ON THE DESIGN AND EXECUTION OF CYBER-SECURITY USER STUDIES: METHODOLOGY, CHALLENGES, AND LESSONS LEARNED

Malek Ben Salem & Salvatore J. Stolfo CSET 2011

INTRODUCTION

Problem

- Lack of masquerader data
- Schonlau data set not appropriate

Objectives

- Test the conjecture that extensive search reveals an attacker's malicious intent
- Evaluate whether decoy files embedded in a local file system can be used to detect masqueraders

Steps

- Conduct user studies to validate conjecture
- Gather new dataset including data from "normal users" and masqueraders

USER STUDY METHODOLOGY

- State hypotheses
 - Experimental hypothesis
 - Null hypothesis
- Identify experimental variables
 - Independent variable
 - Dependent variables
 - Confounding variables
- Build control groups
 - Scenario narratives to control user's intent
- Determine sampling procedure
- Estimate sample size
 - Power analysis

USER STUDY EXECUTION

- Obtain IRB approval early
- Develop/deploy the right sensors for data collection
 - Right unique IDs
 - Right platform
- Pilot experiment
- Reduce confounds and bias
- Sanitize data and have users sign waivers
- Validate collected data after reviewing postexperiment questionnaires

HYPOTHESES

Experimental hypothesis

• If the intent of a masquerader is malicious, then they will engage in a *significant* search activity on the victim's system.

Null hypothesis

- The manipulation of the masquerader's intent does not have any significant effect on the masquerader's search behavior.
- →The observed significant effect during the experiment can be attributed to the manipulation of the masquerader's intent and cannot be the result of pure chance.

IDENTIFY EXPERIMENTAL VARIABLES

Independent variable

- Only variable manipulated by researcher, all others are kept constant
- Need one control group for each value of the independent variable
- User's intent.

Dependent variables

- Observed behavioral feature to be measured by researcher
- Tightly dependent on independent variable
- User's search behavior

Confounding variables

- Random variables affecting observed behavioral feature
- Need to be eliminated or at least minimized
- E.g. Awareness of monitoring , familiarity with desktop search tools

BUILD CONTROL GROUPS

- Control user's intent through scenario narratives
 - One narrative for each control group
 - Milgram's experiment
- Scenario narrative requirements
 - Generalizable: representative of masquerade attack
 - Conforming to threat model
 - Assumptions should be clearly stated
 - Detailed
 - Includes answers to anticipated questions to limit verbal communication with study participants
 - Minimizes user bias
 - Easily executable
 - E.g. time-limited

SCENARIO NARRATIVES

- User has access to coworker's system for 15 minutes while coworker is away
- Malicious, benign, and neutral scenarios

Experimental Variable	Value	Same/
		Different
Scope	Local File System of	Same
	Colleague's Computer	
Environmental Constraints	IDS Lab Computer	Same
Desktop Configuration	Same Recent Documents	Same
	and Applications	
Time Constraints	15 minutes	Same
Intent	Malicious, Benign,	Different
	or Neutral	

DETERMINE SAMPLING PROCEDURE

- Objective: Increase the sensitivity of the experiment
- Means: Reduce uncontrolled variability
- Subject variability makes up the largest source of variability
- Sampling procedures
 - Use same subject in all treatment conditions
 - Violates assumption in our threat model that attacker is not familiar with victim's file system
 - Use homogeneous group of subjects
 - Similar characteristics relevant to experiment
 - Use several small subject sets
 - Sets highly homogeneous within one set, but widely varying between sets

PERFORM POWER ANALYSIS

Power

- Indicates how statistically significant experiment's results are
- Desirable values: 0.5-0.9
- Used to determine required sample size for each treatment condition
- Higher power requires larger samples

Adequate sample size* depends on

- Number of independent variable and number of treatment conditions
- Desired effect size that researchers wishes to detect
- Desired power

^{*}KEPPEL, G. Design and analysis: a researcher's handbook. Pearson Prentice Hall, 2004.

REDUCE CONFOUNDS AND BIAS

- Reduce subject variability
 - Homogeneous group of user study participants
- Reduce experimental treatment variability
 - Same desktop for all experiments
 - Same file system contents: automated collected data upload
 - Same recent documents opened for each participant
 - Same researcher

USER STUDY EXECUTION

- Obtain IRB approval
 - Lengthy, iterative process
 - Required very detailed information
 - o e.g. call for participation, data items collected
- Develop/deploy sensors for data collection
 - Study technology market trends to select the right development platform
- Pilot experiment
 - Learn sources of variability
- Sanitize data
 - Data collected for same user from different sensor s
 - Users did not take advantage of sanitization functions provided
- Review post-experiment questionnaires
 - Extract trends, eliminate invalid cases

RUU (ARE YOU YOU?) DATASET

Characteristics

- Larger than 10GBytes in size
- More tan 10 million records
- Data from 18 "normal" users
 - o 4 days of data on average
- Data from 40 "masqueraders"

Results

- Search behavior reveals malicious intent
- Search behavior profiling detects100% of masquerade attacks with 1.12% false positives
- Decoy files can be used to detect all masqueraders within 10 minutes

RUU SAMPLE RECORD: REGISTRY ACCESS

Column ¹	Value
Syshash	0cc7ebd580b39bb037627c2a71c979
Auditaction	QueryValue
Processname	explorer.exe
Path	HKCR\CLSID\871C5380-42A0-1069-A2EA-
	08002B30309D\ShellFolder\Attributes
Stringreturn	SUCCESS
PID	408
PPID	-1
Timestamp	2009-12-09 21:05:46

RESULTS

- Search behavior can be used to reveals attacker's malicious intent
- User search behavior profiling achieves100% detection rate of masquerade attacks with 1.12% false positives

RESULTS: DISTRIBUTION OF FILE SYSTEM NAVIGATIONS ACTIONS

BEN-SALEM, M., AND STOLFO, S. J. Modeling user search-behavior for masquerade detection. In To Appear in the Proceedings of the 14th International Symposium on Recent Advances in Intrusion Detection (Heidelberg, September 2011), Springer.

RESULTS: DISTRIBUTION OF FILE TOUCHES

BEN-SALEM, M., AND STOLFO, S. J. Modeling user search-behavior for masquerade detection. In To Appear in the Proceedings of the 14th International Symposium on Recent Advances in Intrusion Detection (Heidelberg, September 2011), Springer.

RESULTS

- Search behavior can be used to reveals attacker's malicious intent
- User search behavior profiling achieves100% detection rate of masquerade attacks with 1.12% false positives
- Decoy files can be used to detect all masqueraders within 10 minutes at most
- More than 40% of masqueraders detected during the first minute of their fraudulent activity

RESULTS: DECOY ACCESS MONITORING

BEN-SALEM, M., AND STOLFO, S. J. Decoy document deployment for effective masquerade attack detection. In DIMVA'11: Proceedings of the Eighth Conference on Detection of Intrusions and Malware & Vulnerability Assessment (Heidelberg, July 2011), Springer, pp. 35 - 54.

RESULTS

- Search behavior can be used to reveals attacker's malicious intent
- User search behavior profiling achieves100% detection rate of masquerade attacks with 1.12% false positives
- Decoy files can be used to detect all masqueraders within 10 minutes at most
- More than 40% of masqueraders detected during the first minute of their fraudulent activity
- Combining decoys monitoring with search behavior profiling improves accuracy when compared to search profiling alone

RESULTS: SEARCH PROFILING & DECOY ACCESS MONITORING

BEN-SALEM, M. AND STOLFO, S. J. Combining a baiting and a user search profiling techniques for masquerade detection. In Columbia University Computer Science Department, Technical Report # cucs-018-11 (2011).

LESSONS LEARNED

Compliance-related

- Initiate IRB review early
- List a larger sample of user study subjects
- Have users sign waivers

Scientific

- List all assumptions made about users in study scenarios
- Think carefully about ways for reducing variability and baselining users
- Perform a power analysis

Practical

- Anticipate technology market trends
- Pilot experiment
- Have participants fill post-experiment questionnaires

REFERENCES

- KEPPEL, G. Design and analysis: a researcher's handbook. Pearson Prentice Hall, 2004.
- MILGRAM, S. Obedience to Authority: An Experimental View. Harpercollins, New York, January 1974.
- PEARSON, E. S., AND HARTLEY, H. O. Charts of the power function for analysis of variance tests, derived from the non-central F-distribution. Biometrika 38, 1 (July 1951), 112-130.