
Experiment Isolation in a Secure Cluster Testbed

Kevin Lahey, Robert Braden
Information Sciences Institute, University of Southern California

Keith Sklower
University of California, Berkeley

Abstract

A major class of network emulation testbeds is based on
the Utah Emulab design: a local cluster of experimen-
tal nodes interconnected through Ethernet switches us-
ing VLANs. The VLANs are configured dynamically to
create multiple concurrent experimental topologies. This
cluster architecture allows deterministic testbed opera-
tion and therefore repeatable experiments. This paper
explores the inter-experiment isolation problem for such
testbeds, and in particular how to make the isolation ro-
bust against attacks when the testbed is designed to sup-
port the most dangerous cyber security experiments.

1 Introduction

This paper concerns the problem of robust experiment
isolation in cyber security testbeds, and in particular
testbeds that have the general cluster testbed architecture
pioneered by Utah’s Emulab. [7] This architecture cre-
ates general-purpose testbeds, which implies that users
can load arbitrary code into their nodes and have “root”
privileges on them. We return to explore this point later.
The hardware resources provided by cluster testbeds are
typically homogeneous pools of high-end PCs, although
some testbeds also include a selection of special purpose
hardware such as commercial routers. Today’s Emulab-
derived cluster testbeds typically provide a few hundred
experimental nodes that can be shared among multiple
concurrent experiments. We expect that future imple-
mentations will be scaled up by at least an order of mag-
nitude.

Each experimental node has multiple Ethernet inter-
faces, which are interconnected through a large Ether-
net switch. Using Virtual LAN (VLAN) technology, this
switch is configured dynamically by the testbed control
software to create nearly-arbitrary network topologies
among the nodes allocated to a particular experiment.

A key objective of cluster testbeds is to support repeat-

able experiments through deterministic operation, while
cyber security testbeds are designed to support risky ex-
periments. The DETER testbed [1] at USC/ISI and UC
Berkeley is an example of a cyber security testbed. The
architectural extensions discussed in this paper have been
applied in DETER, but the design principles are not spe-
cific to DETER. Both determinism and safety require ef-
fectiveisolation among the inter-node links configured at
any one time. The VLAN hardware support in the switch
is the basic mechanism to provide this isolation.

This paper is concerned with a more particular prob-
lem in testbed architecture: experiment isolation that is
fully robust in acyber security testbed, in which an ex-
periment might try to break out of isolation and attack
other experiments or even the testbed control hardware.
We will describe a modification to the basic Utah archi-
tecture to provide robust isolation even in the presence of
insider attacks, i.e., attacks initiated by experiments with
knowledge of the structure of the testbed. In practice,
such attacks are much more likely to originate in exper-
imenter errors rather than in experimenter misbehavior,
but we are motivated to explore the limits to testbed con-
tainment of malicious programs.

An experimenter can load arbitrary code into assigned
nodes and has root access. Hence, an experimental node
can masquerade as any other experimental node in the
testbed by changing its own IP and/or MAC address.
This requires that experiment isolation be implemented
at layer 2 of the protocol stack, the lowest layer accessi-
ble to the node programs. This is achieved by the use of
VLANs and switched Ethernet connectivity.

The rest of this section abstracts those aspects of cy-
ber security cluster testbed architecture that are relevant
to isolation. It also summarizes the VLAN mechanism.
Section 2 discusses the general isolation problem and
various security threats posed by a lack of complete and
robust isolation. Section 3 presents our solution to the
architectural aspects of the isolation problem. Section 4
briefly discusses other possible approaches to experiment



isolation. Sections 5 and 6 contain acknowledgments and
conclusions.

1.1 Cyber Security Testbed Architecture

Figure 1 shows an abstraction of the architecture of a cy-
ber security testbed like DETER. User Server and Con-
trol Server are two functionally-distinct server machines
(and given the current implementation, the need to pro-
tect the testbed from hostile takeover by malicious users
requires that they be separate platforms).1 The Control
Server controls and monitors testbed operation. The User
Server has login accounts and data storage for individual
users.

Each experimental node has a small number N of Eth-
ernet interfaces (typically 4 to 6). N-1 interfaces are used
for experimental links, while the remainingcontrol inter-
face is reserved for accessing the node during an experi-
ment, without perturbing the experimental traffic.2 The
Control Server also uses the control interfaces to boot,
configure, and monitor experiments. All the interfaces of
all the nodes could be wired to one big switch. However,
it is easier conceptually to divide the switch into a Con-
trol Switch for the control interfaces and an Experimen-
tal Switch for the N-1 experimental interfaces on each
node. Ports on both switches are configured dynamically
by the Control Server, which knows the VLAN numbers
and MAC addresses of each node interface. It creates
links on the Experimental Switch to establish the topol-
ogy requested by the experimenter.

The control interfaces are all connected to thecontrol
router through a subnet that we call thecontrol network,
regardless of how it is subdivided into VLANs. The con-
trol router runs layer 3 packet filters to block improper
accesses to the Users or Control Servers.

In summary, the labeled links in Figure 1 have the fol-
lowing functions.

(a) A remote user accesses a GUI on the Control Server
to define and initiate an experiment.

(b) The Control Server analyzes the experiment descrip-
tion, allocates nodes to it, and configures VLANs
on the Experimental Switch to create the requested
experimental topology.

(c) The Control Server downloads code and data into
the experimental nodes, via the Control Router and
the Control Switch to the control interfaces. Reli-

1These server machines are commonly called USER (or OPS) and
BOSS in Emulab-derived testbeds.

2We omit discussion of experimenter access to the console ports of
the experimental nodes, since we do not believe the console port poses
a security or isolation problem.
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Figure 1: Cyber Security Testbed Architecture

able multicast allows downloading code into multi-
ple nodes efficiently.3 [4]

(d) The remote user logs into a private account on User
Server, and relays (e.g., using SSH for privacy and
integrity) into the experimental nodes via their con-
trol interfaces. The control interfaces are also used
to save log data on the User Server.

The Control Server may use link (c) to monitor and
control the experiment, via a supervisory process planted
in each node. The actual implementation of a cyber se-
curity testbed like DETER would include intrusion de-
tection and firewall boxes that are not shown in Figure
1.

1.2 Overview of DETER VLAN Architec-
ture

Since VLANs are central to experiment isolation, this
section contains a brief summary of VLAN operation.
VLANs operate at layer 2 of the stack to allow multiple
independent Ethernet broadcast domains to coexist on a
set of switches.

VLANs are identified by number, and each switch
port may be configured with one or more VLAN num-
bers (see Table 1); we say that the port “belongs” to
these VLAN(s). Ethernet packets outside the switch may
be tagged with 12-bit VLAN numbers in an extension
header whose format is defined by IEEE 802.1Q [5],
or they may be untagged. DETER’s switches are con-
figured so that tagged packet entering a port must match
one of the port’s VLANs, or it will be dropped. Untagged
packets entering the switch are implicitly tagged with the
VLAN number of the entry port. A packet entering a port

3The Emulab system uses a reliable multicast module called Fris-
bee.



Switch Port VLAN Number
1 501
2 501
3 503
4 501*, 503
5 503

Table 1: Simple VLAN Example. The starred VLAN
number is the PVID.

with multiple VLAN numbers (see port 4 in Table 1) will
receive a default VLAN number, called the Port VLAN
IDentifier (PVID).

In any case, the switch will assign a VLAN number to
every incoming packet, whether tagged or untagged, and
the packet can then be forwarded out all ports belonging
to the same VLAN. A broadcast packet will be delivered
to all such ports, while a unicast packet will exit through
the port with a matching destination MAC address as
well as VLAN number. In Table 1, VLAN 501 defines a
connection between ports 1, 2, and 4, while VLAN 503
defines a hub connecting ports 3, 4, and 5. An untagged
packet entering through port 4 will be implicitly tagged
with the PVID (501) and sent to whichever of ports 1
and 2 has a matching MAC address, or to both 1 and 2
if its destination MAC address is an Ethernet broadcast
address.

A switch port may betrunked, meaning that every out-
going packet will carry the 802.1Q VLAN tag. Trunk-
ing provides a mechanism for creating VLANs that span
multiple switches. However, experimental nodes usually
send and receive untagged packets on all their interfaces.

2 Experiment Isolation and Threats

The architecture of Figure 1 blocks attacks on the Inter-
net from experimental nodes (“extrusion”), since there is
no direct IP path to the Internet. A conventional firewall
prevents intrusion. Layer 3 packet filters on the Con-
trol Router limit the traffic between experimental nodes
and the Control Server, allowing only what is needed for
testbed operation and monitoring.

Our testbed architectural problem now becomes: how
to provide complete isolation of each individual experi-
ment, so it cannot attack or be attacked by another exper-
iment.

2.1 Isolation of Experimental Links

The VLAN switch architecture described earlier pro-
vides complete logical isolation among the links forming
the topology of an experiment, assuming that the switch
hardware does not fail and that the Control Server that

configures the switch is not compromised.
However, there is still a possible threat to isolation

in the experimental topology: if the switch is not ade-
quately provisioned, the traffic from one experiment may
cause performance degradation in its own or other exper-
iments’ links. Ideally, the aggregate switch throughput
should match all links being driven at the highest possi-
ble rate. (Note that what is possible may well be con-
strained by the nodes, not the links). Very high capacity
switches are available (but expensive), but with current
technology, at least, this performance interference can-
not be totally avoided in reality. Measurements on par-
ticular switch hardware at DETER have shown that per-
formance can vary in non-intuitive ways among the ports
on a single switch based on traffic patterns. [6] We have
extended the DETER testbed to detect traffic exceeding
switch capacity and report it to users.

2.2 Control Network Isolation

Per-experiment isolation on the control network is the
central security problem that remains. There would be a
number of possible sources of interference between ex-
periments through a common control network.

1. Attacking another Experiment.

Each node can send and receive using any IP ad-
dress, so it can accidentally or deliberately send
packets to nodes of another experiment, or masquer-
ade to the testbed infrastructure as nodes in another
experiment. Such an attack could be direct, or it
could be a reflection attack – for instance, spoof-
ing the source IP address to elicit ICMP error mes-
sages from testbed infrastructure, which could leak
traffic into other experiments. A malware exper-
iment might discover a control interface and start
port scanning all of the experiments on the testbed,
for example, or infect other experiments. Finally,
the use of multicast for loading experiments might
allow one experiment to interfere with the loading
of another, e.g., by injecting malicious code.

2. Non-deterministic Performance Degradation

Control network traffic from one network may cre-
ate non-deterministic performance degradation for
other experiments, but this should not be a threat
to the repeatability of an experiment, since experi-
mental traffic should never flow over the control net-
work. [2] On the other hand, the OS on a testbed
node does not generally make a clear distinction be-
tween its control network interface and its experi-
mental network interfaces. It is quite possible for
a careless experimenter to accidentally send experi-
mental traffic over the control net. The testbed traf-



fic monitors should be able to detect such a situa-
tion, if such mis-routed traffic is significant.

3. Privacy Violations

If there is a common control network, the use of
multicast for downloading code and data into ex-
perimental nodes potentially exposes information to
other experiments. Broadcast and multicast pack-
ets on the control network should be visible only to
nodes in the relevant experiment. [2]

Other users (e.g., commercial users) may be con-
cerned about privacy of their operating system im-
ages in the testbed. The current image distribution
system uses multicast to send images to multiple
nodes simultaneously, which exposes that informa-
tion to all of the current users on the testbed. Per-
experiment isolation of the control network could
solve this problem as well.

The following types of packet traffic uses the con-
trol network legitimately. Any mechanism for creating
per-experiment control subnets must support these traf-
fic streams between each experiment and the User and
Control Servers.

1. The control software on the Control Server uses the
control network to boot and configure the nodes.
This requires both unicast and multicast IP packets,
in both directions.

2. While an experiment is running, there may be traf-
fic on the control network between Control Server
and various testbed daemons on each experimental
node.

3. Users employ the control network to control and
monitor their experimental nodes, without affecting
the experimental network.

4. Experimental nodes may use NFS/CIFS on the con-
trol network to access the user’s file system on the
Users node. Such access is typically for storing traf-
fic data and for logging results.

3 A Control Network Isolation Scheme

3.1 The Tagger

We now describe a layer 2 mechanism that will provide
the required per-experiment isolation on the control net-
work. This mechanism uses a new layer 2 box that we
call the Tagger, deployed between the Control Router
and the Control Switch (Figure 2). The Tagger can sort
packets, based on their MAC addresses, into a separate

Figure 2: Tagger Traffic Flow

control VLAN for each experiment. The number of iso-
lated experiments is limited only by the number of possi-
ble VLANs (usually 4094), not by the number of physi-
cal ports on any box. The Control Router continues to do
all level 3 routing, while the Tagger effectively performs
level 2 label switching.

We describe the Tagger as a separate box for clarity
of exposition, but in fact its function could be subsumed
into the Control Router. This device is invisible to the
users (and to the rest of the infrastructure).

Referring to Figure 2, the Control Router forwards
packets from either server to the Tagger. The router
may use ARP to dynamically to map the destination IP
address,IPx, to the corresponding node MAC address
MACx. In fact, using ARP is dangerous; a malevolent
node could use proxy ARP to subvert the packets of other
experiments. We therefore let the Control Server stati-
cally configure the mapping table from destinationIPx

address toMACx.
The Tagger performs the next stage in mapping. It

contains a table that is built and maintained by the Con-
trol Server, mappingMACx to the correspondingVLAN
numberV LANx. The Tagger then forwards the tagged
packet out a trunk port to the Control Switch. The control
switch finally forwards the packet to the port forMACx

and belonging toV LANx. A distinct V LANx is as-



signed to all the ports of a single experiment.
A node in another experiment (e.g.,Nodey in Figure

2) can fake its own IP and MAC addresses. However,
it cannot inject traffic intoNodex or extract traffic from
Nodex, because of the fixed VLAN tag for each exper-
iment. V LANx in Figure 2 is common to all nodes of
one experiment but it differs from theV LANy of an-
other experiment. Each control VLAN is associated with
a set of nodes; no other nodes can communicate directly
with that set of nodes.

When a node sends a packet on its control interface,
the Control Switch tags the packet with the VLAN num-
ber of the port on which it arrived at the switch. The
Tagger then uses its same mapping table to verify that the
packet’s source MAC address matches the VLAN num-
ber it finds in the tagged packet. Again, it will be impos-
sible forNodey to masquerade as a node in another ex-
periment (hence, with a different VLAN number). As an
additional precaution, the Tagger could also ensure that
the IP source address of the packet from an experimental
node matches the VLAN number.

Finally, the Control Router, operating at Layer 3, must
not route back to the Tagger packets that arrived from the
Tagger; this can be accomplished using small enhance-
ments to the current firewall rules on the Control Router.

We turn now to multicast, which is important for effi-
cient loading of experiment images. The Control Server
might send images using a NACK-based reliable multi-
cast scheme.4 [4] This implies that the receiving nodes
would multicast NACKs that should be received by both
the Control Server and the other nodes in the same ex-
periment that are loading the same image. This is trivial
if there is a single common control network for all exper-
iments. We need to preserve this general capability with
the Tagger box.

For efficiency, we perfer to do the replication of mul-
ticast packets as close to the experimental nodes as pos-
sible; this would be the Control Switch (see Figure 2).

The Control Server may send out several concurrent
streams of multicast packets, each stream for download-
ing one OS image, with a distinct per-stream IP multicast
destination address in each packet and a corresponding
multicast MAC address (the IP multicast addresses used
by the Control Server are chosen to fall into the range of
allowable multicast MAC addresses). When the packet
arrives at the Tagger, the multicast MAC address will
cause the Tagger to map:

MAC -> (VLAN1, VLAN2, ...),

where MAC is a multicast Ethernet MAC address. The
list of target VLANs allows multiple experiments to re-

4Utah’s Frisbee loader is designed so that multiple experiments can
simultaneously load the same image without increasing the load on the
network.

ceive the same stream when desired and no privacy con-
cerns are present. The Tagger replicates the packet if
necessary to forward one copy, tagged with each VLAN
in the list, to the Control Switch. The Control Switch will
broadcast the packet to all interfaces for each experiment
in the list.

3.2 Tagger Software

The testbed control software must be extended to au-
tomatically configure the Tagger with the appropriate
MAC address and VLAN information for both unicast
and multicast addresses.

Unicast addresses are relatively straightforward to
configure; the testbed has already compiled a list of per-
node MAC addresses, and merely changes the MAC to
VLAN mappings as required when a node moves from
one experiment to another. Of course, the testbed soft-
ware has a variety of ways to move nodes between ex-
periments, requiring careful placement of new code for
each of these ways.

Multicast mappings are more complex, and change
more frequently. Every time a node loads a new image,
the testbed must ensure that it gets the appropriate multi-
cast packets, and, once the load is complete, must remove
the multicast mapping.

A daemon is spawned for each image to be loaded; this
daemon chooses multicast addresses and ensures that the
multicast distribution servers are running. The daemon
is modified to update the tagger with new multicast ad-
dress mappings whenever a node requests an image. If a
node in the same experiment is already using that image,
obviously, no change need be made.

Similarly, a testbed daemon tracks changes to nodes.
When a node which was previously reloading enters a
new state, the daemon can check to see if that node was
the last one in an experiment requesting that image. If
so, the multicast MAC mapping to that experiment can
be removed.

4 Alternative Approaches

Before arriving at the Tagger mechanism described in
Section 3, we considered several other approaches to pro-
vide per-experiment isolation on the control network.

1. Emulab Per-Experiment Firewalls

The Emulab software allows an experiment to as-
sign one of its allocated nodes to act as a per-
experiment firewall. Then all other control inter-
faces in the experiment will be assigned a newly-
generated VLAN number, attached to that firewall
node. The firewall is intended to protect the ex-
periment from other traffic on the control network,



while it forwards multicast and other testbed infras-
tructure traffic from the regular control net VLAN
to the firewalled VLAN.

However, this mechanism would provide only a
partial solution to the general isolation problem.
Unfortunately, the user can log into the firewall
and manipulate the configuration. To achieve the
level of protection provided by the Tagger, we
would have to force all experiments to use the per-
experiment firewall feature, and somehow prevent
the user from logging into the firewall. This univer-
sal deployment would require an extra node dedi-
cated for each experiment on the testbed.

2. Switch Hardware Enhancements

Some vendors have extended their switch architec-
ture to provide groups of ports, orcommunities, that
can communicate only among themselves or with
a “promiscuous” port. [3] The control interfaces
of each experiment could be a community, while
the Control Router would attach to the promiscuous
port. Then the nodes within the experiment would
be able to communicate (only) between their own
community (experiment), and with the router. This
scheme has been called Private VLANs (PVLANs).

Using PVLANs for experiment isolation, if they
were universally and reliably available, would avoid
the addition of the Tagger box. It would require only
reconfiguration of the switches for each new exper-
iment, in addition to changing the Control Router
to ensure that it doesn’t route packets back into the
PVLAN.

Unfortunately, current implementations do not fully
meet the requirements set forth in this paper. In par-
ticular, it appears to be impossible to restrict multi-
cast distribution to selected PVLANs.
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6 Conclusions

We have described the security and integrity threats
raised when a secure cluster testbed uses a single com-
mon control network VLAN, and presented a general
layer 2 isolation mechanism to meet those threats. The
threats include experimental malware attacking not only
the testbed infrastructure but also other experiments,
which are considerably less hardened. Since some exper-
imenters may intentionally run insecure images as part of
their research, there is an urgent need to provide robust
isolation between experiments on the control network.
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