DeNovo: Rethinking Hardware for Disciplined Parallelism *

Byn Choi, Rakesh Komuravelli, Hyojin Sung, Robert Bocchi8arita Adve, and Vikram Adve
University of Illinois at Urbana-Champaign
denovo@s.illinois.edu

Abstract model or memory consistency model has been surprisingly
IchaIIenging. The memory model specifies what values a
shared-memory read may retufr [4]. After decades of re-
search and vigorous debate, there has finally been a con-
vergence centered on providing sequential consistency for
We argue that this software evolution presents far_re@hindata—race-frge programiSJLal39]. The results, however, ar
opportunities for parallel hardware design to greatly im_deeply un_sausfactory and have exposed fundamental short-
prove complexity, power-efficiency, and performance scal-c0MINgs In today's hardware and soft\_/vare systeﬂs [3]'
ability. The DeNovo project is rethinking hardware design First, safe languages such as Java require precisely defined
behavior even with (unintended) data races — this has made

from the ground up to exploit these opportunities. This . . ;
paper pregsents thepbroad Fﬁesearch aggr?da of DeNovo, ime Java model incredibly compldx]}39] (it currently has an

cluding a holistic rethinking of cache coherence, memoryunresolved bud [46]). Second, the software-oblivious evo-

consistency, communication, and cache architecture. lution of legacy ha_lrdwa_re hgs led to an unnecessary perfor-
mance compromise with simple models — this has forced

a complex supplemental model for C and C++, intended
1 Introduction only for performance-driven experfs]15].

Achieving the promise of Moore’s law will require har-  We believe the above problems are not inherent to a
nessing increasing amounts of parallelism using multi-shared address space paradigm. Instead, they occur due
core architectures. Industry experts project over a thouto undisciplined programming models that allow the use
sand cores per chip in about a decade [16]. Unfortu-of arbitrary reads and writes in implicit and unstructured
nately, designing easily programmable large-scale gerall communication and synchronization. This results in “wild
hardware that provides scalable and power-efficient pershared-memory” behaviors with unintended data races,
formance at low-cost remains a major challenge. Curnon-deterministic executions, and implicit side effebstt
rent designs for large-scale shared-memory systems reljnake programs hard to understand, debug, and maintain.
on directory-based cache coherence protocols for scalaFhe same phenomena result in complex hardware that
bility [B7], which are extremely complex and inefficient. must assume that any memory access may trigger commu-
Moreover, current memory hierarchies are based on outnication, and inefficient hardware that is unable to exploit
dated organizing principles such as contiguous cache linesommunication patterns known to the programmer but ob-
that worked well for dense-array codes but are not well-fuscated by the programming model.
suited for modern object-oriented codes and pointer-based Qur thesis is that more disciplined programming models
data structures. with explicit and structured communication and synchro-
On the software side, threads-based shared memory, afiization can address the above problems in both hardware
guably the most widely used general-purpose parallel proand software. Previously, we described a research agenda
gramming model, is known to be difficult to program, de- for deterministic-by-defaultlanguages to provide theiis
bug, and maintair[[36]. Current models are not only con-pline needed to address the software programmalilifly [13]
ceptually more difficult to understand than the sequentiahnd memory model related issuBk [3]. This paper describes
model (e.g., due to data races and ubiquitous nondetermirr hardware research agenda pursued by the Illinois DeN-
ism), but require abandoning decades of advances at th&o project. DeNovo aims to show that such disciplined
core of robust sequential software engineering practiceprogramming models allow far more scalable and power-
(e.g., safety, modularity, and composability). efficient hardware at much lower complexity than state-of-
For both hardware and software, the problem of for-the-art software-oblivious design approaches.
mally specifying the fundamental property of the memory e gypect three features in future disciplined parallel

*This work is supported in part by the Intel and Microsoft fedd ~ Programs. (2) data_'rage'freedom’ and even guaranteed de-
Universal Parallel Computing Research Center at lllinois. terministic semantics in many cases; (2) structured par-

We believe that future large-scale multicore systems wil
require disciplined parallel programming practices, iratl
ing data-race-freedom, deterministic-by-default semcant
and structured, explicit parallel control and side-effect




allel control; and (3) explicit specification of the effects Prometheus[]6], Gracé [1L0], Axuri_[26], and DRJI[14].
of shared-memory accesses; e.g., which (possibly nonMost of these, including all but one of the commercial sys-
contiguous) regions of memory will be read or written in a tems,guaranteethe absence of data races for programs that
parallel section (Sectidd 2). We show these features enablgpe-check, satisfying the first requirement of our work im-
a fundamental rethinking of shared-memory hardware fomediately. Moreover, most of these also enforce a require-
superior performance, power efficiency, and complexity, asment of structured parallel control (e.g., a nested fork joi
follows. model, pipelining, etc.), which is much easier to reason
Coherence and Consistency.First, structured paral- aboutthan arbitrary (unstructured) thread synchrorirati
lel control and knowing which memory regions will be  We approach our goal of exploiting disciplined pro-
read/written enable a cache to take responsibility for in-gramming for hardware in stages. We begin with deter-
validating its own stale data. Such self-invalidations re-ministic codes for three reasons: (1) there is a growing
move the scalability-limiting need for a hardware direc- view that deterministic algorithms will be common, at least
tory to track sharer lists and to send invalidations on wstite for client-side computind]5]; (2) focusing on these codes
Second, data-race-freedom eliminates concurrent conflictallows us to investigate the “best case,” i.e., the poténtia
ing accesses and corresponding transient states in cohdor gains from exploiting strong discipline; and (3) these
ence protocols, eliminating a major source of complexity.investigations will form a basis on which we develop the
Third, since there is no need to track sharers or serialize@xtensions needed for other classes of codes. We then in-
conflicts, cache-to-cache transfers can occur without investigate how to extend this system to support disciplined
direction through the directory, significantly reducing la non-determinism. Finally, we consider legacy software
tency. Fourth, if software guarantees data-race-freedomand programming models. Synchronization mechanisms
then hardware can easily make strong memory model guaiare used with all three kinds of codes, but we discuss them
antees. The result is much simpler, lower-latency coherwith legacy software because synchronization inherently
ence protocols and simple (yet high-performance) consisinvolves races.
tency models (Sectidn3.1). We take Deterministic Parallel Java (DPOYI[14] as an
Communication and Storage Layout.A key organiz-  exemplar of the emerging class of disciplined languages.
ing principle for memory hierarchies is a cache line, whichwe use it to explore how hardware can take advantage of
is used for address, communication (transfer), and coheidata-race-freedom, structured parallel control, andieipl
ence granularity. While this works well for uniprocessorsread and write effects of concurrent tasks. The informa-
with dense array codes, it does not naturally extend to multion about side effects of concurrent tasks is also avalabl
ticores (e.g., it can incur false sharing) or to object-otégl  in other disciplined languages, but in widely varying (and
codes (where a computation phase may access only or@metimes indirect) ways. Once we understand from our
field in a contiguous array of large structs, wasting band-nitial study the types of information that is most valugble

width and cache storage). Explicit shared-memory effectsve will explore how it can be extracted from programs in
allow customizing the address, communication, and coherdifferent languages.

ence granularity around software-specified regions. Such a

reorganization can give much higher efficiency incommu-2 1 pDeterministic Parallel Java (DPJ)

nication latency, bandwidth, and cache storage and boolpp\] is an extension to Java that enfordetsr ministic-by-
keleptlrr:g; e.ga, b;!l( (:atzas'[ra?f%za;%hg Space usage i@l it semantics via compile-time type checking. Using
only the needed data (Secti -2 Bnd 3.3). Java is not essential; similar extensions for C++ are un-

Together, our observations lead to systems thatenjoythaerway_ DPJ provides a new type and effect system for

benefits of a global address space along with the eﬁ'c'enéxpressing important patterns of deterministic and non-

?es oftrr]ne?gaé:]_e p?SS'nt?;lE'?" p?'m th p?'rlt]com”&l_;mcadeterministic parallelism in imperative, object-oriethte
lon withoutindirection, bulk transter ol only the require programs. Non-deterministic behavior can only be ob-
data, and simple, scalable hardware with clear semantics, i via certain explicit constructs (Sectin 4). For a

. . program that does not use such constructs, DPJ guarantees
2 DQNOVO Research Strategy and Disci- that if the program is well-typed, any two parallel tasks are
plined Languages non-interfering, i.e., do not have conflicting accesses.
Future systems will run a mix of disciplined software and DPJ's parallel tasks are iterations of an explicitly par-

legacy, “wild shared memory” code. We expect, how-allel f or each loop or statements within aobegi n
ever, that the latter will be a decreasing fraction for theblock; they synchronize through an implicit barrier at the
reasons described above. There are already a large nurand of the loop or block. Parallel control flow thus fol-
ber of research and commercial projects developing neviows a scoped, nested, fork-join structure, which simpli-
disciplined parallel programming models for determinis-fies the use of explicit coherence actions in DeNovo at
tic and non-deterministic algorithm§1[5]; e.g., Ct]24], fork/join points. This structure implies an obvious sequen
CnC [11], Cilk++ [11], Galois[[3B], SharC]7], Kendo[44], tial equivalent of the parallel program (e.§or replaces



f or each), and restricts the result of a parallel executioneach line with one “touched” bit for this purpose. For (ii),
to that of the sequential equivalent. DeNovo requires that on a write, a core register itself at
In a DPJ program, the programmer assigns every obfi.e., inform) the shared L2. The L2 data banks serve as
ject field or array element to a namexbdion” and anno-  the registry — they either keep the identity of an L1 that has
tates every method with read or writeffects’ summariz-  the up-to-date data or the data itself. Thus, DeNovo entails
ing the regions read or written by that method. The com-zero overhead for directory (registry) storage.
piler checks that (i) all program operations are type safe ilNo transient states. The DeNovo protocol has three
the region type system; (ii) a method’s effect summariesstates in the L1 and L2 registered, valid, andinvalid —
are a superset of the actual effects in the method body; angith obvious meaning. (The touched bit mentioned above
(iii) that no two parallel statements interfere. The effectis |ocal to its cache and irrelevant to external coherence
summaries on method interfaces allow all these checks tgansactions.) Although textbook descriptions of conven-
be performed without interprocedural analysis. tional directory protocols also describe 3 to 5 states (e.g.
For DeNovo, the effect information tells the hardware MS|) [30], it is well-known that they contain many hid-
what fields will be read or written in each parallel “phase” den transient states due to races, making them notoriously

(f or each orcobegi n). This enables efficient software- complex and difficult to verify[]2]. DeNovo, in contrast,
controlled coherence mechanisms and powerful communis a true 3-state protocol witho transient states, since it

cation management and data layout, discussed next.  assumes race-free software. The only possible races are re-

o lated to writebacks, and they can be handled as in unipro-
3 DeNovo for Deterministic Codes cessors. We are currently investigating formal verificatio
3.1 Coherence and Consistency to quantify the impact of this significant simplification.

Sequential equivalence for deterministic codes implies &liminating indirection. In a conventional protocol,
read should simply return the value of the last conflictingeven misses that are eventually serviced by another cache
write before it in the sequential program order. This write (cache-to-cache transfer) must go through the directory, i
is either from the reader’s own task or from a task in acurring an additional latency due to the indirection. Since
previous parallel phase, since there can be no concurremeNovo does not maintain sharer lists, a reader can poten-
conflicting write. In contrast, conventional coherence-pro tially directly obtain data from a cache that has it, without
tocols, typically based on directories, assume that writegnforming the registry. Knowledge of which cache may
and reads to the same location can occur concurrently, rédave the data can either be obtained through hardware pre-
sulting in significant complexity and inefficiency. diction or compiler/runtime support using effects informa
DeNovo eliminates the drawbacks of conventional di-tion. This can be conservative since the request can always
rectory protocols as follows. For now, assume a singlebe sent to the registry if the predicted cache does not have
word cache line and no data races at this granularity (rethe line.
laxed later). Without loss of generality, assume private Hardware regions, an example, and evaluation. A key
writeback L1 caches, a shared last-level on-chip L2 cacheesearch question is how to distinguish regions in hardware
inclusive of only the modified lines in L1, a single (multi- for self-invalidations. Language-level regions are more
core) processor chip system, and no task-migration. fine-grain than may be practical, or needed, in hardware.
No directory storage or write invalidation overhead.  The language may need to distinguish fields of each ob-
In conventional protocols, a write acquires ownership ofject in an array or tree to prove non-interference. Hard-
a line by invalidating all other copies, to ensure later ead ware only needs to identify the aggregate set of data that
get the updated value. The directory achieves this by trackeould be written in a phase, not which core wrote what.
ing all current sharers and invalidating them on a write, The compiler can thus summarize one or more fields of an
incurring significant storage and invalidation traffic over entire array or tree of objects as a single region, dramati-
head. DeNovo eliminates these overheads by removing theally reducing the number of regions for hardware. At the
need for ownership on a write. Data-race-freedom ensuresame time, over-coarsening of regions may lead to con-
there is no other writer or reader for that line in this paral- servative write effects and unnecessary “collateral”-self
lel phase. DeNovo need only ensure that (i) outdated cachiavalidations, requiring the compiler to balance the num-
copies are invalidated before the next phase, and (ii) readder of hardware regions against the precision of effects.
ers in later phases know where to get the new data. The ideal hardware-software interface through which re-
For (i), each cache simply uses the known write ef-gion information can be conveyed also remains a research
fects of the current phase to invalidate its outdated datguestion (e.g., through memory instructions or data). Re-
before the next phase begins. The compiler inserts selfgardless of how it is conveyed, the caches need to track the
invalidation instructions for each region with these write region information with the data. Secti@n13.3 proposes a
effects. Each L1 invalidates its data that belongs to thesaew cache design that can eliminate this overhead.
regions except ones that it has “touched” in this phase, Figure[l illustrates the above concepts. Figure]l(a)
since such data are known to be up-to-date. We augmemshows a code fragment with parallel phases accessing an



class S_type { L1 of Core 1 L1 of Core 2
Xin DeNovo-region®® ;
Y in DeNovo-region @ ;

Z in DeNovo-region L1ofCorel
} Direct cache-to-cache -
S _type S = new S_type([size]; communication in Phase 2 V: Z
- Vi
Phasel writes @ // DeNovo effect ViZs
Shared L2 ViZy
foreach iin 0, size { Vi Zs
ShilX= ViZe
}
self_invalidate(l);

}

Phase2 reads®, ... { ...}

R = Registered
V =Valid

I=Invalid

@ (b) ©
Figure 1: (a) Code with DeNovo regions and self-invalidasio(b) cache state after phase 1 self-invalidations amttiéore-to-core
communication at the beginning of phase 2, and (c) regitredrcache layoutX; representsS[i].X. C'i in L2 cache means the word
is registered with Core. Initially, all lines in the caches are valid state.

array, S, of structs with three fields each, X, Y, and Z. Theinvalidate at the end of the phase (touched). Thus, when
X (respectively, Y and Z) fields from all array elements servicing a demand read, a cache may send an arbitrary
form one DeNovo region. The first phase writes the regioramount of valid data along with the accessed word. Such
of X and self-invalidates that region at the end. Fiqure]1(b)a transfer does not incur false sharing or state downgrades
shows, for a two core system, the L1 and L2 cache statesince nobody loses “ownership.”
at the end of Phase 1, assuming each core computed oneUsing the above insight, DeNovo can easily exploit con-
contiguous half of the array. The computed X fields areventional cache line sizes for communication and address
registered and the others are invalid in the L1’s while the granularity. A read miss response can always return a
L2 shows all X fields registered to the appropriate cores. cache line worth of information although some words may
We implemented the DeNovo protocol without the op- be invalid (marked using per-word coherence state, analo-
timization to eliminate indirection, using the Wisconsin gous to sector cach€s]38]). This reduces address tag over-
GEMS [42] framework. We manually performed re- head and exploits spatial locality without false sharing.
gion aggregation and inserted self-invalidations inte¢hr For higher efficiency than afforded by conventional
SPLASH-2 applications[[%0]b@ar nes, LU, and FFT) cache lines, we observe that often only a few words from
and a complex graphics code]20], covering both pointera cache line are used; the rest simply waste bandwidth and
and array-intensive codes. We found that a small numstorage. For example, in object-oriented programs, data
ber (<9) of DeNovo regions minimized collateral invali- structures are often in “array of structs” (AoS) rather than
dations in all cases, and the DeNovo L1 cache miss rate'struct of arrays” (SoA) layout. AoS is wasteful if only
and execution times were almost identical to those of the few fields of the structs are accessed. An AoS-to-SoA
GEMS MESI protocol (with single word lines). These re- transformation in software is challenging[21] 31]. DeN-
sults show that the simplicity of the DeNovo protocol doesovo can exploit effects information to easily achieve the
not compromise performance, and requires distinguishingame goal. Thus, a read miss response can transfer only

only a few regions. We next address performance. the words in regions that will be accessed in this phase.
o o More generally, the compiler may associate a default gran-
3.2 Communication Efficiency ularity with each region that defines the size of each con-

Conventionally, cache lines form the basis of address (tag}iguous region element and the number of such elements

communication (transfer), and coherence granularity. Sqo transfer at a time, to provide a highly flexible bulk com-

far, DeNovo operates on single word lines, sacrificing ef-munication mechanism.

ficiencies from higher communication and address gran- The above flexible bulk transfers can occur between a

ularity for no false sharing. This section describes howproducer and consumer without registry indirection, and

effect information can enable much more flexible (hencecan be either producer- or consumer-initiated. The net ef-

performance- and power-efficient) communication granu-ect is that of seamlessly integrated message-passiag-lik

larity than possible today, while the next section enablesnteractions, with corresponding efficiencies where appli

flexible address and coherence granularities. cable. Figur§ I() illustrates these concepts for our exam-
Our key insight is that anyalid or registered data  ple, showing direct communication between cores, trans-

can be proactively copied to another cachevalsd (but  ferring only the region for X.

not touched), without involving the registry. When (if)

a demand read accesses this copy, it is marked touched.3 Storage Efficiency

A demand read implies there is no concurrent conflictingDeNovo’s address granularity is still a contiguous cache

write, so it is correct to read this valueglid) and not self- line. Thus, even if a read returns only the parts of



the line(s) that will be used, the cache must allocatea naive solution is to self-invalidate at the start of each
(invalid and wasted) space for the rest of the line(s). Weatomic section. Two optimizations are to not invalidate
use region/effect information for a more efficient storagedata that have non-conflicting effects, and if the core al-
layout, with flexible address and coherence granularity. ready owns the lock.

We first use DeNovo’s aggregated regions to control There are also likely to be several sources of less disci-
main memory layout in software. The key idea is to lay plined codes. First, low-level libraries may use wait-free
out a region holding a field of a data structure in stridedor other “roll-your-own” synchronization. We can treat
fashion (e.g., by allocating all elements of the data structhe regular, but synchronizing, reads and writes in these
ture from a contiguous memory pobl]34]), to enable regu-codes as singleton atomic sections, a discipline similar to
lar addressing. For cache layout, we can now partition thé&dPJ. However, there is little understanding of the access
cache into multiple banks corresponding to different aggre patterns in these codes and how hardware can best sup-
gated regions. Regions accessed together in a phase shoplart them. We are studying several such codes for a better
be aggregated together in the cache and form the basis fanderstanding. Second, we must correctly execute legacy
address and transfer granularity. Regions that have similasoftware. One solution is to make a small cluster of the
sharing behavior in a phase should form the basis for coehip fully coherent to execute non-compliant software. An
herence granularity. These granularities can be further inalternative may be to use software distributed shared mem-
creased by incorporating task granularity informatiomfro ory techniques. These solutions do not exploit the DeNovo
the scheduler, further amortizing state maintenance ovemptimizations, but should be close to what can be achieved
head. Overall, region-based cache layout can significantlyhrough incremental improvements over today’s systems,
improve cache utilization and state overhead (along withwith much lower overall hardware complexity.
the previously discussed improved bandwidth, latency, and Finally, all software must use (racing) synchronization
flexible transfer granularity). Figufe T]c) illustratesetie  operations, which the DeNovo coherence protocol does not
concepts for our example. It shows separate banks for theupport directly. We propose to implement minimal hard-
regions of X, Y, and Z. Each bank merges coherence statasare support for key synchronization primitives, incluglin

of the fields accessed together as shown. (queue-based) lock5R5], sender-initiated cache-tveac
transfers or “remote writesT][1]) for flag synchronization,
4 Nondeterministic Codes and some native support for barriers. More sophisticated

The key difference between nondeterministic and deter[‘nGCh"’mIsms can be built on top of these primitives.

ministic codes is that the former may incur conflicting
accesses between concurrent tasks, while the latter pl’é— Related Work and Summary
hibit them. These accesses usually need to be synchr@here is a vast body of work on improving shared-
nized using atomicity primitives, which also ensures data-memory hierarchy, including coherence protocol optimiza-
race-freedom. While the specific mechanisms and semanions (e.qg.,[[3H,40, 4L, 45,48]), relaxed consistency mod-
tics for disciplined nondeterminism are still a matter of re els [22,[23], using coarse-grained (multipbentiguous
search, we believe some basic principles are requiréd [12kache lines, also referred to as regions) cache state migicki
(1) a guarantee of data-race-freedom by enclosing concuge.g., [I8[4R,51]), smart spatial and temporal prefetghin
rent conflicting accesses within atomic sections; (2) giron (e.g., [47.4D]), bulk transfers (e.d.][811928, 29], proer-
isolation between nondeterministic and deterministic-coninitiated communicatiorJL£,32]), recent work specifically
structs; and (3) serializability for deterministic and Wlen  for multicore hierarchies (e.g.[][9.27]52]), and more.
terministic constructs to simplify reasoning. The starting point for our work is that current shared-
DPJ uses atomic regions and atomic effects as one wayemory programming models are unsustainable for mass-
to give these guarantees of data-race-freedom, isolatioscale parallel programming, motivating more disciplined
and serializability [[I2], and we use them initially to de- shared-memory models. With such models as drivers,
velop support for disciplined nondeterminism in DeNovo. we rethink the entire memory hierarchy design from the
We then discuss how we aim to support less disciplinedyround up. To our knowledge, our proposed vision is the
forms of nondeterminism. first that views the cache hierarchy design in such a holis-
To support atomic sections, DeNovo requires mechatic way, and co-designed together with a disciplined soft-
nisms to (i) ensure their isolation, and (ii) return appro-ware model. This view allows new ideas (e.g., flexible
priate values for their reads. For (i), a naive approach iache partitions based on software specified regions), sim-
to use a single lock for each atomic section, which carpler and more efficient incarnations of previous ideas (e.g.
be efficiently implemented in DeNovo’s simplified coher- use of bulk transfer, but with flexible software-driven gran
ence model by using queue-based lodkd [25]. Two optiularity and with no directory serialization), and a synergi
mizations are to assign different lock variables to atomictic collection of previously proposed optimizations. The
sections that have non-overlapping atomic effects and toesult is a simpler system design that is more performance-
enable speculative execution of atomic sections. For (ii)and power-efficient and yet more programmable.



References

[1] H. Abdel-Shafi, J. Hall, S. V. Adve, and V. S. Adve. An

Evaluation of Fine-Grain Producer-Initiated Communica-

tion in Cache-Coherent Multiprocessors. Pnoceedings
of the 3rd International Symposium on High Performance
Computer Architecture, 1997.

(2]
tle Time: Verifying Memory Coherence in the Cray X1. In
Proceedings of the 17th International Symposium on Paral-
lel and Distributed Processing, 2003.

(3]
for Rethinking Parallel Languages and Hardwar@ ap-
pear in the Communications of the ACM. Author’s version
is available at http://denovo.cs.illinois.edu/Pubsta@m-
memory-models.pdf.

(4]
tency Models: A Tutorial.|EEE Computer, Special Issue
on Shared-Memory Multiprocessing, pages 66—76, Decem-
ber 1996.

[5] V. S. Adve and L. CezeWbrkshop on Deterministic Multi-
processing and Parallel Programming, University of Wash-
ington, Nov 2009.

(6]

D. Abts, S. Scott, and D. J. Lilja. So Many States, So Lit-

S. V. Adve and H.-J. Boehm. Memory Models: A Case

S. V. Adve and K. Gharachorloo. Shared Memory Consis-

(13]

(14]

(15]

(16]

(17]

M. D. Allen, S. Sridharan, and G. S. Sohi. Serialization [18]

Sets: A Dynamic Dependence-based Parallel Execution

Model. InProceedings of the 14th ACM S GPLAN Sympo-
sium on Principles and Practice of Parallel Programming,
pages 85-96, 2009.

[7] Z. Anderson, D. Gay, R. Ennals, and E. Brewer. SharC:
Checking Data Sharing Strategies for Multithreaded C. In

Proceedings of the ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, pages
149-158, 2008.

R. H. Arpaci, D. E. Culler, A. Krishnamurthy, S. G. Stein-
berg, and K. Yelick. Empirical Evaluation of the CRAY-
T3D: A Compiler Perspective. |IRroceedings of the 22nd
International Symposium on Computer Architecture, pages
320-331, June 1995.

[9] A.Basu, N.Kirman, M. Kirman, M. Chaudhuri, and J. Mar-

(8]

tinez. Scavenger: A New Last Level Cache Architecture

with Global Block Priority. InProceedings of the 40th An-
nual IEEE/ACM International Symposium on Microarchi-
tecture, pages 421-432, 2007.

[10]
Multithreaded Programming for C/C++. IRroceeding of
the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems, Languages, and Applications, pages
81-96, 2009.

[11]
son, K. H. Randall, and Y. Zhou. Cilk: An Efficient Mul-
tithreaded Runtime System. Rroceeding of the 5th ACM
S GPLAN Symposium on Principles and Practice of Paral-
lel Programming, pages 207-216, 1995.

[12]

terminism in a Deterministic-by-Default Parallel Langeag
Technical report, University of lllinois, 2010. Availabgt
http://dpj.cs.uiuc.edu.

E. D. Berger, T. Yang, T. Liu, and G. Novark. Grace: Safe

R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiser-

(19]

(20]

(21]

(22]

(23]

(24]

R. L. Bocchino, S. Heumann, N. Honarmand, S. Adve, [25]
V. Adve, A. Welc, T. Shpeisman, and Y. Ni. Safe Nonde-

R. L. Bocchino, Jr., V. S. Adve, S. V. Adve, and M. Snir.
Parallel Programming Must Be Deterministic by Default.
In First USENIX Workshop on Hot Topics in Parallelism,
2009.

R. L. Bocchino, Jr., V. S. Adve, D. Dig, S. V. Adve,
S. Heumann, R. Komuravelli, J. Overbey, P. Simmons,
H. Sung, and M. Vakilian. A Type and Effect System
for Deterministic Parallel Java. I[Rroc. 24th ACM SG-
PLAN Conference on Object Oriented Programming, Sys-
tems, Languages, and Applications, pages 97-116, 2009.

H.-J. Boehm and S. V. Adve. Foundations of the C++ Con-
currency Memory Model. IfProceedings of the ACM S G-
PLAN Conference on Programming Language Design and
Implementation, pages 68—78, 2008.

S. Borkar. Major Challenges to Achieve Exascale Perfor
mance. Salishan Conference on High-Speed Computing,
2009.

Z. Budimlic, A. Chandramowlishwaran, K. Knobe,
G. Lowney, V. Sarkar, and L. Treggiari. Multi-core Im-
plementations of the Concurrent Collections Programming
Model. Inthe 14th International \orkshop on Compilers

for Parallel Computers, January 2009.

J. Cantin, M. Lipasti, and J. Smith. Improving Multimes-

sor Performance with Coarse-Grain Coherence Tracking. In
Proceedings of the 32nd Annual International Symposium

on Computer Architecture, pages 246-257, June 2005.

R. Chandra, K. Gharachorloo, V. Soundararajan, and
A. Gupta. Performance Evaluation of Hybrid Hardware and
Software Distributed Shared Memory Protocols. Rro-
ceedings of the 8th ACM International Conference on Su-
percomputing, Manchester, England, July 1994.

B. Choi, R. Komuravelli, V. Lu, H. Sung, R. L. Bocchino,
S. V. Adve, and J. C. Hart. Parallel SAH k-D Tree Con-
struction. Submitted for publication. Also available as a
technical report (http://hdl.handle.net/2142/137981 @2

S. Curial, P. Zhao, J. Amaral, Y. Gao, S. Cui, R. Silvenad

R. Archambault. MPADS: Memory-Pooling-Assisted Data
Splitting. In Proceedings of the 7th International Sympo-
sium on Memory Management, pages 101-110, 2008.

M. Dubois, J. C. Wang, L. A. Barroso, K. Lee, and Y.-S.
Chen. Delayed Consistency and its Effects on the Miss
Rate of Parallel Programs. Rroceedings of the ACM/IEEE
Conference on Supercomputing, pages 197-206, 1991.

K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons,
A. Gupta, and J. Hennessy. Memory Consistency and Event
Ordering in Scalable Shared-Memory Multiprocessors. In
Proceedings of the 17th Annual International Symposium

on Computer Architecture, pages 15-26, May 1990.

A. Ghuloum et al. Ct: A Flexible Parallel Programming
Model for Tera-Scale Architectures. Intel White Paper,
2007.

J. R. Goodman, M. K. Vernon, and P. J. Woest. Effi-
cient Synchronization Primitives for Large-Scale Cache-
Coherent Multiprocessors. Broc. 3rd International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 64-75, 1989.



[26] N. Gustafsson. Axum: Language Overview. Microsoft [40] M. M. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and

Language Specification, 2009.

[27] N. Hardavellas, M. Ferdman, B. Falsafi, and A. Aila-
maki. Reactive NUCA: Near-Optimal Block Placement and

Replication in Distributed Caches. Proceedings of the
36th Annual International Symposium on Computer Archi-
tecture, pages 184-195, 2009.

[28] K. Hayashi, T. Doi, T. Horie, Y. Koyanagi, O. Shiraki,
N. Imamura, T. Shimizu, H. Ishihata, and T. Shindo.
AP1000+: Architectural Support of PUT/GET Interface for [42]

Parallelizing Compiler. IrProc. 6th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 196-207, 1994.

[29] J. Heinlein, K. Gharachorloo, R. P. Bosch, Jr., M. Resen
blum, and A. Gupta. Coherent Block Data Transfer in the [43]

FLASH Multiprocessor. IrProc. 11th International Sym-
posium on Parallel Processing, pages 18-27, 1997.

[30] J. L. Hennessy and D. A. Patterso@omputer Architec-

ture: A Quantitative Approach. Morgan Kaufmann, fourth

edition, 2007.

[31] T. Jeremiassen and S. J. Eggers. Reducing False Sharing
on Shared Memory Multiprocessors through Compile Time

Data Transformations. IRroceedings of the 5th ACM S G-
PLAN Symposium on Principles and Practice of Parallel
Programming, pages 179-188, 1994.

[32] D. A. Koufaty, X. Chen, D. K. Poulsen, and J. Torrellas.
Data Forwarding in Scalable Shared-Memory Multiproces-

sors. InProceedings of the 9th International Conference on
Supercomputing, pages 255-264, 1995.

[33] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan,
K. Bala, and L. Chew. Optimistic Parallelism Requires Ab-

stractions. InProceedings of the ACM S GPLAN Confer-
ence on Programming Language Design and Implementa-
tion, pages 211-222, 2007.

[34] C. Lattner and V. Adve. Automatic Pool Allocation: Im-
proving Performance by Controlling Data Structure Layout [48]

in the Heap. IProceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementa-
tion, 2005.

[35] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation:
Reducing Coherence Overhead in Shared-Memory Multi-[49]

processors. IrProceedings of the 22nd annual Interna-

tional Symposium on Computer Architecture, pages 48-59,

Jun 1995.

[36] E. A. Lee. The Problem with ThreaddEEE Computer,
39(5):33-42, May 2006.

[37] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and
J. Hennessy. The Directory-Based Cache Coherence Pro-

tocol for the DASH Multiprocessor. IRroc. 17th Annual
International Symposium on Computer Architecture, 1990.

[38] J. S. Liptay. Structural Aspects of the System/360 Mode

85, Part Il: The CachelBM Systems Journal, 7:15 — 21,
1968.

[39] J. Manson, W. Pugh, and S. V. Adve. The Java Mem-

ory Model. InProceedings of the 32nd ACM SIGPLAN-
S GACT Symposium on Principles of Programming Lan-
guages, 2005.

D. A. Wood. Using Destination-Set Prediction to Improve
the Latency/Bandwidth Tradeoff in Shared-Memory Multi-
processors. IRProceedings of the 30th Annual International
Symposium on Computer Architecture, 2003.

M. M. Martin, M. D. Hill, and D. A. Wood. Token Coher-
ence: Decoupling Performance and CorrectnessPrin
ceedings of the 30th Annual International Symposium on
Computer Architecture, pages 182-193, June 2003.

M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill,
and D. A. Wood. Multifacet’'s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. SGARCH
Computer Architecture News, 33(4):92—-99, 2005.

A. Moshovos. RegionScout: Exploiting Coarse GrainiSha
ing in Snoop-Based Coherence.Rroceedings of the 32nd
Annual International Symposium on Computer Architec-
ture, pages 234-245, June 2005.

M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Ef-
ficient Deterministic Multithreading in Software. Pro-
ceedings of the 14th International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 97-108, 2009.

A. Raghavan, C. Blundell, and M. M. K. Martin. Token
Tenure: PATCHing Token Counting using Directory-Based
Cache Coherence. IProc. 41st IEEE/ACM International
Symposium on Microarchitecture, pages 47-58, 2008.

J. Seveik and D. Aspinall. On Validity of Program Trans-
formations in the Java Memory Model. IRroceedings
of European Conference on Object-Oriented Programming,
pages 27-51, 2008.

S. Somogyi, T. F. Wenisch, A. Ailamaki, B. Falsafi, and
A. Moshovos. Spatial Memory Streaming. Pnoceedings

of the 33rd Annual International Symposium on Computer
Architecture, pages 252—-263, 2006.

K. Strauss, X. Shen, and J. Torrellas. Flexible Snogpin
Adaptive Forwarding and Filtering of Snoops in Embedded-
Ring Multiprocessors. IiProceedings of the 33rd Annual
International Symposium on Computer Architecture, pages
327-338, 2006.

T. Wenisch, S. Somogyi, N. Hardavellas, J. Kim, A. Aila-
maki, and B. Falsafi. Temporal Streaming of Shared Mem-
ory. In Proceedings of the 32nd Annual International Sym-
posium on Computer Architecture, pages 222—233, 2005.

S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta.
The SPLASH-2 Programs: Characterization and Method-
ological Considerations. IRroceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24-36, 1995.

J. Zebchuk, E. Safi, and A. Moshovos. A Framework for
Coarse-Grain Optimizations in the On-Chip Memory Hier-
archy. InProc. 40th Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 314-327, 2007.

J. Zebchuk, V. Srinivasan, M. K. Qureshi, and
A. Moshovos. A Tagless Coherence Directory. In
Proc. 42nd Annual |EEE/ACM International Symposium

on Microarchitecture, 2009.



	Introduction
	DeNovo Research Strategy and Disciplined Languages
	Deterministic Parallel Java (DPJ)

	DeNovo for Deterministic Codes
	Coherence and Consistency
	Communication Efficiency
	Storage Efficiency

	Nondeterministic Codes
	Related Work and Summary

