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Abstract 
In this paper we make the case for a runtime technique to 

seamlessly execute legacy applications on heterogeneous 

platforms consisting of CPUs and accelerators. We consider 

discrete as well as integrated heterogeneous platforms. In 

the former, CPU and accelerators have different memory 

systems; in the latter, accelerators share physical memory 

with the CPU. Our proposed runtime does not require any 

code changes to be made to the application. It automatically 

schedules compute-intensive routines found in legacy code 

on suitable computing resources, while reducing data 

transfer overhead between the CPU and accelerators. To 

reduce data movement, our runtime defers data transfers 

between different memory systems, and attempts to move 

computations to data instead of vice-versa. This could 

create multiple copies of the data – one on the CPU, and the 

others on the accelerators - leading to coherence issues. To 

address this problem, we propose adding an operating 

system module that maintains coherence by intercepting 

accesses to shared data and forcing synchronization. Thus, 

by exploiting existing mechanisms found in system 

software, we architect a non-intrusive technique to enable 

legacy applications take advantage of heterogeneous 

platforms. With neither software changes nor additional 

hardware support, the proposed system provides a unified 

compute and memory view to the application programmer. 

1. Introduction 
For many commercial and consumer workloads with 

scientific, media-rich and graphically intense portions, 

heterogeneous platforms strike a balance between 

performance, energy and development cost. One form of 

heterogeneity is represented by platforms with one or more 

multi-cores (e.g., x86 CPUs) coupled with many-core 

processors (e.g., GPUs) and/or other accelerators (FPGAs, 

cryptographic processors, etc.). The CPU usually controls 

the offloading of computations to different accelerators. 

Library-based programming eases the burden of 

deploying applications on heterogeneous systems. In this 

scenario, applications invoke well-known computational 

routines that are made available in pre-compiled libraries. 

For some of these, multiple library implementations 

targeting different computational units are provided. A 

notable example is dense matrix multiplication, 

implemented in the sgemm [14] and cublasSgemm [15] 

libraries, targeting x86 CPUs and Nvidia GPUs 

respectively. In recent years there has been a lot of activity 

in porting and accelerating computational routines on 

GPUs, and we do not expect this trend to change in the near 

future. Selection mechanisms to choose the execution unit 

for given computational kernels based on their estimated 

performances are described in several recent research 

efforts [2][3][8]. 

In this work we make the case for a runtime to increase 

the performance of existing applications on heterogeneous 

platforms without requiring any code changes. In 

particular, legacy applications written using library APIs 

can be transparently accelerated by intercepting library 

calls, and invoking a suitable accelerator implementation. 

We believe that a runtime that automatically selects 

accelerators for legacy code should also take into account 

data transfers, especially because large transfers over 

conduits such as PCI can overwhelm any speedup achieved 

by the accelerator. In [16] we proposed a data-aware 

runtime to efficiently run applications on heterogeneous 

systems. After an accelerator processes a function, the 

runtime defers transferring the function’s data back to the 

CPU until the data are required. Such an on-demand 

transfer policy enables the runtime to move computations to 

the data, rather than the other way around. With the data-

aware runtime on real applications, we measured speedups 

of 25% over a data-agnostic runtime. 

Such an on-demand transfer policy creates multiple 

copies of data and necessitates source-level changes (such 

as locks and synchronization points) or hardware support in 

order to maintain data coherence. However, our goal is to 

address legacy applications, that is, to seamlessly port them 

and minimize data transfer with no code changes. To this 

end, in this work we propose using the operating system 

and runtime to provide the programmer with a unified 

memory view of possibly discrete underlying memory sub-

systems. Besides scheduling computations and managing 

data movement between CPU and accelerators, the runtime 

must ensure coherence of data present in multiple locations 

without source code or hardware changes.  

The idea of minimizing the overhead due to data 

transfers and of moving computation to data has been 

previously considered in the context of programming 

models for heterogeneous platforms [5][6][7][8][9]. 

However, our requirement of addressing legacy 

applications introduces significant distinctive challenges. 

First, our design is driven by the need for avoiding any code 

changes in the application. On the contrary, programming 

models as those listed above require the application to be 
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written according to given API. Second, we assume that 

data access patterns are not known a priori and cannot be 

predicted. Therefore, memory access optimizations and 

synchronizations must be performed online with no 

knowledge of future programs behaviors. 

We believe that a comprehensive solution should 

consider two kinds of devices: “distributed” and 

“integrated” accelerators (Figure 1). Distributed devices 

have their own local memory, and are typically connected 

to the CPU via a PCI-bus. Integrated accelerators share 

physical memory with the CPU; an example is the Ion 

platform [17], where an Nvidia GPU shares memory with 

an Intel Atom CPU. As we will discuss in Section 4, 

different memory organizations lead to different design 

issues, both in terms of memory usage patterns and required 

mechanisms for data coherence.  

We recognize the existence of obvious similarities 

between the memory models we consider in the context of 

heterogeneous platforms and the traditional distributed [6] 

and shared [5] memory models adopted in the context of 

(homogeneous) multi-core architectures. However, the 

presence of many-core accelerators introduces some 

interesting design questions. First, since GPU (and most 

accelerators) do not run an operating system, they do not 

offer inherent mechanisms to trap memory accesses. Such 

mechanisms are typically needed to synchronize data 

accesses across different memories. Tracking of all accesses 

to the accelerator memories must therefore be implemented 

in the runtime system, and this can be efficiently done only 

in a coarse grained fashion (e.g., on transfers of entire 

function call parameters). Second, since the accelerator 

processing time can be order of magnitude smaller than the 

CPU processing time, the synchronization overheads can 

weigh differently (and in a more significant way) compared 

to the homogeneous case.   

Other related research efforts merit discussion. 

Harmony [2] is a runtime that schedules functions on 

heterogeneous systems taking input size into account. Qilin 

[3] presents an adaptive mapping technique to split and 

concurrently run a function across a CPU and a GPU with 

the goal of improving performance. These two proposals, 

however, focus on the compute aspect and do not optimize 

memory transfers. StarPU unified runtime system [11] 

proposes implementing CPU-GPU memory coherence 

using the MSI protocol. However, it requires programmers 

to rewrite their application using a new API. The authors of 

[8] propose tools to encapsulate different processor-specific 

tool-chains and language mechanisms in order to enable 

applications on heterogeneous systems. In particular, they 

consider using the Merge [9] framework to optimize data 

transfers. This mechanism, however, does require analysis 

and modification of the application source code. SEJITS 

[10] addresses programmability of heterogeneous platforms 

by proposing the integration of components written using 

productivity and efficiency programming languages, 

whereas [4] discusses a programming model for 

heterogeneous x86 platforms. However, these two 

proposals do not target legacy applications. Finally, GViM 

[12] is a Xen-based virtualization framework for 

heterogeneous systems that reduces the number of user 

space to kernel space copies when moving data between the 

CPU and GPU. However, this does not optimize the data 

transfers between CPU and GPU. In summary, our proposal 

offers a different viewpoint by focusing on compute and 

memory unification in the context of legacy applications. 

The rest of the paper is organized as follows. In 

Section 2, we use a simple example to illustrate the benefits 

of data-aware scheduling. In Section 3, we give an 

overview of the proposed runtime system. In Section 4, we 

provide more details on our solution to the memory 

unification problem. We conclude in Section 5.  

2. The Case for Data-Aware Scheduling 
In this section, we use a real application, Supervised 

Semantic Indexing (SSI) matching [13], to illustrate the 

performance potential of data-aware scheduling on 

heterogeneous systems. SSI is an algorithm used to 

semantically search large document databases. It ranks 

documents based on their semantic similarity to text-based 

queries. Each document and query is represented by a 

vector, with each vector element corresponding to a word. 
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Figure 2: SSI matching performance on a discrete 

heterogeneous system. 
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Figure 1: Target heterogeneous platform. 
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We omit further algorithmic details in the interest of space, 

and refer interested readers to [13]. 

The SSI matching process has two compute-intensive 

functions. The first (sgemm) is a dense matrix 

multiplication of the query vectors with all document 

vectors. The second routine (topk_rank) must select, for 

each query, the top k best matching documents. With 

millions of documents to search for each query, these two 

functions take up 99% of the SSI execution time.  

We perform four runs of SSI matching, each with a 

different schedule for the two functions. For each run, we 

consider 32, 64 and 96 simultaneous queries into a 1.6M 

document database, identifying 64 best matching 

documents for every query. The document database 

contains documents selected from the Wikipedia [13]. For 

matrix multiplication, we use the Intel MKL [14] on the 

CPU and the CUBLAS library [15] on the GPU. We use 

our custom CPU and GPU implementations for topk_rank. 

Figure 2 shows the total running time reported on a 

heterogeneous platform consisting of a Xeon 2.5GHz quad-

core CPU with an nVIDIA Tesla C870 128-core GPU. For 

each number of parallel queries, we evaluate the following 

schedules: (i) both functions on CPU, (ii) sgemm on GPU, 

topk_rank on CPU, (iii) both functions on GPU and (iv) 

both functions on GPU with data transfer deferring (i.e., 

data-aware scheduling). While a significant time reduction 

is seen from porting sgemm to the GPU, we note that 

topk_rank is actually faster on the CPU. We also note that 

data transfer takes up at least half the run time, and that its 

contribution to the total runtime increases with the input 

size. Using data-aware scheduling, the data transfer after 

sgemm is deferred until the runtime sees the next function 

(topk_rank). At this point, the runtime weighs the options 

of moving topk_rank to the slower GPU, or moving the 

data back to the CPU. Figure 2 shows that, for large inputs, 

the former choice results in about a 25% speedup. 

3. System Overview 
We now describe what a system that provides a unified 

compute and memory view to legacy applications on 

heterogeneous platforms should include. The main 

components of the system (Figure 3) are function libraries 

and a runtime. The runtime itself consists of a library call 

module and an OS memory unification module. Different 

implementations of well-known function libraries targeting 

CPU and various devices (GPUs, accelerators, etc.) are 

provided, possibly by third-parties. Calls to these library 

functions are intercepted, and the runtime determines the 

implementation to instantiate and the computational unit to 

use. This decision depends not only on function execution 

time and computational unit availability, but also on the 

estimated data transfer overhead. Minimizing this overhead 

could be achieved by avoiding useless data transfers and, 

whenever possible and desirable, by moving computations 

to the data. Since the (legacy) application is not known a 

priori, these decisions must be made dynamically. If 

minimizing data transfers creates multiple copies of the 

data, the OS memory unification module assists the runtime 

in keeping the copies coherent. 

We assume that function library implementations are 

“black boxes” to the runtime, whereas the library API is 

exposed. Thus, the only data transfers that the runtime can 

optimize correspond to the API function arguments. 

Further, data transfers between CPU and device memory 

can be triggered only by the runtime. To this end, we make 

three assumptions. First, function library implementations 

operate on the memory of the target device. The GPU 

implementation of sgemm, for instance, will assume that the 

matrices pointed to by the function arguments reside on 

GPU memory. Second, for each pointer argument, the 

function library interface must be annotated with the 

following information: (i) whether the corresponding 

parameter is read-only, write-only or read-write from the 

function’s perspective and (ii) the size of the data structure 

the argument points to. The sgemm interface, for instance, 

will be annotated as follows: 
 
void sgemm(char transa, char transb,  
           int m, int  n,  int  k, 
           float alpha, float *a, int lda,  
           float *b, int ldb, float beta,  
           float *c, int ldc); 
 
Arg ‘a’: read-only :: (transa=’n’) ?  
          (lda * k) : (lda * n) 
Arg ‘b’: read-only :: (transb=’n’) ? 
          (ldb * n) : (ldb * k) 
Arg ‘c’: read-write :: (ldc * n) 

 

This annotation allows automatic generation of the code to 

intercept library calls and invoke data transfers (more 

details are provided in Section 4.2). In addition, for each 

device type in use, the runtime must be provided with 

primitives to allocate device memory and transfer data 

between CPU and device memory. In the case of integrated 

devices, the runtime must also be provided with primitives 

to allocate page-locked host memory to those devices. For 

GPU devices, for instance, CUDA’s cudaMalloc, 
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cudaMemcpy and cudaHostAlloc primitives can be 

used for this purpose. 

The library call module must intercept library calls, 

analyze argument size and location, estimate data transfer 

and execution time on the available computational units, 

and redirect calls to the most suitable unit after having 

triggered necessary data transfers. We assume that each 

library implementation has been profiled on the available 

computational units for different input sizes. The gathered 

profile information, along with the actual arguments, can be 

used to estimate execution time. The data transfer time 

depends on the size and location of the function call 

parameters. The location information can be provided by 

the memory unification module. Note that, as far as 

execution time estimation is concerned, mechanisms 

proposed in related work [2][3][8] can be adopted. In 

particular, an additional requirement should be considered 

when using GPU-CPU work splitting [3]: the function 

library interface should be annotated with a mechanism for 

splitting computations into sub-computations and merging 

intermediate results. This can be done by using a Sequoia-

like [1] syntax. 

4. Memory Unification: Our Proposal 
The memory unification module provides a homogeneous 

view of the memory system, optimizes data transfers, and 

ensures coherence across the different memory modules. 

When targeting heterogeneous systems such as those in 

Figure 1, these requirements lead to a set of design issues. 

4.1 Design Issues 
The first issue is data coherence. In a traditional, 

distributed accelerator-based system, the input arguments of 

a function call are copied to device memory before 

invocation, and the outputs are transferred back to host 

memory afterwards. This can trigger unnecessary data 

transfers, especially between multiple function calls that are 

invoked in sequence on the same device. Prior work [9] 

addressed this by defining new library functions obtained 

by composing existing ones. This, however, leads to the 

need for an a priori application analysis, and optimizes only 

a class of data transfers. In our view, data transfers between 

different memory elements should be triggered by the 

runtime only on demand. At any given time a data structure 

may reside on multiple memory elements, and not all the 

copies may be up-to-date. In this situation, the runtime must 

ensure that every access is coherent. 

A second design issue is whether data replication on 

more than one accelerator should be allowed. Being the 

“master” unit, a (possibly outdated) copy of the data will 

always reside on CPU memory. Copying data between two 

accelerator memories involves an intermediate copy on the 

CPU memory. If an application consists of a sequence of 

library calls, and one library call is scheduled on a device, it 

is likely that the next call will be scheduled on the same 

device. We believe that allowing data to reside in parallel 

on multiple devices would complicate coherence handling 

without performance pay-offs. Therefore, we opt to limit 

data replication to a single accelerator memory. 

A third design issue pertains to the use of two kinds of 

devices: “distributed” and “integrated”. In the former case, 

the device has its own memory and data transfers between 

CPU and device memory are required. In the second, shared 

address spaces on CPU memory can be created by using 

page-locked memory, mapping it into the device space and 

“relocating” the shared data into it. Note that if not enough 

page-locked memory is available, the CPU and the 

integrated device will access separate memory regions on 

the same physical memory, and the coherency problem is 

addressed as in the distributed case.  

4.2 Design Direction 
Here we describe a possible implementation of the 

proposed runtime. In order to control data transfers and 

handle data coherence, the memory unification module 

must maintain a mapping between CPU and device memory 

regions and provide an API to query the binding between 

different memory spaces, obtain the location of data 

structures, and perform device memory allocation, de-

allocation and data transfers. This API can be invoked by 

the library call module when intercepting function calls.  

However, if data are distributed across different 

memories and data transfers are deferred, synchronizing at 

the library call granularity is not sufficient to guarantee data 

coherence. Data accesses happening outside the intercepted 

function calls would be unsynchronized, leading to possibly 

incorrect operation. To address this, we integrate the 

memory unification module within the operating system. 

The idea is to handle data synchronizations outside library 

function calls by forcing page faults and having the page 

fault exception handler invoke the memory unification 

module. Thus, the memory unification module API can be 

invoked by two entities: the library call module and the 

page fault exception handler. We now describe a design 

under the Linux operating system. 

Linux associates each running process with a list of 

memory regions each assigned a set of access rights and a 

set of virtual addresses [18]. Similarly, our memory 

unification module associates each process with a list of 

non-overlapping data blocks, each one representing virtual 

address regions that have been mapped onto a device. Each 

data block may cover a subset of a memory region or may 

span across several memory regions.  

Each data block, shown in the top part of Figure 4, 

consists of a pointer to the CPU’s memory region, a device 

address where the memory contents were transferred, its 

size, a location (identifier of the device in case of multiple 

devices) and a synchronization status, indicating whether 

the up-to-date copy of the data in the block resides in CPU 

or device memory.  Additionally, in the case of integrated 
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devices, an additional field indicates the address in page-

locked memory where the data block has been relocated. 

Data block creations are invoked by the library call 

module. A new data block is instantiated when a virtual 

address range is first accessed by a device implementation 

of a library function. Data synchronizations outside library 

function calls are forced by manipulating the page table 

entries of the interested memory regions and extending the 

page fault exception handler. Data block creation and CPU 

data access handling are performed as described below.  

If the function call is scheduled on a PCI-connected 

device, then the access rights of the function call arguments 

are important1. If the argument is read-only, then device 

memory is allocated and data are initially synchronized by 

performing a host-to-device memory transfer. To handle 

coherence, all OS page table entries corresponding to the 

given address range are marked as read-only. Any 

subsequent read access to the data block will be allowed, 

whereas any write access will trigger a page fault. Note that 

a write access implies that the CPU code is modifying a 

data structure which has been copied to a device. Therefore, 

in this situation the page fault handler will resolve the fault 

by setting the synchronization status of the data block to 

“up-to-date on CPU”. Any subsequent device access to the 

data block will trigger synchronization. Note that this 

mechanism defers data transfer. 

If the argument is write-only, then device memory is 

allocated but no data transfer is initially required (in fact, 

the data block is supposed to be written by the function call 

that executes on device memory). All OS page table entries 

corresponding to the given address range are marked as 

invalid. In this case, any subsequent CPU access to the data 

block will trigger a page fault. Faults caused by read 

operations will be resolved into device-to-host memory 

transfers unless the data block is already in synchronized 

status. Faults caused by write operations will be resolved by 

setting the data block synchronization status to “up-to-date 

on CPU.” 

If the argument is read-write, then device memory is 

allocated and data synchronized by performing a host-to-

device memory transfer. All OS page table entries 

corresponding to the given address range are marked 

invalid. Page fault handling is similar to the write-only case. 

If the function call is scheduled on an integrated 

device, then the system tries to allocate page-locked 

memory. If this operation is not successful, then the data 

block handling described in the distributed case will be 

performed. Otherwise, data will be relocated to the newly 

allocated region, which is shared between CPU and device. 

To ensure coherence, any subsequent CPU access to the 

virtual addresses in the data block should be redirected to 

the shared area. This is accomplished by marking all OS 

                                                           
1 Note that arguments access rights are considered from the library 

function perspective. 

page table entries corresponding to the virtual address 

ranges in the block as invalid. The page fault handler will 

resolve the fault by redirecting the access to the shared area. 

After the initial copy, no additional data transfer is required. 

The operation of the resulting page fault handler and its 

interactions with the memory unification module are 

summarized in Figure 5. Note that no page faults are 

triggered in case of read accesses to read-only arguments. 

We consider the structure of the library call module to 

illustrate its interactions with the memory unification 

module. For each library func having (read-only) input 

parameters r_pars and (write-only) output parameters 

w_pars, the module contains a function whose structure is 

exemplified in the pseudo-code below. Handling integrated 

devices is omitted here for brevity.  
 

(1) void func(r_pars, *w_pars){ 

(2)   target = eval_target(&func,r_pars);  

(3)   if(target==CPU){ 

(4)     cpu_func(r_pars,w_pars); 

(5)     for (p in w_pars) mum->touch(p); 

(6)   }else{ 

(7)     r_pars_d = w_pars_d = Ø; 

(8)     for (p in r_pars)  

(9)       r_pars_d U= mum->get(target,p,T);     

(10)     for (p in w_pars) 

(11)       w_pars_d U= mum->get(target,p,F); 

(12)     dev_func(r_pars_d, &w_pars_d); 

(13)     for (p in w_pars) mam->set(p); 

(14)   } 

(15) } 
 

The cpu_func and dev_func routines represent the 

CPU and device implementation of the intercepted function, 

whereas the mum object represents the memory unification 

module API. The eval_target routine evaluates the 

target computational element based on size and location of 

the input parameters and on profiling information. 

If the eval_target routine establishes that the 

execution must happen on the CPU (lines 4-5), then 

Original host virtual address (VA)

Device address (DA)

Relocated CPU address (RA)

Size (SZ)

Location

Synchronized?

DATA BLOCK

DISCRETE
INTEGRATED

CPU 

VIRTUAL

MEMORY

VA

SZ

DA

SZ
DEVICE

MEMORY

VA

SZ

RA

SZ

Original

CPU

Memory

Region

Relocated

Memory

Region: 

Visible to both

CPU and device

DA

Device

Driver

D
e

fe
rr

e
d

 t
ra

n
sf

e
rs

, 

O
S

-f
o

rc
e

d
 s

y
n

ch
ro

n
iz

a
ti

o
n

Previous

Data

Block

Next

Data

Block

Figure 4: Data block (top) and CPU, device memory 

regions (bottom). 



6 

 

cpu_func must be invoked. After execution, the touch 

primitive marks the output parameters as residing on the 

CPU memory. This operation does not imply any 

immediate data transfer. 

If the function execution must take place on the device 

(lines 7-13), then dev_func is invoked. However, this 

operates on device memory. Therefore, a local copy of all 

input and output parameters (r_pars_d and w_pars_d) 

must be created (lines 7-11). For each parameter, the get 

function returns the pointer to that copy (and, if necessary, 

instantiates a new data block, allocates the corresponding 

memory on device and performs data synchronization). The 

last parameter of the get call specifies whether the device 

must have an up-to-date copy of the data, which is 

necessary only for the input parameters. After function 

execution, the output parameters are marked as residing on 

the GPU by the set primitive (line 13). Again, this does 

not imply any data transfer. 

Data blocks can be resized or merged during execution: 

the interested reader can refer to [16] for a detailed 

description of data resizing and merging scenarios. Data 

block de-allocation (and device memory de-allocation) is 

performed in two situations: when a process terminates, and 

when device memory gets full. In this case, a LRU policy 

can be used to determine which data blocks to de-allocate. 

5. Conclusion 
In this paper, we make the case for a runtime system to 

seamlessly execute legacy applications on heterogeneous 

nodes consisting of CPUs and accelerators, thus hiding the 

underlying heterogeneity in terms of computing and 

memory elements. The runtime intercepts function calls to 

well known libraries, and schedules them on the appropriate 

computing resource after having analyzed the arguments 

and determined the location of the corresponding data. The 

overhead due to memory transfers is minimized by moving 

computations to data and deferring memory transfers until 

required by data accesses. Data coherence is ensured by 

extending the operating system with a memory unification 

module. With neither software changes nor additional 

hardware support, the proposed system provides a unified 

compute and memory view to the programmer. 
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Figure 5: Page fault handler flow diagram. 


