
RADoN: QoS in storage Networks

Tim Kaldewey, Andrew Shewmaker, Richard Golding†, Carlos Maltzahn, Theodore Wong†, Scott Brandt
Computer Science Department, University of California, Santa Cruz

†IBM Almaden Research Center
{kalt, shewa, golding, carlosm, tmwong, scott}@cs.ucsc.edu

Specific performance requirements in large scale storage
systems are commonly achieved by physically or temporally
partitioning (e.g. isolating) workloads, or by over-provisioning
the system. Despite constantly falling hardware prices, facil-
ity and power expenses make physical partitioning costly and
inefficient. Over-provisioning of shared storage systems does
not isolate workloads, hence irregular workload behavior—
especially peak loads—will have significant impact on concur-
rent workloads. With constantly growing storage demands and
data centers reaching their physical limits, more intelligent so-
lutions are required.

Recent disk schedulers can achieve nearly perfect temporal
isolation, allowing reservations close to the maximum physical
disk performance [2, 3]. Many network schedulers have been
developed, allowing QoS guarantees. However, an integrated
mechanism providing end-to-end QoS in large scale networked
storage systems is still missing. We are currently building a
framework called RADI/O1 to manage reservable end-to-end
storage performance including absolute performance guaran-
tees. It comprises a real-time disk scheduler [3], QoS aware
Caching, and the RADoN2 networking component.

RADI/O is intended to cater to a wide spectrum of applica-
tions including those with real-time I/O requirements. Hence
RADoN must both tightly control network traffic and keep the
server cache occupied so that the disk scheduler has the op-
portunity to optimize for sequential accesses within and across
reservations. We are currently evaluating different flow control
mechanisms via extensive simulations based on the queuing
model shown in Figure 1. Clients are allowed to submit a stor-
age request to the system when tokens are available. Tokens
are doled out by the server, which is constantly monitoring the
cache occupancy of each client. Network and Disk are cur-
rently modeled as fixed delays.

In the most promising implementation, clients replenish
tokens required to achieve the reserved performance them-
selves based on server-assigned rates and periods, while the
server directly manages tokens for unused resources. Figure 2
shows that even when certain applications violate service level
agreements by generating requests beyond their reservation,
RADoN manages cache occupancy such that after a reasonable
startup time all reservations are fulfilled.

1storage is a form ofI/O and all of the framework’s components use the
RAD model [1] to manage resources

2RAD on theNetwork

Figure 1: Queuing-theoretic model of RADoN

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30

T
hr

ou
gh

pu
t [

re
q/

s]

time elapsed [s]

Client 1
Client 2
Client 3
Client 4

Figure 2: Time series for throughput of 4 clients, each reserv-
ing 12.5% of disk performance, but producing enough requests
to saturate the disk itself.

The current model of the disk scheduler and cache are simple
FIFO queues. This is being replaced by more accurate mod-
els, reflecting the status of the current implementation. Based
on the results of the simulations we plan to implement the
most promising flow control mechanisms as part of our overall
RADI/O framework.

References

[1] S. A. Brandt, S. Banachowski, C. Lin, and T. Bisson. Dynamic
integrated scheduling of hard real-time, soft real-time and non-
real-time processes. pages 396–407, Dec. 2003.

[2] T. Kaldewey, T. Wong, R. Golding, A. Povzner, C. Maltzahn,
and S. Brandt. Virtualizing disk performance. InTo appear in
Proceedings of the 14th IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS 2008), 2008.

[3] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. Wong, and
C. Maltzahn. Efficient guaranteed disk request scheduling with
fahrrad. InTo appear in Proceedings of the 2008 Eurosys con-
ference (Eurosys 2008, 2008.

