
MAPL: Move-anywhere proximate layout

Peter Corbett, Rajesh Rajaraman, Jiri Schindler, Keith A. Smith, Pelle Wåhlström

NetApp, Inc.

1 Abstract

MAPL is a journaling file system providing advanced

data management features like snapshots and clones. It is

also designed to show read/write performance near that

of raw disk access for both random and sequential access

patterns. Further, the system is designed to show sta-

ble I/O performance over time, regardless of the work-

load placed on it. Important goals of the design are that

MAPL seeks to make I/O to the active file system be-

have like I/O to a LUN on a hardware-based RAID array,

while minimizing performance overhead caused by snap-

shots. Specifically, MAPL minimizes the effects on write

activity of snapshot creation, as well as the effects of the

presence of snapshots on ongoing I/O. Like the frame ar-

rays it mimics, MAPL is optimized for large files, and its

performance goals center on them.

Frame arrays that provide snapshots normally use a

copyout-based scheme to enable consistent steady-state

performance for sequential I/O to active (read/write)

LUNs, by preserving physically sequential on-disk lay-

out for active data. In such schemes, however, snapshot

creation has a major effect on concurrent write activity,

as the logical overwrite of a block, breaking the copy-on-

write relation between the active and snapshot versions

of data, requires the immediate copying of the old data

to a new location on disk.

Snapshots in write-anywhere file systems [1, 2, 3], in

contrast, have near-zero impact on performance. But

write-anywhere layout can result in poor performance for

sequential-read-after-random-write access patterns com-

monly seen in databases and certain other workloads [4].

MAPL aims to balance between these two extremes, pro-

viding efficient snapshots and near-sequential on-disk

layout, even in the face of random updates. MAPL

achieves these goals using three key techniques:

1. Region-based allocation preserves the physical lo-

cality of logically sequential blocks.

2. Bulk copyout of snapshot data minimizes the over-

head of copying out snapshot data by batching the

copyout operations.

3. The use of a per-file B-tree to organize snapshot

data provides efficient indexing for the storage and

retrieval of snapshot data.

1.1 MAPL file organization and snapshots

Like most file systems, MAPL represents each file as an

inode. Unlike other file systems, however, MAPL inodes

track both the active state of the file and the historical

versions of the file belonging to various snapshots. In

practice, this means that each inode maintains two differ-

ent trees of blocks. A traditional tree of indirect blocks

describes the live state of the file, and a B-tree contains

old versions of file blocks belonging to snapshots.

1.2 Region-based allocation

For large files—MAPL’s target workload—space is over-

provisioned to each file in large, physically contiguous

allocations called regions. A typical region is a few tens

of megabytes. While the majority of each region holds

active file data, a portion is earmarked as a snapshot re-

serve. Thus the physical size of a region is larger than

the corresponding logical range of the file that maps to

the region. As data blocks within the region are logi-

cally overwritten, the new data versions are written to the

snapshot reserve, allowing old versions to remain avail-

able as part of the most recent snapshot.

This allocation strategy allows MAPL to preserve phys-

ically proximate layout for logically proximate data

blocks. While individual data blocks may not be ”in

order” within a region, excellent sequential I/O perfor-

mance is achieved by reading entire regions from disk

and then organizing the blocks as needed in memory.

1.3 Snapshot copyout

Over time, the snapshot reserve within a region may be-

come exhausted. At this point MAPL will perform a

bulk copyout of the snapshot data within the region. In

other words, it will read all of the blocks from the region

that are not part of the active version of the file and copy

them to a separate snapshot region on disk, freeing space

within the original region for more new data.

By accumulating snapshot data within a region until the

snapshot reserve is filled, MAPL amortizes the cost of

copying the snapshot data to the snapshot region. In-

stead of copying a single block for each update (in the

worst case), MAPL can transfer many blocks at a time,

exploiting proximal I/O [4] to take advantage of the near



proximity of the copyout blocks.

The delayed copyout of snapshot data also allows data

versions from short-lived snapshots to timeout within the

snapshot reserve, eliminating the need to copy it.

1.4 Snapshot B-trees

In MAPL, the location of snapshot data changes over

time as it is copied from active file system regions into

dedicated snapshot regions. To track these changes,

MAPL keeps a B-tree of copied out data for each inode.

MAPL sorts entries in these B-trees first by file block

number and then by snapshot ID.

Snapshot IDs are integers that strictly increase over time.

This allows the snapshot ID in a B-tree key to be con-

sidered as a ”valid until” ID. Snapshot blocks are thus

looked up through inexact matching of B-tree keys. If

a block is sought in the snapshot with ID n, a single

lookup can determine whether the block exists either in

that snapshot or in an earlier snapshot (i.e., the version

with the closest snapshot ID less than n).

2 Poster Presentation

Keith Smith will present this poster.

References

[1] Valerie Aurora. A short history of btrfs. http://lwn.

net/Articles/342892, Jul 2009.

[2] Dave Hitz, James Lau, and Michael Malcolm. File

system design for an NFS file server appliance. In

Proceedings of USENIX Winter 1994 Technical Con-

ference, pages 235–246, Jan 1994.

[3] Sun Microsystems. ZFS at OpenSolaris community.

http://opensolaris.org/os/community/zfs/.

[4] Jiri Schindler, Sandip Shete, and Keith A. Smith.

Improving throughput for small disk requests with

proximal I/O. In Proceedings of the 9th USENIX

Conference on File and Storage Technologies, Feb

2011.

2


