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Abstract vide a means of communication between sepa-
rated applets, objects can be markedtareable

. his allows to grant access to (a subset of) the
The access control exercised by the Java Car g ( )

firewall can be bypassed by the use of shareabld ethods of the objects through the firewall. The

obiects. To helo detecting unwanted access tcjDroblem is that marking an object as shareable
) ' P 9 . means that its shared methods can be accessed by
objects, we propose a static analysis that calcu

e . all lets that man referen h
lates a safe approximation of the possible flowa applets that manage to get a reference to the

. object. To counter this problem, Java Card of-
of objects between Java Card applets. The analFers a limited form of stack inspection, allowing

ysis deals with a subset of the Java Card byte—a “server” applet to know the identity of a “client”

code focusmg on aspects of the Java C_:ard flre'object which invoked a particular method. This,
wall, method invocation, field access, variable ac-

however, must be programmed explicitly by the
prlication programmer. These mechanisms (de-
scribed in detail in section 2) allow the design of
secure applications but do not themselves guar-
antee security. Further code analysis must be em-
ployed to establish that the checks programmed
in the server applet guarantee that confidential
data is not leaked via shared objects. To sum-
marize:

cal vehicle for achieving this task is a new kind
of constraints: quantified conditional constraints,
that permits us to model precisely the effects of
the Java Card firewall by only producing a con-
straint if the corresponding operation is autho-
rized by the firewall.

1 Introduction The Java Card firewall can be bypassed
by using shareable objects. Data flow
analysis permits to calculate a safe ap-

The Java Card language is a subset of Java,  proximation to the access control actu-

tailored to the limited resources available on to- ally implemented by a set of applets,
day’'s smart cards. Java Card keeps the essence of and thus to verify that a given access
Java, like inheritance, virtual methods, overload- policy is respected.

ing, but leaves out features such as large prim-

itive data typeslpng , double andfloat ), This paper presents a flow analysis for Java

characters and strings, multidimensional arraysCard programs. The analysisdenstraint-based
garbage collection, object cloning, security man-in that for each instruction of the program it gen-
agers [1, 10]. Given the security-critical ap- erates a set of constraints describing the data flow
plication areas of Java Card, the language ha®f the instruction. The resolution of this system
been endowed with an elaborate security archi-permits to find the possible values of the vari-
tecture.A priori, applets are separated byi-  ables used in the program and the called method.
wall which prevents one applet from accessingThe analysis relies on a novel technical device,
objects owned by another applet. Thus, even ifquantified conditional constraintQCGCs), that

a foreign applet obtains a reference to an objectallows to generate the set of constraints of a
with confidential information this does not imply programon demand This way of generating
that the information is leaked. In order to pro- constraints is useful and natural when analyzing



object-oriented languages where the control flowecute in the context of its ownerlt is with this

and the data flow are inter-dependent. It generalcontext that thd CREdetermines whether an ac-
izes the conditional constraints proposed by Pals-cess to another object will succeed. The firewall
berg and Schwartzbach [20] for object-orientedisolates the contexts in the sense that a method
type analysis. executing in one context cannot access any fields

The paper is organized as follows. Sec- Serxr:ethods of objects belonging to another con-

tion 2 introduces the central features of the Java
Card 2.1.1 firewall and provides a detailed ex- There are two ways for the firewall to be by-
ample. Section 3 defines our representation ofpassed: vidlCREentry points and via shareable
the Java Card bytecode. The abstract domainsbjects.JCREentry points are objects owned by
used in the analysis are given in Section 4 andthe JCREthat have been specifically designated
Section 5 defines the set of quantified conditionalas objects accessible from any context. The most
constraints generated for each type of instruction prominent example is thépplication Protocol
Section 6 shows how the€gCCs can be solved Data Unit (APDU) buffer in which commands
iteratively and Section 7 shows how the analysissent to the card are stored. This object is man-
performs on the example from Section 2. Sec-aged by thelCRE and in order to allow applets
tion 8 and Section 9 discuss related works andto access this object, it is designated as an entry
directions for extending this work. point. Other entry points can be the elements of
the table containing the AIDs of the applets in-
stalled on the card. Entry points can be marked as
) temporary References to temporary entry points
2 The Java Card firewall cannot be stored in objects (this is enforced by
the firewall).

The Java Card platform is a multi-application  Two applets in different contexts may want to
environment in which an applet's sensitive datashare some information. Java Card offers a shar-
must be protected against malicious access. Inng mechanism, calledhareable objectsthat
Java, this protection is achieved using class loadgives limited access to objects across contexts.
ers and security managers to create private nam@n applet can allow another applet to access an
spaces for applets. In Java Card, class loaders anabject's methods from outside its context. The
security managers have been replaced with thenechanism is restricted to methods and cannot
Java Card firewall. The separation enforced bybe applied to fields. It uses a shareable inter-
the firewall is based on the Java Card’s packagdace, that is an interface which extendsa-

structure (the same as Java’s) and the notion otard.framework.Shareable . In this in-
contextgin Java Card, this notion is callegoup  terface, the applet gives the list of the method’s
contexj. signatures it wants to share. The class of the ob-

When an apolet is created. tBava Card Run- ject to share must implement this interface. The
PP ' “server” applet defines a methodetShare-

time Environmen{JCRE assigns it a unique ap- ablelnterfaceObject called when an ap-

plet identifier (AID). If two applets are instances : . .

of classes coming from the same Java Card pack?rgk:s darsgfgvfs ?;(;Vfle[) aofs ?ﬁée‘% "Z?ﬁc;' ITert]e
age, they are said to belong to the same context, . . ppiet.
. o s which requested the shared object. Based on this
identified by the package name. In addition to the, : .
contexts defined by the applets executed on th information, the server decides what to return to
card, there is a special “system” context, called he client, thus it is possible to share different ob-
theJCREcontext. Applets belonging to this con- jects with different client applets.

text can access objects from any other context on _ _

the card. Thus, the set of Java Card contexts i-1 An example using shareable objects

defined by:

Java Card contexts = Figure 1 contains an example illustrating the
{JCRE} W { pckg: a package namge sharing mechanisms of the firewall. We have 3

o ) ) applets: Alice, Bob and Charlie. Alice imple-
Every object is assigned a unigow/ner con-

text ViZ., the context of the appl_et vv.hich.created 1in the case of a static call, the execution is in the caller's
the object. A method of an object is said to ex- context.




ments a shareable interfabS1 (we assume an value the method should return to the caller. It is,
interfaceMSI that extendShareable in which ~ however, up to the programmer to implement this
the signature of the methddo is given) and is  correctly. If the security mechanisms provided
prepared to share an obj@d610 (an instance of by the language are not used properly, unwanted
the class that implements the interfad8I) with information flow can arise as a result of objects
Bob. When Alice receives a request for sharingflowing from one applet to another. In order to
(via a call to her methodetSIO 2) bytheJCRE  verify the access control actually implemented by
she verifies that the caller is Bob. If it is Bob, she a set of Java Card applets we have developed a
returnsMSlOelse she returnsull. static analysis that calculates, for each variable in
a program, an approximation of the set of values
that will be stored in this variable. This static ap-
proximation allows

Bob can ask for a shareable object from Al-
ice using thel CREmethodgetASIO 3. Assume
now that Bob (inadvertently) leaks a reference
to MSIO to the third applet Charlie. Since the
firewall only checks that the object is shared be- | {4 signal potential data flow between applets
fore granting access, Charlie can invoke the same 4+ violates a given access control policy,
methods of thSIO object as Bob. Alice knows
this so she decides to verify, at each access to one
of her shared methods, the identity of the caller.
Java Card offers a method for obtaining the AID
of the context in operation before the last con-
text switch, here calledetPrevCxt #. Using
this information Alice can discover when applets The ana]ysis is based on a constraint-based type
from contexts other than Bob's attempt to accessanalysis for Java-like languages, but is modified

e or, if no such flow is detected, to provide a
proof that all data flow respects the policy.

theMSIOobject. to keep an accurate account of the Java Card
specificities (like context and firewall). Indeed,
2.2 Limitations of the firewalll since the security of an applet to a large extent

relies on the use of thgetPrevCxt method,

the analysis must be able to model calls to this
The Java Card firewall has several shortcom-method precisely.

ings, as analysed in detail by Montgomery and

Krishna [18]. One potential difficulty with the

Java Card firewall is that shareable objects can be

f‘cces.sed by any appletand notonly by the applel - rohresentation of Java Card
o which the reference was given, as illustrated
by the example above. Since references can be bytecode

passed from one applet to another, this opens up

the possibility for methods in shared objects to

be invoked by applets other than those for which  To simplify the presentation, we work with a
they were intended. To protect applets against un-three-address” representation of Java Card byte-
wanted access, Java Card offers a limited formcode where arguments and results of an instruc-
of the stack inspection mechanism that under-tion are fetched and stored in local variables in-
lies the Java 2 security architecture. The sys-stead of being popped and pushed from a stack.
tem methodgetPrevCxt  can be called to get This format is similar to the intermediate lan-
access to the last context switch that took placeguagelimpleused in the Java to&oot[23] and
When a method is called from another applet, thisthe transformation of code into this format is
context switch indicates the identity of the caller. straightforward. We furthermore assume that the

This information can then be used to decide whatconstant pool has been expandedthat indices
into the constant pool have been replaced by the

2In reality, this method is callegietShareableln- corresponding constant. For example, the byte-
terfaceObject  and is invoked by thdCREthat mediates ~ code instructionnvokevirtual takes as pa-
all requests for shared objects. rameter the signature of the method called, rather
sh a:zaglee?f::%rfa?fot;;ect:‘)d JCSystem.getApplet than an index into the constant pool. The for-
4n  reality, this method is called JCSys- mal representation of Java Card bytecode can be

tem.getPreviousContextAlID. foundin [17].



public interface MSI extends Shareable {
Secret foo ();
public class Alice extends Applet implements MSI {
private Secret ObjectSecret;
public Shareable getSIO (AID Client) {
if (Client.equals (BobAID))
return (this);
return null; }
public Secret foo () {
AID Client;
Secret Response;
Client = getPrevCxt();
if (Client.equals (BobAID))
Response = ObjectSecret;

return Response; }
. public class Charlie extends Applet {
ublic class Bob extends Applet . - .
P public static MSI Aliceogﬁ t private static MSI AliceObj;
ublic void bar () {' private static Secret AliceSecret;
pubiic D8 public void bar ()
AliceObj = (MSI) getASIO " A " .
(AliceAID); 1) AliceObj = Bob.AliceObj;
! AliceSecret = AliceObj.foo (); T}

Figure 1: Example of shareable objects

3.1 Notations which contains the possible applet identifiers of
the applets installed on a card. This set contains
a special AID, writtenJCRE for the Java Card

The termP(X) denotes the power set of: Runtime Environment.

PX)={S | S C X}. A product typeX =
A x B x C' is sometimes treated as a labeled

record: with an element of type X, we can ac- _
cess its fields with the names of its constituentClasses and Interfaces A class or an interface

types (.4, z.B or z.C). A list is defined by descriptor consists of a set of the access modifiers
enumeration of its elements; :: --- :: x,,. List  (P(Mod;)), the name of the class or interface
elements can be directly accessed giving their po{ldc:), the name of the direct superclass or the
sition (u(i) for thei™ element). Lists can be con- names of direct super-interfacesxf), the name

catenedi(zy : --- i xy) i (T - p) =
Ty Ty Ty e Xp. X denotes the
type of finite lists, whose elements are of type
The symbol- is used to form the type of partial
functions: X — Y. Thewv € E notation denotes
the formulav; € E1 A -+ Awv, € E,,.

3.2 Abstract syntax

of the interfaces that the class implemeris),

the name of its packagéd(,), field declarations
(FId), method declarations and implementations
(Mtd). A class must have one superclass, the de-
fault beingjava.lang.Object , but an inter-
face can have zero or more super-interfaces. Only
a class can implement an interface, so for an in-
terface this set is empty. The fields are described
by a map from field namesd) to a pair consist-
ing of a set of access modifier8(Mod,)) and a

Our program representation is a modified ver-type descriptorTypg. The type of a field is ei-
sion of that of Bertelsen [5, 6]. We us@,, Id.;,  ther a primitive typelfoolean , short , byte ,
Id; andld,,, to denote the set of qualified name of int ) orthe name of a class or an interface. All of
a package, of a class or an interface, of a field andhis information are stored in the class hierarchy
of a method, respectively Id, is the set of (un-  (Eci)-
qualified) names of variables. To extract name
information from an identifier, we use the nota-
tion [1d]*, whereld is a qualified name anxthe

Methods The methods are described by a map
type of the projectioh We assume a s&ID

that to a method signatureSig) associates a
method descriptor (Desg. This structure con-
5The qualified name of an entity is the complete name. For sjsts of a set of access modifiefy{od,,)), the

a class, it ip.cwherep is the name of the package aothe R
(unqualified) name of the class. For a methodir or a field code of the methOqude’ a descrlptlon of the

(c.f), itis the qualified name of the class and the (unqualified) formal parametersP(aram), optionally a descrip-

name of the method or field. tion of the variable used to return a valuge@
6To extract a (unqualified name), we yséor a package,

. | e 1e Bt & packad and the local variables of the methoda(l). A
c for a class or an interfacen for a method and for a field. : : o
To extract a qualified name, we combine the symbols so, forSIgnature is the name of the meth )and the

example,[1d]-¢ will extract a qualified name of a class (or 1St Of t_ype Qescriptors forits parametg@pé).
interface) from the qualified namé. Code is a list whose elements consist of a pro-




gram counter valueRc’) and the instruction at
this addressRytecodg The set of local vari-
ables is the list of all variable namelsl{) with
their type descriptorType.

Bytecode Due to space limitations, in this pa-

ject contained inT; with parameterds --- T,
and the result is stored in the variablg with
typeS,+1. T:=invokestatic getPrevCtxre-
trieves the AID of the last active context before
the last context switch and stores itTh Ty :=
load T, loads the value contained if, and
storesitinT;. T:=new C stores a reference to the

per, we only consider a subset of Java Card bytgypject created at this program point Th put-

code. The subset is nevertheless sufficient to il-gtatic

f T loads the value contained in the vari-

lustrate the different features of our analysis; see;p|eT and stores it in the static fiefcbf the class
[16] for a treatment of the full language. In the [f]P<. T, := store T, loads the value contained

following, T; range over local variables ar&] is

used to give the list of the type of the parame-
ters for a call (which can be found in the constant

pool).

in Ty and stores it iM;.

The main departure from standard bytecode

is the introduction of the construdAID T €

S BCinst This specialized if-instruction takes
as argument a variabl€ that contains an AID,
a setS € P(AID) and executes the instruction
BCinst if the AID belongs to the s We have

introduced this instruction to make explicit how
the analysis takes information about AIDs into

3.3 Auxiliary functions on the class hier-
archy

We define three predicates to determine if a

account. Ordinary bytecode can be transformedclass member (the second parameter) is visible

to use thefAID instruction by identifying those

from a given instruction (the first parameter).

conditional instructions that make test of the We have Cl_Visibility? for a class or an in-

form_Aid_e S Most of such tests are syntactically terface, MethodVisibility? for a method and
explicit in Java Card source programs or Canpe|q vsibility? for a field. We must keep this

be identified by simple intra-procedural flow
analysis.

Bytecode SfAID T e S BCinst BCinst

The Java Card bytecode is transformed into a

test in the constraint because in some cases, like
for the modifierprotect , we need information
about its dynamic values.

Cl Visibility?:

Id. x Id.; x E.; — Boolean

“three-address” like language. We will not de- MethodVisibility?:

scribe this program transformation any further.

BCinst =
T := getstatic f

| To:= invokeinterface mT;
T T, S 555, 41

| T :=invokestatic getPrevCtx

| Ti:=load T,

| T:=newld,

| putstatic T

|

T, :=store T,

T:=getstatic floads the value contained in
the static field of the clasqf]?-< and stores it in
T. To:=invokevinterface mT, T --- T,
S -iS,S, 41 invokes the interface method
m with the signatureS;::---::S,; on the ob-

“We assume furthermore a set of program counters.
A program counter identifies an instruction within the whole
class hierarchy and not just a method.

Id, x ld. x Desg,, x E.; — Boolean
Field_Visibility?:
ld. x Idy x E.; — Boolean

The function Lookup models the dynamic
search of methods underlying the virtual method
calls. It takes as arguments the signature of a
method, the class in which the method is de-
clared, the class in which the invocation are made
and the class hierarchy. It returns a set of fully
qualified method names of the implementations
of the method designated by the signature.

Lookup: Sigx Id.; x Id.; x E.; — P(1d,,)

A full description of the Java visibility rules
and method resolution would be quite lengthy
due to the non-trivial semantics of these two lan-
guage features. We refer instead to the litera-
ture [12, 15, 14].



4 Abstract domains

fields (Fldv), a function which maps a field name

to a set of values.

Owners and contexts An object is owned by Obj=

an applet (or thd CRE) thus an owner is uniquely

Id.; x Ownerx JCREepx tJCREepx Fldv

identified by an AID. Since an AID does not di- Fldv =

rectly specify the package to which the applet be-
longs, we add this information for convenience.
Thus, the set of object owners is defined by:

Owner = Id, x AID

We define an abstract context to be an abstrac
tion of the call stack in which a method is exe-
cuted (these contexts should not be confused wit
the Java Card notion of context). Our abstract
contexts are designed to provide exactly the in-
formation that can be obtained by a call to the
stack-inspecting methagetPrevCxt  (cf. Sec-
tion 2). More precisely, the abstract context in
which a methodn is analyzed consists of a pair
(Prev,App)where the first componeRtevis the
last active Java Card context before the last con-
text switch and the second compon@pipis the
Java Card context of thealler (i.e., the active
context that invokedn). Formally we define:

Context = Ownerx Owner

Values We are primarily interested in modeling
the object structure and ownership so we abstract
primitive values such as booleans and integers to
their type. To model the heap of objects, we adopt
a common approach (going back to at least [13])
in which all objects created by the samew in-
struction are identified by one object. We refine
this by keeping the owner as part of the abstract
object. More precisely, a referencBd) to an
object Obj) is abstracted into the instruction that
created the object and the owner of the object. We
suppose we have a spediull reference.

Ref = (Pcx Owner)w { Null }

We have three kinds of abstract values: ref-
erences, applet identifiers and primitive values
which as mentioned above are abstracted by their
type.

Value = Refy AID W
{boolean ,short ,byte ,int }

Concerning the concrete value in memory, we
can have a class instano8lfj) which contains
the name of the clas$d.;), the owner of this in-

ldy — P(Value)

Firewall checks The checks made by the fire-
wall are formalized through a collection of pred-
icates. Covering all bytecode instructions would
require eight different predicates ([16]); in this
Hpaper, we only use two of these predicates:

e The predicatéccessinterface?alidates the

access to methods of an object.

Accesslinterface?:
Refx Refx Id; x E.; — boolean

The first reference represents the current
context, the second represents the object on
which the call is made antdl; is the name

of the interface which declared the method
called. The access is authorized if and only
if the context represented by the first refer-
ence is the context of thiCREor if the con-
texts of the two references are the same or
if the second reference represent§@RE
entry point or if the class of the object repre-
sented by the second reference implements a
shareable interface and; extends a share-
able interface.

The predicateAccessPutstaticghecks the
validity of the access to a static field of a
class.

AccessPutstatic?:
Refx Value— boolean

The reference represents the current context
that wants to store the value in the static
field. The access is only authorized if the
Java Card context represented by the refer-
ence is the context of th@CRE or if the
value is neither a global object nor a tem-
poraryJCREentry point.

Flow analysis

In this section we describe a data flow analysis

stance Qwnel), boolean flags indicating whether to approximate the part of a program’s behaviour

or not it is aJCRE entry point or a temporary

relevant to security verifications. The main infor-

JCREentry point €f. Section 2) and the set of mation calculated by our analysis is an approxi-



mation of the objects stored in the variables of the The first kind of constraints used in static anal-
program. More precisely, we calculate the fol- ysis is the simple constrainS(Q). It is used to

lowing information: model the flow and the modification of informa-
tion. A simple constraint has the form:
o V [var,m,ct] € P(Value} the set of values Expressiorc. Variable

stored in the variablear of methodmwhen

this method is called in contegtx. . o .
An extension of this kind of constraint was used

o 8F [ld] : 1df — P(Value) the possible by Palsberg and Schwartzbach [20] for type anal-
values of the static fields of a given class.  ysis. They take a simple constraint and add a con-
dition under which the constraint is valid. Such a

e mem: Ref — Obj: an approximation .., qiionalconstraint has the form:

of the memory in which an abstract refer- ] ) )

ence of form(pc, owner) is mapped to an Classe Variable — Expressiorc Variable,

abstract object that safely approximates all

those concrete objects allocated by instruc-The Variablg have Expression as possible value

tion at addrespc and owned by wner. if and only if Class is a possible value for

o C [mcb] € P(Ref) the set of objects on Varlaplq. The simple constraint mpdels an in-

- i . struction of a method and the condition model the

which a call to methodn in contextctx is . :

made. fact that this method can effectively be called.

This kind of constraints solves the problem that

It is important to analyze methods for each the constraints to be generated depend on the ac-
calling context since this is the information avail- tual data flow of the program. The solution has
able to the firewall at run-time. An analysis that the drawback that it has to generate all possible
does not exactly model this information would constraints from the outset and then test for each
have poor precision. This information serves two iteration and for each constraint whether it should
purposes: it permits constructing a control flow be taken into consideration. In the following, we
graph (by resolving which method is called at a propose to generate the constraints setin anincre-
given virtual method call) and it makes explicitif mental fashion where constraints are only added
an object owned by an applet is stored in a vari-once the data flow analysis has actually estab-
able accessible by another applet. lished that the constraints will be activated.

An intra-procedural analysis is required in or- We propose to extend this kind of constraints
der to approximate the behaviour of each serveiin the following two ways:
applet when it receives a request for a shared ob-
ject. This analysis is orthogonal to the analysis e allow more conditions, to model, for exam-
presented in this paper and will not be described  ple, the activities of the environment like the
here. We shall assume the function: firewall checks or the visibility rules,

RetumsSIO:AID x AID — P(Ref) e produce dynamically the system based on
It takes the AID of a server and the AID of a client the current value of each variable (instead of
and returns a safe approximation of the set of ob- ~ generating constraints for all possible values
jects that the server accept to share with the client ~ of the domain of the variable).
(the setthat it returns is equal to or bigger than the

set returned during the execution). This new kind of constraints is calleguantified
conditional constrainteind has the form:
5.1 Quantified conditional constraints Yo, -+,0, €51, ,Sn:
cond(vy, -+, v,) —
estr(vy, -, vp)

The analysis will be specified in constraint-
based style. We introduce a new type of con- Here,cstris a set of simple constraints param-
straints, thequantified conditional constraints eterized onvy,- - -, v, andcondare conditions
(QCC9 that can be considered as a constrainton the values, - --,v,. Evaluation of such a
scheme from which actual constraints can be genQCCresults in a set of constraints for each value
erated. v,y € 51, -, Sy satisfying the condition



cond In our analysis, th€@CCs have a particular This function takes three parameters: the in-

structure, as shown below. struction to analyze, the current method, and the
context in which the method is analyzed. An in-

e The setS used in the quantification, can Struction is just a program counter and the byte-
be the set of possible values of a variable code instruction at this address. In the following

(V [x,m,ctf), the set of objects on which we define this function for each bytecode instruc-

a call is made @ [m,cty), the result of the tion.
Lookupor a constant set.

¢ The conditioncondis a conjunction of con-  getstatic Thegetstatic  instruction loads a
ditions. It can be a test on the visibility, a value stored in a static field of a class or interface
firewall check or a test for membership of a and stores it into a local variable. The value in
constant set. the fieldC.fis stored in the local variablgif and

_ _ _ only if the field exists and the field is visible at
e A constraintconstis a set of simple con- instructioninst (figure 2).

straintSC SChave a formExpC Var. Exp

can be a variable, a constant set, a derefer-

encing of the memory, the set of the valuesinvokeinterface Theinvokeinterface in-

of a static field or the call tdQReturnSIO. struction makes a call to an interface method. We
Var can be a variable, a dereferencing of thecalculate the set of methods to which the method
memory or the set of the values of a static signaturesig can be resolved

field. Lookup (sig,mem(0).Tyde|?<,E.;)
together with the context in which the meth-
QCC: Vwvalue € S : ods called will be analyze@rev,App) If the
condpalue) — call is accepted by the firewalhEcessinterface?
cstrialue) (r.0,[p]*<,E.)), we add constraints to simulate
S:V [x,m,ctq | € [m,cty | Const Set this call. We create constraints to simulate the
Lookup (Sig, I¢;, Id.;, Es) transfer of the actual parameters to the formal pa-
cond: Hi A --- A H,, rameters:
Condition (H): V[T;m,ct§ CV [P;,q,(Prev,App),

CI_Visibility? (Id.,ld..) | and add a constraint to retrieve the value returned

MethodVisibility? (Id.,Id,,Desc,) | by theé”ﬁ:‘::;‘j‘ﬂ"gdv R (PrevApd
Field_Visibility? (Id..,Id . . = LB ’
AI(?cessllsr:t;:féc e(’> (ReJ;)FiefiMi Finally, we add the objeat in € [q,(Prev,App)
AccessPutstatic? (Ref,Value) to indicate that the methaglwas invoked on this

valuee Const Set object (figure 3).
cstr: P(SC)
Constraint (SC): Exg Var load The load instruction loads value con-
Exp: Const SejtV [x,m,ctf | 8F [Id.;](Idy) | tained in a variable and stores it in an other vari-
€ [m,ct§ | mem(Ref).Fldv(lg) | able. The values contained by the variabjeare
ReturnSIO (AID ,AID) transfered into the variablg (figure 4).

Var: V [x,m,ctf | $F [Id.;](Idf) | € [m,ct] |

mem(Ref).Fldv(l
(Ref) (Ie) new Thenew instruction simulates the creation

) of a new class instance and stores a reference to
5.2 Analysis it into a variable. If the class is visible by the
instruction, we store itV [T,m,ct¥ the reference

The analysis generates, for each method andP the created object (figure 5).
for an execution contexitx, a set ofQCGCs that
describes the data flow of the method in this con-
text. The set of constraints for a method is the
union of the set of constraints for each instruc-
tion. The function to analyze an instruction is:

putstatic Theputstatic instruction stores a
value in a static field. The value contained in vari-
ableT is stored in the static fielfl of the class
[f]7-< if the field is visible by the instruction and
Amst: Inst x Id,, x Context— P(QCC) if the firewall accepts this access (figure 6).



(r) € C[m, ctx] : Field_Visibility?(mem(r).Idei, f, Ec:)
= {VIT,m,cta] 2 8T[[F17°1(f) }
Figure 2: Getstatic

Amst (pcI := getstatic f), m, ctx)= v

Apnst (pCIy := invokeinterfacep Ty 1y -+ T, So -+ Sy 2 Spy1), M, Ctx)=
Y (r,0,q) € C[m,ctz] x V [T1, m, ctx] x Lookup(sig, mem(o).Type, [p]P°, Ee:)
: AccessInterface?(r, o, [p]?¢, Eci)
V[Ti,m,ctz] CV [P1,q,ctz'],

V ([Tn,m,ctx] €V [Pn,q,ctx’],
Init_Var(Eci([q]7¢).Mtd(([¢]™, S2 :: - -+t Snt1)).Varl, g, ctz’)
C g, ctz'] 2 {o}

V [To, m,ctz] 2V [R,q,ctx’]

where we have used the following abbreviations:

sig=([p]™,S2 :: -+ 1 Sp)
Py Py = (Eei([q)7°).Mtd)((q, Sz =2 -+ -t Sp)).Param
ctx’ = (Prev, App)

App = (mem(r).Owner.1d,, mem(r).Owner)
ctx.Previf ctx.App.I1d, = App.Id,

ctx. App otherwise

R = (E.i([q]7°).Mtd)((q, Sz :: -+ :: Spn)).Res.Id,

Figure 3: Invokeinterface

Amst (pCTh := load T), m, ctX)= — {V [T1,m,cta] DV [T, m,ctz] }
Figure 4: Load

Y (r) € € [m, ctz]: CI_Visibility?(mem(r).Idei, ¢, Ec;)
— {V[T,m,ctz] 2 {(pc, r.Owner)} }

Figure 5: New

Apnst (pcI := new ¢), m, Ctx)=

Amst (pcputstatic f T), m, ctx)=
Y (r,v) € € [m,ctz] x V[T, m, ctx]
: Field_Visibility?(mem(r).Ide, f, Eci) N AccessPutstatic?(r,v)
— {8F[[f17°1(f) 2 {v} }

Figure 6: Putstatic

Ammst ((pCTh := store T), m, ctX)= — {V[T1,m,ctz] 2V [T, m,ctz] }
Figure 7: Store

Aqnst ((pcT := invokestatic getPrevCtr), m, ctx)=
Y (r) € € [m, ctz] : ctx.App.1d, = mem(r).Owner.Id,
— {V[T,m,ctz] 2 cta.Prev.AID }

Y (r) € C[m,ctz] : ctx.App.1d, # mem(r).Owner.ld,
— {V [T, m,ctx] 2 ct:v.App.AID}

Figure 8: getPrevCitx

Let Azt ((PC,BCinst), m, ctx)=V v € E : cond — {C}. Then
Arqnst (PCifAID T € S BCinst), m, CtX)=
Y (D,a) € Ex V[T,m,cta] : cond Na € S — {C’}

Figure 9: ifAID

Figure 10: Examples dpCGCs



store Thestore instruction stores the value  FVaoce
contained in variabl&; in variableT;. This data
flow is modeled by a simple set inclusion: values {instamiated
contained in variabl&; may also be contained in QCCs

variableT,; (figure 7).

ues Propagations

getPrevCtx The instructioninvokgstatic The functionEvalgcc uses the current val-
getPrethxnake.s a call on the static methd@- uation to instantiate th@CGs in the setQ and
System.getPreviousContextAlthe methodjet-  ,qs the corresponding constraints to the current

PrecCtxserves to find the AID of the active ap- st of constraints. This is where the resolution
plet before the last context switch. The first con- p o .o mes context-sensitive: if a method is not

straint is activated when the active contextis the 164 in a particular context, no constraints for
context of the caller, in which case they have they,is method will be generated in that particular
same previous context. The second one is aCentext.
tivated when the active context differs from the Eval )
context of the caller. In that case the previous —'2@CC:

context is the context of the caller (figure 8). Evgjl(QC(i()q:c\\//ﬂl)_)—?(QCC)
Qcc ) =

gccu
o€ C[m,cty
ifAID  The QCC used in this construct is the U { ctr| A ctX = CalcCtx (o,ctx,val)}
one analyzed for thBCinstinstruction. A con- m € Meth A Ctr € Apzesn (M,CtX)

dition is added such that the constraints are only ~ cx€ Context )
generated if the condition in the test is true (fig- where the function for calculating the context of
ure 9). the call is given by

CalcCtx:
Refx Contextx Val — Context

CalcCtx (r,c,v) = (Prev, App)
6 Resolution where

App = (v(mem))(r).Owner

c.Previf c.App.ld=App.I|
The resolution of quantified conditional con- Prev={ c.AppOtherV}\Cl)iFS)EQ) PP

straints can be done iteratively as an ordinary fix

point computation. The main difference with a _ | "€ functionEvalsc uses the current valua-
“classic” system is that the set of constraints andtion to verify the condition for each constraint in

the values of variables in the constraints evolveln® Set of instantiate@CGCs and adds the corre-

together. Hence, the iteration sequence consist§P°Nding simple constraints to the current set of
of triples (qcc, sc,valwhereqccis the current set constraints. This evaluation permits to restrict the
of quantified conditional constraints instantiated Production of the simple constraints that model

for particular contextscis the current set of sim- 1€ e:ect of an instruction that “e:ecuteld". We
ple constraints andal is a valuation that to each USe the notatiofExp], to denote the evaluation
variable associates its current value. of the expressiofexp with the values contained

by the valuatiorV.

Suppose that we have a progr&htonsisting
of a set of appletsAplt) and a set of methods
(Meth). LetQ be the set of (uninstantiate@CCs
obtained by analyzing (with functionsA ¢y4ss
for a class or an interface] )., for a method
andA ., for an instruction). During the resolu-
tion of Q, we compute the new set of instantiated
QCGs, P(QCC), with the functionEvalgcc, the
new set of simple constrain®C P(SC) with the The functionEvaly; is the standard evaluation
function Evalsc and the new valuatiokal with function associated to a constraint set. For ev-
the functionkvaly,;, as defined below. ery constrainexpC var in the current constraint

Evalgc:
P(QCC) x P(SC)x Val — P(SC)
Evals¢ (gece,sc,val) =
scuU
VZ € X : cond— ctr € gcc
{ctr[v/z] | AT € [X]oa 1
A cond[o/z]



setcswe evaluate the expression with the current7 ~ An example analysis

valuation and add the new valueval(var).

Evaly,;:
P(SC)x Val — Val
Evaly,; (sc,val) =
val[var — val(var) U [exfdya:]
with
expC var € sc

ALGORITHM

Q = UAEAplt AClass (A) '
qcc := Aciass (JORE)(jcRrE,JCRE) 3
sc, sé, gcc =0 ;
val := 1 ;
val' :=val,®;
while gqcc# ged or sc# sc or val # val do
gcc:=qcc;sc:=sc¢;val:=val;
gcc :=Evalgce (gee,val);
sc := Evals¢ (gcc,sc,val)
val' := Evaly,; (sc,val);
endwhile
END

In figure 11, we present a variation of the ex-
ample given in section 2.1, in which the firewall
and Alice can not prevent the flow of the Alice
secret to Charlie. Here, Bob implements a share-
able object and passes a reference to it to Charlie.
In this case, the invoke &tlice.foois valid at run-
time, because for Alice the caller is always Bob.
Here, we only present the transformation of this
example in our language in the figure 12. The
constraints are neither generated nor solved auto-
matically yet, but we work on an implementation
of the previously presented algorithm. During the
resolution, each “variable” received the possible
values that it can contain. In this example, the im-
portant value is the secret of Alice (represented
by the referencep( Alice AI D)) and the impor-
tant variable is the static fieldliceSecret  of
Charlie. The resolution gives, as a part of the
global solution, the following possible value for

the static field of Charlie:

Proposition 6.1 This algorithm terminates with (p, AliceAID) €
a correct solution to Q. 8F [Charlie](Charlie.AliceSecret)
N ) _ This result proves that there is an illegal object
The proof of Proposition 6.1 is an extension o with the secret of Alice.
of the standard argument based on Tarski’'s the-
orem [24, 11]. The specificity of the proof is
to take into account that the system evolves (in
a monotonic fashion!) during the computation. 8 Related works
The formal proof (termination and correctness)

can be found in [16].
The formalization of the Java Card firewall has

Establishing a start state for the iteration re- yaen the object of several works. Me{9] has
quires special attention in Java Card becausgormalized the firewall with the B method. She
there is nomain to initialize the analysis. The gefines a machine for the firewall and an opera-
sequence of operations is given by #€REand  tion for each check of the firewall. This modeling
the user. We model this interaction with the card proyides a formal description of the firewall that
by adding an artificialCRE applet that is ana- s ysed to ensure that the firewall verifications are
lyzed like the others. For theCREwe know its  gyfficient to fulfill the security policy. In addition,
context (it is (CREJCRE) which permits the g ccessive refinements lead to a reference imple-
algorithm to produce the initial set of instantiated ,entation of the firewall. More traditional opera-
QCGs. The initial valuatiorvaly links each ele-  tiona| semantics for modeling the firewall checks
ment with its default value. For eadh[x,m,cty  haye been given bigluardet al.[17]. Siveroniet
and € [m,cty the default value is). For each 5 [22] show how to integrate this into an opera-
85 [ld.;] the default value is the function which (iona| semantics for Java Card. For the modeling
links each static field dfd.; with its defaultvalue  5fthe JCREItis necessary to be able to “execute”
(0 for a reference andP} for a primitiveP). Fi-  the differents applets. We choose to follow the
nally, we initialize the abstract memorynémn) approach used by Attaét al. [3, 4] and model
with the undefined abstract objects for each ab+ne JCcRE by an applet. With this approach, we
stract reference. can adapt thd CRE to obtain either exactly the
execution we want or all possible executions.

8The definition of the initial valuevaly comes after the

algorithm. The problems related to the Java Card fire-



public class Bob extends Applet
implements MSI2  {
private static MSI AliceObj;
private void bar () {
AliceObj=(MSI) getSIO (AliceAID);

public class Charlie extends Applet
private static MSI2 BobObj;
private static Secret AliceSecret;
private void bar () {
BobObj=(MSI2) getSIO (BobAID);
private void foo3 ()

}

public Secret foo2 ()
;)

{
return AliceObj.foo (); AliceSecret=BobObj.foo2 (); } )

Figure 11: An example of illegal object flow

public class Alice extends Applet implements MSI {
private Secret ObjectSecret;
public Secret foo ()
AID Client;
Secret Response;
1.T 7:=invokestatic getPrevCxt
2:Client:=store T 1
3ifAID Client € {BobAID } To:=getstatic Alice.ObjectSecret
4:Response:=store T
5:Alice.foo _Ret:=load Response

return_Alice.foo -Ret } }
public ?ri]assemitjr\k:se:ﬂtglngs {Applet public class Charlie extends Applet {
private static MSI AliceObj; pr!vate stat!c MSi2 BDFODJ; .
ublic Secret foo2 () _private static Secret AliceSecret;
P Mt : . " private void foo3 () {
6:T 3:=getstatic Bob.AliceObj 9T =:=getstatic Charlie.BobObi
7:T 4:=invokeinterface MSl.foo T 3 o 5'_3 i ' )
8Bob.foo2 _Ret=store T 10:T g:=invokeinterface MSI2.foo2 T 5
réturn. Bob fo::z i Ret } )4 11:putstatic Charlie.AliceSecret T 6} }

Figure 12: The translation of the three methods of the example in our language

wall have been observed by others, notably Mont-lattice specifying the security policy. Each applet
gomery and Krishna [18], who propose anotheris represented by a call graph and each call graph
approach to secure object sharing based on delds transformed into an SMV model. To work with
gates. A server implements a delegate object thah shareable object, an applet must call an inter-
mediates access to those methods that the servéace method so only call graphs which include an
wants to share with others. The delegate objecinterface method are taken into account. The in-
performs the checks that it deems necessary twariant together with the control flow graphs are
grant access. This approach is more flexible thargiven to the SMV model checker for verification.
the existing firewall but has the drawback that it The work presented here complements their work
requires (minor) changes to the JCVM. This tech-by providing a precise description of how these
nique permits to use more sophisticated authenticontrol and data flow graphs can be calculated,
cation mechanisms than the one based only onaking into account the firewall and the different
AID comparison. In the paper it is shown how calling contexts.

to use a protocol based on challenge/response
phrases to avoid the problem of AID spoofing. S
However, no technique is presented for proving
that delegates indeed do respect a given securit
policy. In contrast, our approach works for the
standard JCVM and relies on static analysis to
check that no unwanted access takes place.

The analysis proposed by Caromel, Henrio and
erpette [9] has as aim to signal whether a secu-
rity exception might (or will definitely) be raised
%y the firewall at execution of a set of applets.
The analysis thus shares objectives with ours and
calculates the same type of information. The dif-
ferences between the analyses lie in the precision.
Two works on the verification of applet sharing Caromelet al. have opted for a simple, flow-
on Java Card are closely related to ours. Biglter insensitive analysis whereas we can obtain some
al.[8, 7], as part of the Pacap project [2], have de-flow sensitivity through the choice of local vari-
fined an analysis of Java Card applets which carables in our three-address byte code. Instead of
detect illegal information flow. Their approach is modeling the memory state explicitly, they use
based on three elements: an abstraction of valuean alias analysis to track side effects of assign-
of variables into devel that describes the sharing ments. The control flow analysis in their analysis
of the value, an invariant that is a sufficient con- is a simple class hierarchy analysis, in contrast to
dition the security property to hold and a model our context-sensitive flow analysis. Indeed, their
checker to verify the invariant. A lattice of lev- analysis does not analyze methods separately for
els is used to represent the sharing of objects. Ifeach calling context and hence would not be able
an appletA is allowed to share some information to deal with the call stack inspection as well as
with an appleB, the levelA+B is entered into the  our analysis. Thus, the two analyses can be seen



as two extremes of the design space for flow anal-have been proposed elsewhere (sag[25]) in
ysis for Java Card. the setting of a simple imperative language. The
control and object flow information calculated by
our analysis can be used to adapt such analyses to
the Java Card language because it allows to elimi-
nate the higher-order and object-oriented features
uof an application, essentially translating it into an
Imperative language. This requires an improve-
ment to the abstract domains such that owner in-
straints generated from clags such that these fOTmF".“O” can b_e attached to pr_imitive values and
are only evaluated when classis actually used. pr|m|t|ve_operat|ons must be_adjusted to calculate
the possible owners depending on the values used

However, it is still necessary to generate the con-, . .
. . : .~ in the operation as well as the applet which does
straints for every class in the hierarchy which )
the operation.

leads to scalability problems. Th@CGCs, on
the other hand, generate these constraintde- Finally, for the moment the analysis does not
mand only when the analysis discovers that a take into account exceptions other than security
certain class or method is used, the correspondingxceptions. With the current abstraction of the
constraints are generated and added to the curremtrimitive values it is clear that exceptions related
set of constraints. to e.g, array access (index-out-of-bound excep-
tions) can only be dealt with in a very approxi-
mate fashion. Exceptions form an integral part of
the control-flow of an application so progress in
this direction is desirable.

The quantified conditional constraint@CGCs)
introduced in Section 5.1 are an extension of
the conditional constraints (originally due to
Reynolds [21]) that are used in the object-
oriented type analysis defined by Palsberg an
Schwartzbach [20]. In this analysis, conditions
of the formC' € V(X)) are used to guard the con-

9 Conclusions and future work
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