Exertion-based billing for cloud storage access

Matthew Wachs*
Lianghong Xu*, Arkady Kanevsky†, Greg Ganger*

*PARALLEL DATA LABORATORY
Carnegie Mellon University

†VMware

Cloud accounting

- Infrastructure-as-a-Service (laaS)
 - Provider makes resources available to clients
 - Clients pay for resources used
- Provider wants to recover costs
- Client wants to pay fairly for use

This talk: Focus on storage

Provider: Recovering costs

- More bytes stored → more disks needed
 - Bill for capacity
 - ✓ Providers do this

- More time spent on requests → more disks needed
 - Bill for access
 - Not all providers do this

vCloud Express

X Those that do, use the wrong metric

Billing for access

- Providers currently bill for:
 - Os
 Amazon EBS, S3, Windows Azure
 - Bytes transferred Amazon S3
 - Performance Amazon EC2
- X None matches time used x cost of resources

Unsustainable approach: Fixed cost per IO

Suppose provider charges \$0.01 per IO but it takes \$0.01/ms to operate a disk

Request scenario	Disk time	Real cost	Bill
Cache miss, sequential	1 ms	\$0.01	\$0.01
Cache miss, long seek	20 ms	\$0.20 Provider lo	\$0.01 ses money
Cache hit	0 ms	\$0.00 Client pays	\$0.01 s too much

Carnegie Mellon Parallel Data Laboratory

Alternatives

- Charge per byte or performance
 - ✗ Both also vary as in previous example
- Charge for worst case (\$0.20/IO instead of \$0.01)
 - Clients with "easy" requests pay too much
- Charge for the average case
 - X Some clients subsidize others
 - ✗ Will the average change over time?

Solution: Charge for disk time

Suppose it takes \$0.01/ms to operate a disk and the provider charges \$0.01/ms

Request scenario	Disk time	Real cost	Bill
Cache miss, sequential	1 ms	\$0.01	\$0.01
Cache miss, long seek	20 ms	\$0.20	\$0.20
Cache hit	0 ms	\$0.00	\$0.00

Carnegie Mellon Parallel Data Laboratory √ Costs recovered fairly

But, a technical problem remains...

- Resources may be shared across tenants
- Workload A may be affected by Workload B
 - Workload A sequential, Workload B disrupts locality
 - Workload A cacheable, Workload B evicts A's pages

8

✗ Workload B drives up Workload A's bill

Interference example

Workload	Standalone exertion	Exertion w/ interference
Sequential 1 MB/s	1.6%	23%
Random 1 MB/s	67%	74%

X Random workload increases Sequential workload's exertion

Carnegie Mellon Parallel Data Laboratory

How to solve?

- Bill Workload B for its impact on Workload A?
 - ✗ Not the "fault" of B that it coexists poorly with A
- Provider absorbs the cost?
 - ✗ Provider will either lose money or pass it along as a hidden cost to customers

✓ Avoid the interference in the first place

Performance insulation is needed

- Performance insulation: System property
 - Another workload is not able to affect your...
 - Efficiency
 - Exertion
 - Performance (in your share of time)
 - ... beyond a small (e.g. 10%) factor
- Strictly limits transient influences

How to insulate storage

- Preserve locality
 - Disk-head timeslicing
 - Seek between workloads infrequently
- Provide predictable cache allocation
 - Cache partitioning
 - Partition sizes based on access patterns
- Argon storage system [FAST 2007]

Insulation example

Insulation limits impact of other workload to < 10%

Workload	Standalone exertion	Exertion w/ insulation
Sequential 1 MB/s	1.6%	≤ 1.8%
Random 1 MB/s	67%	≤ 75%

✓ Each workload's exertion is close to ideal because it receives dedicated disk time & cache space

Summary

- Clients should pay for resources used
- Storage: both capacity and access cost money
- Disk time is what costs, should be the metric
- Bills should be independent and predictable

Performance insulation is needed to make it fair

14