OpenMP for next generation heterogeneous clusters

Jens Breitbart
Research Group Programming Languages / Methodologies,
Universitdt Kassel,
jbreitbart@uni-kassel.de

Abstract

The last years have seen great diversity in new hardware
with e.g. GPUs providing multiple times the process-
ing power of CPUs. Programming GPUs or clusters of
GPUs however is still complicated and time consuming.
In this paper we present extensions to OpenMP that al-
low one program to scale from a single multi-core CPU
to a many-core cluster (e.g. a GPU cluster). We ex-
tend OpenMP with a new scheduling clause to enable
developers to specify automatic tiling and library func-
tions to access the tile size or the number of the cur-
rently calculated tile. We furthermore demonstrate that
the intra-tile parallelization can be created automatically
based on the inter-tile parallelization and thereby allows
for scalability to shared memory many-core architec-
tures. To be able to use OpenMP on distributed memory
systems we propose a PGAS-like memory level called
world memory. World memory does not only allow data
to be shared among multiple processes, but also allows
for fine-grained synchronization of processes. World
memory has two states: initialized and uninitialized. A
process reading from uninitialized memory will be sus-
pended, until another process writes to that memory and
thereby initializes it. This concept requires oversaturat-
ing the available hardware with processes.

1 Introduction

Current computer systems show a trend towards hetero-
geneity, as for example accelerators offer better perfor-
mance compared to generic CPUs in common scenar-
ios. However, the gain in processing power is currently
not joined by a gain in increased software development
productivity, as the programming systems for accelera-
tors are still at a rather early development stage. For ex-
ample, OpenCL [4] is the first programming system en-
abling cross-platform compatibility between CPUs and
different accelerators like GPUs and FPGAs. Develop-

ing code with OpenCL requires optimizing for the tar-
get hardware at a rather high level. To effectively use
NVIDIAs GPUs [2] it is essential to utilize so called lo-
cal memory, whereas e. g. IBMs OpenCL [5] implemen-
tation highly disadvises for using this memory type when
compiling for PowerPC. The success of OpenCL is yet
undetermined, even though it is supported by almost all
major hardware vendors. Furthermore it is still question-
able if OpenCL will allow for high productivity and ease
of use.

Despite all problems, the high performance of accel-
erators drives them to be used not only in standalone
PCs, but clusters as well. In clusters the problems of
programming accelerators is joined by the complexity of
programming distributed memory systems. In case of us-
ing GPUs as accelerators the resulting memory hierarchy
is rather complex, as each GPU has a three-ary memory
hierarchy all by itself. When MPI and OpenCL is used to
program such a cluster, the data flow between the nodes
and within GPU memory system must be managed man-
ually, which by itself is time consuming and error-prone
even though the data flow may be rather obvious.

In the last years, research on languages providing a
partitioned global address space (PGAS) for distributed
memory systems has resulted in a number of new lan-
guages aimed at allowing high productivity for program-
ming distributed memory systems. Some of these lan-
guages are: Chapel, Unified Parallel C and X10. Their
accelerator support is at best at an early development
stage and their usability is therefore yet undetermined.

In this paper we propose extensions to OpenMP 3.0 [1]
that allow scalability to hundreds of shared memory
cores, as they are used in GPUs, and a PGAS like mem-
ory model to allow easy programing and scalability on
distributed memory architectures without loosing the us-
ability of OpenMP. The syntax shown in the upcoming
sections is preliminary, but we expect the underling con-
cepts to be useful.

We rely on tiling to allow scalability to a high num-

ber of shared memory cores. Tiling is a well known
technique to increase data locality and to reduce possi-
ble synchronization [8]. Furthermore tiling is one of the
foundations for the high performance made available by
GPUs, as they normally work on tiles stored in a fast
on-chip memory. To allow for high productivity, we de-
scribe tiling in an almost transparent way, so the pro-
gramming system can choose the size of tiles or even
decide not to apply tiling at all. We focus on a scenario
in which the data dependencies between the tiles (inter-
tile) are identical to those within the tiles (intra-tile) and
present a way that allows for automatic parallelization of
the intra-tile execution. The automatic parallelization is
based on the inter-tile parallelization and allows for au-
tomatic usage of possible on-chip memory.

To support programmability and scalability on dis-
tributed memory systems, we suggest a PGAS-like mem-
ory model, for which memory has two states: uninitial-
ized and initialized. We call this memory type world
memory. World memory is unitialized when no process
has written to it. In case a process reads from uninitial-
ized world memory, the process is suspended until an-
other process writes to it. Keeping processors busy re-
quires that the distributed memory nodes must be oversa-
tured with processes. The world memory concept allows
for fine grained synchronization and reduces the need of
using the classic OpenMP synchronization primitives, as
they may not scale for large distributed memory systems.
The world memory joined with tiling and the automatic
intra-tile parallelization allows for one program to scale
from a single multi-core CPU to e. g. a GPU cluster.

Besides allowing scalability, the major design goal
was to obtain the usability of OpenMP and to continue to
allow a clear global view at the implemented algorithm
without the need to care about low level details like man-
ually distributing the available work.

The paper is organized as follows. First, Sect. 2 gives a
brief overview of the diversity of the currently available
hardware and Sect. 3 describes the well known Gauss-
Seidel stencil, which we use as an example throughout
the following sections. The next two sections describe
our extensions. At first we describe the new shared mem-
ory extensions in Sect. 4, which are joined by the dis-
tributed memory extensions in Sect. 5. Section 6 sum-
marizes the paper.

2 Hardware overview

Current general purpose CPUs provide a decent perfor-
mance for basically every workload. Programming such
systems is known to be rather easy, even though some
optimizations may still be complicated in most program-
ing systems e. g. vectorizing non-trivial code or increas-
ing cache utilization of a specific function. However, it

X,y+1
[]
.k (©] .k
(k) (k=1)
Vx—],y vx,y Vx+],y
.k 1
V(=1)

x,y—1

Figure 1: Gau3-Seidel data dependency

is questionable how far the current design with multiple
cores sharing levels of coherent caches will scale.

GPUs built by AMD and NVIDIA are probably the
most common accelerators and provide performance that
is multiple times that of CPUs. However, achieving high
practical performance is only possible for highly parallel
applications with predictable memory accesses. In con-
trast to CPUs, GPUs consist of hundreds of small cores,
for which one provides far less performance than a sin-
gle CPU core. The GPU cores are oversaturated with
threads, so a scheduler may hide memory access latency
for off-chip memory. In currently available GPUs the
off-chip memory is not cached. NVIDIA has announced
its upcoming Fermi architecture, which provides a two-
ary cache hierarchy with one cache being shared by all
cores. However, the Fermi architecture and all current
architectures still expose low level on-chip scratch-pad
memory that must be used to reduce accesses to the slow
off-chip memory. The scratch-pad memory is shared by
a closely coupled set of threads called a threadblock, for
which subgroups of threads are executed in SIMD fash-
ion. On AMD hardware the instruction executed in a
SIMD fashion is not a single instruction, but a VLIW in-
struction that exposes instruction level parallelismif pos-
sible. The programming systems currently used to pro-
gram GPUs are a tight resemblance of the hardware lay-
out. Developers must manually apply tiling to their prob-
lem and assign such a tile to the closely coupled block of
threads. Memory transfers from off-chip memory to the
fast scratch-pad memory must be done explicitly. The
hardware handles the SIMD execution, however branch-
ing can decrease performance.

3 GauB-Seidel stencil

The calculations of the GauB-Seidel stencil are being ap-
plied on a two dimensional data matrix V' with the bor-
ders having fixed values. The non-border element with
the coordinates (z,y) in the kth iteration is calculated by

k k—1 k k—1
Valiy +Vaiiy + Va1 Vo
4

ko _
V%lj -

1
2
3

4
5
6
7
8

9
10
11
12
13
14
15
16
17

18
19
20
21
22

Algorithm 1 GauB3-Seidel (shared memory)

volatile int xcounters;
#ipragma omp parallel for schedule(blocked)
for (int x=0; x<x_size —2; ++x) {

#pragma omp single

counters = new int[omp_num_blocks () +1];
//initialize all counters with 0

}

int x_block = omp_block_num () ;

#pragma omp for schedule(blocked)

for (int y=0; y<y.size —2; ++y) {
if (x==0) counters[0O]=omp_total_size ()
while (y>=counters[x_block]) {}

#pragma omp block
Viy+1][x+1] = (V[y+1][x] + V[y+1][x+2] +
VIiyllx+1] + V[y+2][x+1])/4;

#pragma omp atomic
counters [x_block+1] += omp_block_size () ;

}
}

This calculation is repeated for a fixed number of steps
or until it converges. Here we assume a fixed number of
steps.

Figure 1 shows a visualization of the data dependen-
cies of the GauB3-Seidel stencil. It is important to notice
that the upper and the left values are from the kth step,
whereas the right and bottom value are from the (k—1)th
step. A parallelization can be done using the wavefront
pattern [6]. In a wavefront the data matrix is divided into
diagonals and elements of a diagonal are calculated in
parallel. Additionally to the parallelism made available
by the wavefront pattern, step k + 1 can be started before
step k is completed, since after the first two diagonals of
step k are calculated, all data needed for the first diago-
nal of step k + 1 is available. Both concepts are used in
the following two sections.

4 Shared memory extensions

In this section we introduce our OpenMP extensions for
shared memory architectures and explain how they can
be mapped to both multi-core CPUs and GPUs. Al-
gorithm 1 shows an implementation of the GauB3-Seidel
stencil with the extensions.

We implemented the wavefront pattern by dividing the
data matrix in columns and calculate these columns in
parallel. Column 0O can be calculated from the top to the
bottom, whereas column n + 1 can only be calculated as
deep as column n has been calculated. In case column
n + 1 is already calculated as deep as n, the thread cal-
culating n + 1 must wait until the thread calculating col-
umn 7 has calculated more elements. We use one counter

variable per column to identify how deep a column has
already been calculated. The counter variables are shared
by all threads, and are updated with atomic operations.
The current version of OpenMP does not allow reading
from a shared variable without synchronization, even if
it is updated atomically. Most current hardware however
only requires a fence / flush to read an atomically updated
variable, so we rely on this behavior as well.

In our algorithm we use tiling to create tiles of the data
matrix V. Tiling V does not only increase the cache uti-
lization in case V is too large to be kept in cache, but also
reduces the number of atomic updates of the counters.
Instead of updating the counter every time a new value
of V has been calculated, tiling allows us to only update
the counter once per tile.

Automatic tiling The major change compared to
the existing form of OpenMP is the introduction of au-
tomatic tiling, which is also known as blocking. We in-
troduce a new scheduling clause called blocked to let
developers annotated the loops for which tiling should
be applied. We also allow nesting of these annotations.
In Alg. 1 we annotated the loops in lines 3 and 12, so
the compiler can apply tiling to these loops. Loop tiling
divides the loop iteration space into tiles and transforms
the loops to iterate over the tiles. For example, when loop
tiling is applied to a single loop, the loop is split into two
loops: an outer loop which loops over tiles and an inner
loop which loops over the elements of a tile. In our vari-
ant of tiling, the loop is not only split into two loops, but
the inner loop is also moved in front of what we call the
instruction block.

The instruction block should contain only the code
that must be executed in every loop iteration. We
expect this in most cases to be the calculation of
the result and no synchronization. It is identified by
#pragma omp block and there may only be one in-
struction block in a tiled loop. In our example only line
17 (Alg. 1) is the instruction block, so all inner tiling
loops will be moved in front of this line. When multiple
loops are defined as schedule (blocked), the loop
order in front of the block is identical to the one of the
original loops.

Tiling cannot be applied to our example without
having access to the number of tiles created, as one
counter per tile must be used. Furthermore, we
need to have access to the size of a tile to be able
to update the counters once per tile. We provide
four library functions giving direct access to the tiles:
omp_num_blocks () returns the number of tiles a
loop is split into, omp_block_num() returns the
number of the tile currently calculated by the calling
thread, omp_block_size () returns the size of the
tile and omp_total_size () returns the end value
of the tiled loop. The functions are bound to the tiled

loop they are directly part of, meaning in our example
omp_total_size () (Alg. 1, line 13) is bound to the
second for-loop and returns y_size-2. Up till now
omp_total_size () may look superfluous; however
it is required when mapping this code to the GPU, as
shown next.

Automatic intra-tile parallelization Tiling allows
for good cache utilization on CPUs, but is also a require-
ment to map our code to hardware relying on tiling, as
for example GPUs. However in contrast to CPUs, GPUs
require the parallel execution within the tiles to utilize
all available cores. We discuss the scenario, in which the
intra-tile data dependencies are identical to the inter-tile
ones, as we expect this to be true in most cases. How-
ever, one could explicitly use OpenMP pragmas for syn-
chronization within the instruction block to implement a
different scheme. We first outline the technique for auto-
matic intra-tile parallelization in general and then apply
it to the GauB3-Seidel example.

We define three levels of locality: global refers to data
that is being shared by all tiles and OpenMP pragmas
that effects all threads, tile-local refers to data that is lo-
cal to a tile or synchronization effecting only the threads
calculating the same tile and thread-local specifies data
that is local to one thread. All pragmas used till now
are global, as well as all variables defined as OpenMP-
shared. All OpenMP-private variables are thread-
local. Our algorithm will automatically copy global vari-
ables and transform global pragmas to tile-local counter-
parts for parallel execution within a tile.

Our algorithm requires to divide the tiled loops into
three parts. The pre-block, which starts at the begin-
ning of the loop and stops at the instruction-block or the
start of a nested tiled loop. The post-block starts after the
instruction-block or at the end of a nested tiled loop and
continuous till the end of the loop. In our example the
pre-block of the outer loop starts at line 4 and end at line
10, whereas the post-block is empty.

To allow parallel execution within a tile, the inner
tiling loops will no longer only execute the instruction
block, but also modified copies of their original pre-
and post-blocks. All global variables used within an
inner pre- or post-block are copied to tile-local coun-
terparts prior to the start of the pre-block and all ac-
cesses in the inner pre- and post-blocks are transformed
to access the tile-local variables. In the GauB-Seidel
example, counters is copied and replaced by a tile-
local copy. The copy of counters can be stored in
fast on-chip memory. Accesses to the loop indices of
the tiled loop in the pre- and post-block are changed
accordingly. OpenMP pragmas in the inner pre- and
post-block are transformed into tile-local counterparts,
meaning that e.g. a single is only performed by one
of the threads calculating a tile. In our example the

single and atomic pragmas are copied to tile-local
version. The same holds true, for the OpenMP li-
brary functions, which now return tile-local results, e. g.
omp_num_blocks returns the size of the currently
calculated tile. All thread-local variables stay thread-
local. No additional changes to the instruction block
are being applied. The shown transformations expect
the same synchronization functionality at both tile and
global level, which is true for current GPUs. OpenCL
(or CUDA) does not allow synchronization between tiles,
but previous research [7] has shown that this is not a
hardware limitation.

Supporting the GPU memory system is essential to
achieve high performance. We suggest an additional
OpenMP parameter to let developers specify, which
data should be stored in on-chip memory. In our ex-
ample elements of vV should be stored in the on-chip
memory; however we do not only need the tiles, but
a halo with the width of one element as well. A
way to specify this in an OpenMP parameter would
be block_local (V, (x,y), 1). This parameter
should be added to line 11 Alg. 1. The parameter de-
scribes that the Variable V can be tiled and a tile should
be stored in the on-chip memory. The tile of data is de-
fined by variables x and y and the halo has a size of 1.
This kind of specification could also be used on current
CPUs, e. g. by prefetching the specified data into cache.

We have not discussed the issue that CPU and GPU
currently do not share the same memory space, however
Lee et al. have already shown in [3] that the existing
OpenMP data-sharing attribute clauses can be used to
transfer all needed data to GPU memory.

The code that would be automatically generated from
our OpenMP extensions should mostly be OpenCL com-
patible, so we expect most OpenCL compatible hardware
to support our suggested extensions.

S Distributed memory extensions

To enable OpenMP for distributed memory we utilize a
PGAS-like memory model and an additional level of par-
allelism. We call the set of processes executing the pro-
gram the world. The new level of parallelism is called
world parallelism and the memory accessible by all pro-
cesses is called world memory. In world parallelism
all synchronization primitives known from OpenMP are
available and work at world level, meaning an OpenMP
single is executed by only one process. It is possi-
ble to nest “normal” shared memory parallelism in world
parallelism. A single construct in a shared memory
parallelism, which is nested in world parallelism, is exe-
cuted by one thread of every process.

However, synchronization using the existing OpenMP
constructs is rather expensive for a high amount of nodes

in distributed memory environments. We therefore sug-
gest an additional synchronization mechanism in world
parallelism. World memory has two states: uninitial-
ized and initialized. When world memory is allocated,
its status is set to uninitialized. The status is changed to
initialized as soon as data is written to the memory. In
case a process tries to read from unitialized world mem-
ory, the reading process or thread gets suspended until
another process writes to this memory. The suspended
process is reactivated and reads the just written value.
This concept requires oversaturating the available nodes
with processes to achieve high utilization. The oversatu-
ration may also be used to hide possible memory access
latency for data stored at another node. As world mem-
ory accesses can be more expensive than local memory
accesses, we additionally suggest a parameter similar to
block_local to automatically prefetch data in node
local memory.

Algorithm 2 shows the implementation of the
GauB-Seidel stencil example with world paral-
lelism. world_parallel is the keyword similar
to parallel defining distributed memory parallelism
and omp_world_malloc () allocates world memory.
The iterations of the loop annotated as a world parallel
loop are split among all processes. One process per loop
iteration is started and each process calculates exactly
one loop iteration. Besides the single at the beginning
of the loop there is no classic OpenMP synchronization,
as all synchronization is being done with reading/writing
world memory. At first, only the process calculating
the first step can be active, as all processes read from
Vs [1] which is uninitialized for i # 0. As soon as the
first process has calculated e. g. the first tile, the second
process can be active and so on. All variables created
before the parallel world section are made available as
already initialized world memory.

The program shown in Alg. 2 can be easily executed
on a multi-core CPU with ignoring any kind of world
parallelism, but could also be executed on a cluster of
GPUs. Executing on multiple GPUs requires tiling and
the parallel execution within the tiles as described in the
last section. The synchronization between the GPUs is
done using world memory.

6 Conclusion

Computer systems will change significantly in the up-
coming years. Although there will always be a need for
developers writing low level code to achieve the max-
imum performance, development time and productivity
are becoming more of an issue. Learning all the details
of new hardware and its programming system to rewrite
an existing application does not pay off in an increasing
set of scenarios, as we are currently seeing an increasing

0NN B W -

Algorithm 2 GauB3-Seidel (distributed memory)

doublexx Vs;
#pragma omp world_parallel for world(Vs)
for (int i=0; i<steps; ++i) {

#pragma omp single

Vs = omp-world_malloc (iterations);

Vs[i] = omp_world_malloc (iterations);
// in the first iteration copy

// the input data from V to Vs[O]

if (i==0) memcpy (V, Vs[0]);

// insert Algorithm 1 and change

// the instruction block to

Vs[i+1][x+1][y+1] = (Vs[i+1][x][y+1] +
Vs[i][x+2][y+1] + Vs[i][x+1][y] +
Vs[i+1][x+1][y+2])/4;

// so every iteration writes

to its own array

trend in heterogeneity. In this paper we have outlined
a proposal of how OpenMP can be extended to support
distributed memory and closely coupled processors with
manually managed on-chip memory, so the same pro-
gram could be compiled to a single multi-core CPU, a
cluster of GPUs or other distributed and shared mem-
ory many-core architectures without the need to rewrite
the program. We also expect that existing OpenMP pro-
grams could easily be modified with the suggested exten-
sions to be executed on new hardware.

References

[1]
[2]

OpenMP Application Program Interface, Mai 2008. Version 3.

OpenCL Programming Guide for the CUDA Architecture, August
20009.

LEE, S., MIN, S.-J., AND EIGENMANN, R. OpenMP to GPGPU:
a compiler framework for automatic translation and optimization.
In PPoPP ’09: Proceedings of the 14th ACM SIGPLAN symposium
on Principles and practice of parallel programming (New York,
NY, USA, 2009), ACM, pp. 101-110.

The OpenCL Specification. Version 1, revision 43, May 2009.

OpenCL Development Kit for Linux on Power.
http://www.alphaworks.ibm.com/tech/opencl/.

[3]

[4]
[5]

PFISTER, G. F. In search of clusters (2nd ed.). Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1998.

STUART, J. A., AND OWENS, J. D. Message passing on data-
parallel architectures. In IPDPS ’09: Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed Process-
ing (Washington, DC, USA, 2009), IEEE Computer Society, pp. 1-
12.

[7]

[81 WOLFE, M. J. High Performance Compilers for Parallel Comput-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,

USA, 1995.

