Computer Meteorology: Monitoring Compute Clouds

Lionel Litty, H. Andrés Lagar-Cavilla, David Lie

University of Toronto

Infrastructure as a Service (laaS)

Q: Rate the challenges/issues ascribed to the 'cloud'/on-demand model

(1=not significant, 5=very significant)

Source: IDC Enterprise Panel, August 2008 n=244

Security

- Miscreants can abuse the cloud provider's resources:
 - Spam.
 - Use infrastructure to attack other computers.
 - Hosting illegal content.
- This has consequences for the cloud provider:
 - Damage to reputation.
 - Technical consequences: Shared IPs blacklisted.
 - Potential legal concerns.

Solutions?

Network monitoring (NM) has limitations:

Distributed attack using botnet.

ISPs use NM and have done poorly.

Unlike ISPs, cloud providers control the execution platform:

Can they use this to their advantage?

Introspection

Reductionist approach: understand a complex system by understanding its parts.

- Identify processes.
- Analyze the behavior of each process.

Non-malicious and Malicious VMs

- Non-malicious: may be vulnerable, not yet compromised.
- Malicious: under miscreant control.
 - Attacker can blur boundaries between processes.
- Tamper-evident monitor:
 - Either report accurate information
 - Or report that it cannot obtain accurate information.

Introspection properties

- Power
 - Can it see everything?
- Robustness
 - Is it resilient to changes in the monitored system?
- Unintrusiveness
 - Can it negatively impact the monitored system?

Host agent

Host agent w/ driver

Trap & Inspect

Checkpoint & Rollback

Architectural Introspection

Summary of introspection approaches

	Power	Unintrusiveness	Robustness
Host agent	Good	Poor	Good
Host agent w/ driver	Best	Worst	Poor
Trap & Inspect	Best	Best	Worst
Checkpoint & Rollback	Best	Best	Poor
Architectural monitoring	Poor(?)	Best	Best

Introspection example

• Goal:

- Which applications are run by a customer VM?
- What's the version of these applications?

Why?

- Detect malicious code
- Inform customer of vulnerable code
- Deploy vulnerability-specific filters

Execution monitoring

- Goal: Identify all running binary code in a VM.
- Examples
 - Host agent: /proc, Process Explorer
 - Trap & inspect: examine OS data structures
 - Architectural monitoring: leverage MMU to identify all executing code

Execution monitoring

File monitoring

- Goal: What byte code is Java executing? What about the PHP interpreter?
- Examples:
 - Host-based: strace, filemon
 - Trap & inspect: examine OS data structures
 - Architectural monitoring: taint-tracking?

File Monitoring

Conclusion

- Architectural introspection should be used when possible.
- More research is needed to explore the range of events that can be monitored using Architectural introspection.
- Cloud providers should be mindful of the limitations of introspection.