server page content or the browser
invokes them. In our current implementation, the win-
dow boundary color is decided once, as “trusted”. We are
currently working with Netscape developers to determine
how to have this code determine the nature of its caller
and establish boundary color accordingly.

Signed JavaScript. Signed JavaScript from the
server can ask for privileges to use XPConnect. The user
can then choose to grant this privilege or not. If the user
grants the privilege, then the signed JavaScript can access
the borderStyle module and read the random bit.

To exploit this, an attacker would have to open an
empty window (see below) or simulate one with images,
and then change the apparent boundary according to the
bit. For now, the user can defend against this attack by not
granting such privileges; however, a better long-term so-
lution is simply to disable the ability of signed JavaScript
to request this privilege.

Chrome feature. Mozilla added a new feature chrome
to the window.open method. If a server uses the JavaScript

window.open("test.html",

"window-title", "chrome")

then Mozilla will open an empty window without any
boundary. The chrome feature lets the server eliminate
the browser default chrome and thus take control of the



whole window appearance. However, this new window
will not be able to synchronize itself with the reference
window and the other windows. Furthermore, this new
window cannot respond to the right mouse click and other
reserved keystrokes, like Alt+C for copy under Linux. It is
a known bug [4] that this new window cannot bring back
the menu bar and the other bars, and it cannot print pages.

So far, the chromeless window is not a threat to SRD
boundaries. However, Mozilla is living code. The Mozilla
developers work hard to improve its functionality; and the
behavior of the chrome feature may evolve in the future in
ways that are bad for our purposes. So, we plan either to
disable this feature, or to install SRD boundaries even on
chromeless windows.

Pseudo-synchronization. Another consequence of
real implementation was imprecise synchronization.
Within the code base for our prototype, it was not feasible
to coordinate all the SRD boundaries to change at pre-
cisely the same real-time instant. Instead, the changes all
happen within an approximately 1-second interval. This
imprecision is because only one thread can access the
XPCOM module; all other threads are blocked until it re-
turns. Since the JavaScript calls access the random value
sequentially, the boundaries change sequentially as well.

However, we actually feel this increases the usability:
the staggered changes make it easier for the user to per-
ceive that changes are occurring.

6 Usability

The existence of a trusted path from browser to user does
not guarantee that users will understand what this path
tells them. In order to evaluate the usability of SRD
boundary, we carried out user studies.

Because our goal is to effectively defend against Web
spoofing, our group plans future tests that are not limited
to the SRD boundary approach, but would cover the gen-
eral process of how humans make trust judgments, in or-
der to provide more information on how to design a better
way to communicate security-related information.

6.1 Test Design

The design of the SRD boundary includes two parame-
ters: the boundary color and the synchronization. They
express different information.

• The boundary color indicates where the material
comes from.

• The synchronization indicates whether the user can
trust the information expressed by the boundary
color scheme.

In our tests, we change the two parameters in order to
determine whether the user can understand the informa-
tion each parameter tries to express. We vary the bound-
ary color over:

• trusted (orange)

• untrusted (blue)

We vary the synchronization parameter over:

• static (window boundary does not change)

• asynchronous (window boundary changes, but not in
a synchronized way)

• synchronized

According to our semantics, a trustable status window
should have two signals: a trusted boundary color, and
synchronized changes. Eliminating the cases where the
user receives neither of these signals, we have four ses-
sions in each test: a static trusted boundary; a synchro-
nized trusted boundary; a synchronized untrusted bound-
ary; and an asynchronous trusted boundary.

We also simulated the CMW-style approach and exam-
ined its usability as well. In particular, the the CMW-style
approach is less distracting than SRD boundary, because
most of the labels are static. This reduces intrusiveness—
but less distracting may also mean winning less attention.

We then ran three tests.

• In the first test, we turned off the reference window,
and used only the SRD boundary in the main surfing
window as a synchronization reference. We popped
up the browser’s certificate window with different
boundaries, in four sessions.

• In the second test, we examined the full SRD ap-
proach, and left the reference window on, as a syn-
chronization reference. We popped up the certificate
window four different ways, just as in the first test.
We wanted to see whether using reference window is
helpful for providing extra security-related informa-
tion, or whether it is needlessly redundant.

• In the third test, we simulated the CMW-style ap-
proach. Boundaries were static; however, a refer-
ence window always indicated the boundary color of
the window to which the mouse points. In this case,
the status information provided by the reference win-
dow arrives at the same time when the user move the
mouse into the window.

In the conventional CMW approach, the mouse has
to be clicked on the window to get it focus at first. In
our test, we used mouse-over, which gets the infor-
mation to the user sooner. (In the future, we hope to



design more user studies to obtain additional data on
how the time when status information arrives effect
users’ judgment during browsing.)

Before starting the tests, we gave the users a brief in-
troduction about the SRD boundary approach. The users
understood there were two parameters they needed to ob-
serve. The users also viewed the original Mozilla user
interface, in order to become familiar with the buttons
and window appearance. After viewing the original user
interface, the users started our modified browser and en-
tered an SSL session with a server. The users invoked the
page information window, and checked the server certifi-
cate which the browser appeared to present. The page in-
formation window and the certificate window popped up
with different boundaries, according to the session.

The users were asked to observe the windows for ten
seconds before they answered the questions. The ques-
tions included what they observed of the two parameters
of the window boundaries, whether they thought the win-
dow was authentic, and how confident they were about
their judgment.

6.2 Users Description

We tried to collect users from different sophistication lev-
els, in order to provide realistic results for evaluation of
our design. More importantly, we wanted to collect in-
formation on how regular users recognize status from the
browser user interface—this information would not only
help us evaluate our current approaches, but could also po-
tentially help drive designs of better user interfaces. (We
see much potential future work here.)

For this user study, we had seven volunteers.

• Two can be ranked as experts: a scientist
at Dartmouth’s Institute for Security Technology
Studies, and a Ph.D. candidate in computer science.

• Three are undergraduates who search the Web for in-
formation and buy products over the Web quite often.
They also like new technology and are quick learn-
ers.

• Two are medical scientists who use Web mainly
for searching research papers, and do not do online
credit card transactions very often.

The user ages range from 21 to 40, covering the main
age area of Web users. The users major in physiology,
biology, computer science, engineering, psychology, so-
ciology, medicine. Among these users, only the computer
experts check the security features on their browsers be-
fore they submit credit card information online. Except
for these two experts, only one subject had even heard of
the phrase “SSL” and none of them knew what it meant.

Except for the experts, no one checked the https and the
lock icon.

6.3 User Study Results

We summarize the most significant results we observed
from the tests.

6.3.1 No Reference Window

In the first test, we used dynamic boundaries but no refer-
ence window.

Response to the static trusted boundary. This is
the first test session. When shown the certificate window
with a static trusted boundary, only the computer experts
correctly perceived the status information and asserted
that the certificate window was not authentic. All the other
users failed to make the correct judgment, although they
were not confident about their decision. An interesting ob-
servation was that three out of five users who made wrong
judgment at first, recalled the window in first session was
inauthentic after finishing the first test. This shows how
quickly the users can be educated.

Response to the synchronized trusted boundary.
In this session, the users viewed the browser with proper
SRD boundaries. Five out of seven users made the correct
judgment. The ones who made the correct judgment were
confident about the decision. The ones that failed to cap-
ture the right information were not confident about their
decision.

Response to the synchronized untrusted bound-
ary. In this session, the certificate window came with a
blue (untrusted) boundary. Five out of seven users cor-
rectly recognized the certificate window was not authen-
tic, because it should be in an orange boundary. The ones
who made the correct judgment were confident about the
decision, and thought the signal expressed by the color
scheme was very clear.

Response to the asynchronous trusted bound-
ary. In this session, the user needed to recognize that
the trusted boundary was not changing correctly. All the
users successfully judged this window was not authentic.
They were also confident in their judgment.

This result surprised us: we thought the synchroniza-
tion is not as strong a signal as the color. Apparently, hu-
man users recognize the synchronization parameters bet-
ter than the color scheme. One reason may be that users
pay more attention to dynamic features than to static ones.
A second reason for this result may be that this is the last
session of the first test. During the first three sessions, the



users may have learned how to observe and make judg-
ment.

6.3.2 Full SRD

We then tested full SRD, with the reference window.

Response to the static trusted boundary. The
reference window popped up before the main window
started, which won most of the users’ attention. Five out
of seven users recognized the window status successfully.
The ones made correct decision were confident about their
decision.

Response to the synchronized trusted boundary.
This time, all the users successfully recognized the status
information and felt confident in their decision.

Response to the synchronized untrusted bound-
ary. Six out of seven users made the correct judgment.
They thought the signal expressed by the color was very
clear.

Response to the asynchronous trusted bound-
ary. All the users made the correct judgment. They all
were confident about their decision, and thought the sig-
nals were very clear.

6.3.3 CMW-Style

In our last test, we simulated the CMW-style approach.
This test was an optional one for the users. Two out

of four users who did this test successfully made the right
judgment—but they were the experts. In general, the users
felt confused about the information provided by the CMW
reference window, and they tended to neglect it. We plan
a more detailed study here.

6.4 User Study Conclusions

Different levels have very different responses.
During our tests, we noticed that it was very obvious that
the computer scientists have much faster reaction to secu-
rity signals, and were more successful at recognizing what
the signals meant. The other users took longer to observe
the signals, and still did not always make the correct judg-
ment. The user with the physiology background did not
understand the parameters until the second session of the
second test.

One conclusion is that computer scientists have a very
different view of these issues from the general popula-
tion. A good security feature may not work without good
public education. For example, SSL has been present

in Web browsers for years, and is the foundation of “se-
cure” e-commerce, which many in the general public use.
However, only one of our non-computer people heard of
this phrase. Signals such as the lock icon—or anything
more advanced we dream up—will make no sense to users
who do not know what SSL means.

Users learn quickly. Another valuable feedback from
our user study was that general users learned quickly, if
they have some Web experience. Three out of five non-
computer experts understood immediately after we ex-
plained SSL to them, and were able to perceive server au-
thentication signals right away. The other two gradually
picked up the idea during the one hour tests. At the end
of the tests, all of our users understood what we intended
them to understand.

This result supports the “minimal user work” property
of our SRD approach: it easy to learn even for the people
outside of computer science. The users do not do much
work; what they need to do is observe. The status in-
formation reaches them automatically. No Web browser
configuration or detailed techniques are involved.

Reference is better. Most of our users felt it was bet-
ter to have the reference window, because it made the syn-
chronization parameter easy to be observed. The refer-
ence window starts earlier than the main window, so it at-
tracts user’s attention. The users would notice the chang-
ing of boundary right after the main window starts up.

This result is ironic, when one considers that we only
added the reference window because it was easier than re-
writing Mozilla’s thread code.

Dynamic is better. The dynamic effect of SRD
boundary increases its usability. The human users pay
more attention to the dynamic items in Web pages, which
is why many Web site use dynamic techniques. In our
user study, most of the non-computer people did not even
notice that a static window boundary existed in the first
session test.

Automatic is better. The user study result from
CMW-style approach simulation also indicates that indi-
cating security information without requiring user action
was better.

7 Conclusions and Future Work

7.1 Summary

A systematic, effective defense against Web spoofing re-
quires establishing a trusted path from the browser to its
user, so that the user can conclusively distinguish between



genuine status messages from the browser itself, and ma-
liciously crafted content from the server.

Such a solution must effectively secure all channels of
information the human may use as parameters for his or
her trust decision; must be effective in enabling user trust
judgment; must minimize work by the user and intrusive-
ness in how server material is rendered, and be deployable
within popular browser platforms.

Any solution which uses static markup to separate
server material from browser status cannot resist the im-
age spoofing attack. In order to prove the genuineness
of browser status, the markup strategy has to be unpre-
dictable by the server. Since we did not want to require
active user participation, our SRD solution obtains this
unpredictability from randomness.

This, we believe our SRD solution meets these crite-
ria. We offer this work back to the community, in hopes
that it may drive more thinking and also withstand further
attempts at spoofing.

7.2 New Directions

This research also suggests many new avenues of re-
search.

Parameters for Trust Judgment. The existence of a
trusted path from browser to user does not guarantee that
the browser will tell the user true and useful things.

What is reported in the trusted path must accurately
match the nature of the session. Unfortunately, the his-
tory of the Web offers many scenarios where issues arose
because the reality of a browsing session did not match
the user’s mental model. Invariably this happens because
the deployed technology is a richer and more ambigu-
ous space than anyone realizes. For example, it is nat-
ural to think of a session as “SSL with server A” or
“non-SSL.” It is interesting to then construct “unnatural”
Web pages with a variety of combinations of framesets,
servers, 1x1-pixel images, and SSL elements, and then
observe what various browsers report. For one example,
on Netscape platforms we tested, when an SSL page from
server A embedded an image with an SSL reference from
server B, the browser happily established sessions with
both servers—but only reported server A’s certificate in
“Security Information.” Subsequently, it was reported [3]
that many IE platforms actually use different validation
rules on some instances of these multiple SSL channels.
Another issue is whether the existence of an SSL session
can enable the user to trust that the data sent back to the
server will be SSL protected. [17]

What is reported in the trusted path should also pro-
vide what the user needs to know to make a trust deci-
sion. For one example [8], the Palm Computing “secure”
Web site is protected by an SSL certificate registered to

Modus Media. Is Modus Media authorized to act for Palm
Computing? Perhaps the server certificate structure dis-
played via the trusted path should include some way to
indicate delegation. For another example, the existence of
technology (or even businesses) that add higher assurance
to Web servers (such as our WebALPS [12, 21, 22] work)
suggests that a user might want to know properties in ad-
dition to server identity. Perhaps the trusted path should
also handle attribute certificates.

Other uncertain issues pertaining to effective trust judg-
ment include how browsers handle certificate revoca-
tion [26] and how they handle CA certificates with de-
liberately misleading names [17].

Access Control on UI. Research into creating a
trusted path from browser to user is necessary, in part,
because Web security work has focused on what machines
know and do, and not on what humans know and do. It is
now unthinkable for server content to find a way to read
sensitive client-side data, such as their system password;
however, it appears straightforward for server content to
create the illusion of a genuine browser window asking for
the user’s password. Integrating security properties into
document markup is an area of ongoing work; it would be
interesting to look at this area from a spoof-defense point
of view.

Multi-Level Security. It is fashionable for younger
scientists to reject the Orange Book and its associated
body of work regarding multi-level security as being
archaic and irrelevant to the modern computing world.
However, our defense against Web-spoofing is essentially
a form of MLS: we are marking screen elements with
security levels, and trying to build a user interface that
clearly communicates these levels. (Of course, we are also
trying to retro-fit this into a large legacy system.) It would
be interesting to explore this vein further.

Visual Hashes. In personal communication, Perrig
suggests using visual hash information [18] in combina-
tion with various techniques, such as meta-data and user
customization. Hash visualization uses a hash function
transforming a complex string into an image. Since image
recognition is easier than string memorization for human
users, visual hashes can help bridge the security gap be-
tween the client and server machines, and the human user.
We plan to examine this in future work.

Digital Signatures. Another interesting research area
is the application of spoofing techniques to digital signa-
ture verification tools. In related work [13], we have been
examining how to preserve signature validity but still fool
humans. However, both for Web-based tools, as well as



non-Web tools that are content-rich, spoofing techniques
might create the illusion that a document’s signature has
been verified, by producing the appropriate icons and be-
havior. Countermeasures may be required here as well.

Formal Model of Browser Content Security.
Section 3.1 discussed the basic framework of distinguish-
ing browser-provided content from server-provided con-
tent rendered by the browser. However, formally distin-
guishing these categories raises additional issues, since
much browser-provided content still depends on server-
provided parameters. More work here could be interest-
ing.
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