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Abstract

Energy consumption by computer systems has emerged
as an important concern, both at the level of individual de-
vices (limited battery capacity in mobile systems) and at
the societal level (the production of Green House Gases).
In multicore architectures, applications may be executed
on a variable number of cores and these cores may op-
erate at different frequencies. The performance and en-
ergy cost of a parallel algorithm executing on a multi-
core architecture have different trade-offs, depending on
how many cores the algorithm uses, at what frequencies
these cores operate, and the structure of the algorithm.
We show how algorithm designers and software develop-
ers can analyze the energy-performance trade-off in par-
allel algorithms. We believe that such analyses should be
applied to parallel algorithms to facilitate energy conser-
vation.

1 Introduction

Our work is motivated by two observations. First and
foremost, computers are consuming an increasingly sig-
nificant amount of energy: in the US alone, estimates
already put the figure at 13% of the total electricity us-
age [25]. Thus computer use represents a significant
source of Green House Gasses, and creates a critical
problem for sustainability. Second, limited energy stor-
age capacity is a critical problem for mobile devices.

As CPU’s hit the power wall, multicore architectures
have been proposed as a way to increase computation cy-
cles while keeping power consumption constant. It turns
out that in multicore architectures, it is possible to scale
the speed of the individual cores or leave them idle, thus
reducing their energy consumption. Because the relation
between power and frequency of a core is nonlinear, on a
sequential processor, energy consumption can be reduced
by lowering the frequency at which the processor runs.
However, lowering the frequency in a uniprocessor leads
to an increase in time taken by an algorithm (i.e., decrease
in performance). The picture is more complex in the case
of parallel processors. Parallel computing involves some
serial subcomputations, some parallel computation, and

interaction between the parallel subcomputations. Thus
parallel performance and energy cost are dependent not
only on the number of cores (and the frequency at which
they operate), they are also dependent on the structure of
the parallel algorithm.

By increasing the number of cores, the computation
that is required at each core may be reduced, which may
in turn improve performance. Specifically, for paral-
lel algorithms in which there is no interaction between
the computations at each core, doubling cores halves the
computation per core. If the frequency of each of two
slower cores is ≈ 0.8 of the frequency of a faster core,
the two cores consume about the same amount of energy
as the faster core, while their overall performance is about
60% higher. However, parallel algorithms in general in-
volve interaction between subcomputations. Thus, as the
number of cores increases, the need for interaction be-
tween cores also increases. This in turn means that more
energy is required for interaction. In particular, if we fix
an energy budget, using more cores eventually leads to a
decrease in the amount of energy left for computation at
each core; in turn, this means that the cores have to run at
lower speeds, thereby decreasing performance.

Note that measuring the energy consumed and the per-
formance of a parallel algorithm lead to different results.
For one, power consumption (i.e., the rate of energy con-
sumption) by a core is (typically) proportional to the cube
of its frequency. For another, the energy and performance
characteristics of communication (and of shared memory
accesses) and computation differ between different par-
allel algorithms. For example, in some algorithms, com-
munication time may be masked by overlapping commu-
nication and computation (e.g., see [2]). However, the
energy required for communication may be unaffected,
whether or not such overlapping can be done. Thus the
degree of parallelism used for performance maximization
will generally different from that required for energy con-
servation.

We believe that examining the relation between the
performance of parallel algorithms and their energy re-
quirements on multicore processors may be facilitated by
analyzing some scalability metrics. Such metrics can pro-
vide programmers with intuitions about the energy re-
quired by different parallel algorithms, thus guiding the



choice of algorithm, architecture, the number of cores to
use and the frequency at which to operate them. More-
over, such analyses would help in the design of more en-
ergy efficient algorithms.

We have studied how to analyze the energy con-
sumption of algorithms in two commonly used mod-
els of parallel computation–namely, the shared memory
model [20] and the message-passing model [18]. Note
that our approach addresses the problem in the spirit
of scalability analysis of parallel algorithms–as distinct
from practical performance analysis on specific architec-
tures. The problem of defining metrics to quantify energy
performance trade-offs was also posed as an important
open problem in a recent NSF workshop [8, 16]. In this
position paper, we argue for a research agenda empha-
sizing energy analysis of algorithms and provide a high-
level view of our approach as a starting point.

2 Scalability Metrics

Traditionally, scalability of a parallel algorithm mea-
sures the relation between performance and the number
of cores used [21]. We believe this notion can be ap-
plied to energy costs. We propose that three energy re-
lated scalability metrics should be considered, each for a
different purpose.

Let a problem instance be the execution of a given al-
gorithm for a given input size. The performance of a
problem instance is the inverse of the time required for
the completion of the problem instance. We define the
following scalability metrics:
Energy scalability under Iso-performance: For a given
problem instance and a fixed performance requirement,
energy scalability under iso-performance provides the
optimal number of cores required to minimize the energy
consumption [18, 20]. This metric may be used to con-
serve energy in real time applications with a fixed perfor-
mance target.
Performance Scalability under Iso-energy or Energy-
bounded Scalability: For a given problem instance and a
fixed energy budget, energy-bounded scalability provides
the optimal number of cores required to maximize perfor-
mance [19]. Energy-bounded scalability may be used in
mobile devices which have strong energy constraints.
Energy Efficient Scalability: For a given problem in-
stance, energy efficient scalability provides the optimal
number of cores required and the frequency at which
these cores should operate in order to maximize energy
efficiency (the performance/energy ratio). This metric
may be used to provide energy efficient computing. Note
that this metric can be generalized by associating an ar-
bitrary utility function with both performance and energy
costs, and analyzing scalability with respect to the utility

values. Energy utility is useful metric where, for exam-
ple, the value of a result varies nonlinearly with response
time.

3 Model and Assumptions
Estimating energy cost requires a computational model
and an energy model. Two types of computation mod-
els (and their corresponding architectures) have been pro-
posed: shared memory [17] and message passing [11].
A model of energy cost can be associated with any paral-
lel computational model. By considering a model of each
type, we illustrate how this can be done.

3.1 Parallel Computation Model

Consider the current generation of shared memory multi-
core architectures [3]. Such multicore architectures use
a hierarchical shared memory. Although the Parallel
Random Access Machine (PRAM) models shared mem-
ory architectures [17], the PRAM model contains no no-
tion of the memory hierarchy. More recently, several
models emphasizing memory hierarchies have been pro-
posed [7, 5, 4]. In particular, the Parallel External Mem-
ory (PEM) model is an extension of the PRAM model
which includes a single level of memory hierarchy [4]. A
more general model is the so-called Multicore model [7];
in this model, multiple levels of the memory hierarchy are
represented. For simplicity, we consider the PEM model;
adding energy cost to this model is sufficient to illustrate
performance-energy trade-offs.

The PEM model [4] assumes there are P cores and
a two-level memory hierarchy consisting of an external
memory (main memory) shared by all the cores, and P
internal memories (caches) local to each core. All caches
are of a fixed size M , partitioned in blocks of size B,
and owned by a single core (only the owner can access a
cache). To perform an operation on data, a core must have
the data in its own cache. Data is transferred between the
main memory and the cache in blocks of sizeB. Multiple
cores may access distinct blocks of the shared memory
concurrently. There are three variants of the PEM model
(as in the case of the PRAM model); these variants dif-
fer in whether or not the same block of shared memory
may be concurrently read from, and if so, if it can also be
concurrently written to.

Along similar lines, for message passing multicore ar-
chitectures [22], we may extend the EM model [1] to
message-passing architectures. In the EM model, each
core has a local two level memory hierarchy (a cache, and
a slower Random Access Memory). We define Message-
Passing EM (MEM) model as one in which the cores
communicate through an interconnection network. We
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may consider the case where message sends and receives
take a constant amount of time and energy; this is not un-
reasonable as in many architectures, the time consumed
for sending and receiving a message is high relative to the
fraction spent en-route. Other assumptions (e.g., com-
munication time and energy cost varies by distance) may
also be reasonable to consider.

Note that the computation time Tbusy on a given core
will be proportional to the number of cycles including
cache accesses µ executed on the core. Let X be the fre-
quency of a core, then:

Tbusy = (number of cycles)× 1
X

(1)

We denote the time for which a given core is active (not
idle) as Tactive.

3.2 Energy Model
The following equation approximates the power con-
sumption in a CMOS circuit:

P = CLV
2f + ILV (2)

where CL is the load capacitance, V is the supply volt-
age, IL is the leakage current, and f is the operational fre-
quency. The first term corresponds to the dynamic power-
consumption component of the total power consumption,
while the second term corresponds to the leakage power
consumption.

Recall that a linear increase in the voltage supply leads
to a linear increase in the frequency of the core. However,
a linear increase in the voltage supply also leads to a non-
linear (typically cubic) increase in power consumption.
Thus, for simplicity, we model the dynamic and leakage
energies consumed by a core, E, to be the result of the
above mentioned critical factors:

Edynamic = Ed · Tbusy ·X3 (3)

Eleakage = El · Tactive ·X (4)

where Ed and El are some hardware constants [9].
We may assume that both memory accesses (both reads

and writes) and message transfers consume some con-
stant amounts of energy. Because recent processors have
introduced efficient support for low power modes that can
reduce the power consumption to near zero, it is reason-
able to assume that the energy consumed by idle cores is
zero.

4 Approach
Given an computation model which specifies perfor-
mance and energy consumption, we can compute the

various energy scalability metrics discussed in section
2. This involves analyzing an algorithm to deduce an
equation (called the PE equation) which relates the algo-
rithm’s performance, energy costs, number and frequency
of cores, to the input size. Once the equation is deter-
mined, it can be analyzed to compute various optima.

We have analyzed some algorithms using this ap-
proach. Due to lack of space, we briefly illustrate how
one may evaluate energy scalability metrics. Specifically,
we analyze energy scalability under iso-performance for
parallel addition on the PEM model with four simplifying
assumptions. First, the frequency of the cores can be var-
ied using a frequency (voltage) probe and cores switch to
idle state if there is no computation left on them. Second,
all active cores operate at the same frequency. Third, the
computation and cache access time of the cores can be
scaled by scaling the frequency of the cores. And finally
memory access (both read and write) cannot be scaled
and thus takes constant time. The last assumption implies
that there is no contention on shared memory.

We now show how the PE equation for parallel addi-
tion can be formulated. First, compute the critical path of
the parallel algorithm and partition it in to CPU cycles,
memory accesses, synchronization breaks, and message
transfers (in message passing model). Next, scale the
CPU cycles (reduce the frequency) of the critical path in
such a way that the performance of the parallel algorithm
matches the given performance target. Now we can frame
an expression for energy consumption assuming that the
cores are running at the reduced frequency X . The en-
ergy expression has four components namely energy for
computation Ecomp, energy for memory accesses Emem,
energy for message transfers Emes and leakage energy
Eleak. They are defined as follows:

Ecomp = Ed · µcomp ·X2

Emem = Em · µmem
Emes = Et · µmes
Eleak = El · Tactive ·X

where Em is energy consumed for single memory ac-
cess (both read and write), Et is energy consumed for
single message transfer between the cores, and µcomp,
µmem, µmes are the number of computations, number
of memory accesses and number of message transfers
respectively at all cores. Note that Ecomp is lower if
the cores run at a lower frequency, while Eleak may in-
crease as the active cores take longer to finish. Emem
amd Emes may increase as more cores are used since the
computation is more distributed. Considering the struc-
ture of the given parallel algorithm, we evaluate number
of computation cycles (µcomp), number of memory ac-
cesses (µmem), number of message transfers (µmes) and
total active time (Tactive) at all the cores as a function of
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the input size, number of cores and the initially obtained
reduced frequency X . We then analyze the equation to
obtain the number of cores required for minimum energy
consumption as a function of input size. In particular,
we compute the appropriate number of cores that are re-
quired to guarantee a required level of performance.

Example: Adding Numbers Initially, all N numbers
are stored contiguously in the main memory and caches
of all P cores are empty. Without loss of generality, we
assume that the input size N is a multiple of the num-
ber of cores P . In the first phase of the algorithm, each
core transfers (N/P ) numbers from memory to their own
caches and computes their sum. The transfer and summa-
tion of (N/P ) numbers by each core happens in a series
of steps. In each step, core transfers a block of numbers
B from main memory to its cache and computes the sum
ofB numbers and the result obtained in the previous step.
At the end of the first phase, each of P cores possesses
a partial sum. With access to a distinct additional auxil-
iary block of main memory by each core, in CREW PEM
model, the sum of P partial sums is efficiently computed
in parallel in a tree fashion in log(P ) steps (for simplic-
ity, assuming P to be some power of 2). In the first step,
half of the cores transfer their partial sums in parallel to
their respective auxiliary blocks in main memory. The
other half of the cores then read in parallel the elements
that were stored in the auxiliary blocks of the first half,
and sum it with their local partial sum. The same step is
recursively performed until there is only one core left. At
the end of the computation, one core will store the sum of
allN numbers. Figure 1 depicts the execution of addition
algorithm for the case P = 4.

Figure 1: Example scenario: Adding N numbers using 4
cores; execution of 4th core represents the critical path; em-
barrassingly parallel application and represents a broad class of
tree algorithms

Due to lack of space, we just provide the expression for
the energy components we obtain using our methodology.

X ′ = F ·
(NP − 1 + log(P )) · β

T · F − ( N
B·P + 2 · log(P )) ·Mc

Tactive =
Mc

F
(
N

B
+ 3 · (P − 1)) +

β

X ′
· (N − 1)

Ecomp = Ed · (N − 1) · β ·X ′2

Emem = Em · ((N/B) + 2 · (P − 1))
Eleak = El · Tactive ·X ′

where T is the performance target, F is maximum fre-
quency of a single core, N is the input size for the par-
allel algorithm, P is number of cores being used by the
parallel algorithm, Mc is number of cycles executed at
maximum frequency for single memory access time, and
β represents number of cycles required per addition.

We now analyze the energy expression obtained above
for the addition algorithm to evaluate energy scalability
under iso-performance. While we could differentiate the
function with respect to the number of cores to compute
the minimum, this results in a rather complex expression.
Instead, we analyze the graphs expressing energy scala-
bility under iso-performance.

Note that the energy expression is dependent on many
variables. We can simplify a couple of these parameters
without loss of generality. We set leakage energy constant
as El = 1. We express all energy values with respect to
this normalized energy value.

In order to graph the differential, we make some as-
sumptions about the other parameters. While these as-
sumptions compromise generality, we can consider the
sensitivity of the analysis to a range of values for these
parameters. One parameter is the the energy consumed
for single cycle at maximum frequency as a multiple of
leakage energy constant. We assume this ratio to be 10,
i.e., that Ed · F 2 = 10 · El. It turns out that this param-
eter is not very significant for our analysis; in fact, large
variations in the parameter do not significantly affect the
shapes of the graphs for the parallel algorithms we have
studied.

Another parameter, k, represents the ratio of the en-
ergy consumed for single memory accesses, Em, and
the energy consumed for executing a single instruction
at the maximum frequency. Thus, Em = k · Ed · F 2.
We fix the required performance T to be that of the run-
ning time of the sequential algorithm at maximum fre-
quency F and analyze the sensitivity of our results to
a range of values of k. The sequential algorithm for
this problem is trivial: it takes (N/B) memory accesses
and N − 1 additions to compute the sum of N numbers.
The running time of the sequential algorithm is given by
Tseq = β · (N − 1) · (1/F ) + (N/B) · (Mc/F ).

Fig. 2 plots energy E as a function of input size and
number of cores. We can see that for any input size N ,
initially energy decreases with increasing M and later
on increases with increasing M . As explained earlier,
this behavior can be understood by the fact that energy
for computation decreases with an increase in number
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Figure 2: Addition: Energy curve with energy on Z axis,
number of cores on X axis and input size on Y axis
with k = 1000, β = 2, Mc = 1000. Black curve on
the XY plane is the plot of optimal number of cores re-
quired for minimum energy consumption with varying in-
put size(107 to 109).

of cores running at reduced frequencies, and energy for
memory accesses increases with increasing cores. Fur-
thermore, we can see that increasing the input size leads
to an increase in the optimal number of cores required for
minimum energy consumption.

We now consider the sensitivity of this analysis with
respect to the ratio k. Fig. 3 plots the optimal number
of cores required for minimum energy consumption by
varying k for an input size 108. The results show that for a
given input size in the range considered, the optimal num-
ber of cores required for minimum energy consumption
decreases with increasing k. (The curve approximates a
negative exponential with a negative coefficient). We ob-
serve that this trend remains the same for whole of the
input range (107 to 109).

The above graph analysis depicts the exact behavior of
optimal number of cores as function of input size for the
given input range and appears to generalize to larger input
sizes. We do not provide an analytic expression for the
asymptotic behavior of the optimal number of cores as a
function of input size as the energy expression is rather
complex.

5 Related Work
Cho and Melhem analyze the effect of parallelizing an
algorithm on its energy consumption [10]. The idea is
to assume that an algorithm has been divided into se-
rial and parallel components and then evaluate the im-
pact of using more cores to reduce energy consumption.
Other researchers have not looked at energy consump-
tion but considered the rate at which energy is expended
(i.e., power is consumed). This line of work has provided

Figure 3: Sensitivity analysis: optimal number of cores
on Y axis, and k (ratio of the energy consumed for single
memory accesses and the energy consumed for executing
a single instruction at the maximum frequency) on X axis
with input size N = 108.

tools to monitor power consumption, and controllers to
reduce the number of cores used (concurrency throttling)
or change the frequency at which these cores operate (dy-
namic voltage frequency scaling) [12, 23, 15, 27, 13]. In-
formation from such monitors can also be used to profile
algorithms in order to optimize energy consumption.

Bingham and Greenstreet proposed a generic energy
complexity metric, ETα, to represent the energy-time
trade-off in CMOS technology [6]. Prior to this, other
researchers had promoted the use of the ET [14] and
ET 2 [24] metrics. These metrics try to abstract the volt-
age/frequency scaling issues from programmers, while
enabling them to reason about the energy complexity of
the computation. In contrast, we explicitly represent fre-
quency in our model and view both concurrency throt-
tling and voltage/frequency scaling as two orthogonal
control knobs to control energy. More critically, none of
these models account for the energy required for mem-
ory accesses or for message passing)–which can be a sig-
nificant portion of the total energy consumed. A good
discussion of the motivation for understanding energy-
performance trade-off can be found in [16].

6 Research Agenda
We believe energy costs of algorithms should form an im-
portant research agenda for Computer Science. This in-
cludes analyzing algorithms for energy consumption as
well as developing new algorithms which are more en-
ergy efficient. It could be argued that the computation
models we have considered and the architectural assump-
tions we have made are too simple. Some of the ways in
which this is true include the following. We assumed that
the cores are homogeneous, but given the limitations im-
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posed on parallel performance by Amdahl’s law, cores
are likely to be heterogeneous. We assumed a simple
memory hierarchy, ignored memory contention in shared
memory models, and considered communication costs to
be uniform in message passing models. None of these
assumptions is realistic and others may wish to consider
one or the other generalization.

More interestingly, we believe that it would be useful
to understand how different parallel algorithms can be
categorized into scalability classes with respect to these
metrics. For example, parallel PRIM algorithm for com-
puting minimum spanning on message-passing architec-
tures, energy-bounded scalability is O(n), where n is the
input size [19]. One way to achieve such a categorization
is by doing an asymptotic analysis with respect to the in-
put size assuming an arbitrarily large number of cores.
We should point out that we are not convinced that such
an asymptotic analysis is meaningful in the case of shared
memory models, as such architectures are themselves not
scalable [26]. However, asymptotic analyses of energy
scalability metrics may provide insight into the behavior
of parallel algorithms on message-passing models.
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