
Lock Prediction

Brandon Lucia Joseph Devietti Tom Bergan Luis Ceze Dan Grossman

University of Washington, Computer Science and Engineering

http://sampa.cs.washington.edu

Abstract
This paper makes the case for studying and exploiting the

predictability of lock operations in multithreaded programs.

We discuss several uses of lock prediction and identify the

two key events we believe are useful to predict: (1) which

thread will be the next one to acquire a given lock and (2)

which lock a given thread will acquire next. We describe

multiple prediction algorithms and show that while their

accuracy varies widely, they are likely accurate enough for

many uses.

1. Introduction
Prediction is a fundamental technique for improving the per-

formance of computer systems. It is at the heart of branch

prediction, caching, value prediction, and various forms of

software speculation. There is a natural evolution of predic-

tion schemes. They are hatched based on empirical prop-

erties of software (e.g. dynamically there are more back-

ward branches than forward branches), become more so-

phisticated over time, and eventually become self-fulfilling

prophecies as higher levels of the system stack are engi-

neered so that the prediction schemes will perform well.

With the move to multicore, Amdahl’s Law ensures that

performance will become more about scalability and less

about single-threaded performance. This trend is an opportu-

nity to rethink what is worth predicting and why. Certainly,

there have been prediction/speculation schemes related to

parallelism, such as TLS [10], SLE [7] and CMO [12], but

we suggest a complementary focus on fundamental ques-

tions related to shared-memory synchronization. In this pa-

per we make the case that predicting synchronization events
in multithreaded programs is worth studying, can have good

accuracy, and has many potential uses.

Two empirical questions are worth asking and, to our

knowledge, they have not been asked directly:

• When thread T releases lock L, is it predictable what lock

L′ the thread T will next acquire? This is the thread’s-
next-lock question.

• Conversely, when thread T releases lock L, is it pre-

dictable what thread T ′ will next acquire L? This is the

lock’s-next-thread question.

We have performed a preliminary study of these ques-

tions and found that while predictability varies significantly,

it is often reasonably accurate and sometimes very accurate.

Whether a given prediction accuracy is sufficient or not de-

pends on how it will be used. For some uses the benefit of a

correct prediction is far greater than the cost of a mispredic-

tion; other uses have the opposite behavior. We have identi-

fied several compelling uses of lock prediction (Section 2).

We have explored several predictors of varying sophistica-

tion (Sections 3, 4, and 5). We conclude (Section 6) by chal-

lenging the community to explore lock prediction by devel-

oping new predictors as well as new uses for them.

2. Uses of Lock Prediction
The most natural use-case for lock prediction is to accelerate

the performance of synchronization primitives. For example,

if a lock’s next owner is the same as its current owner,

no expensive memory ordering or atomic instructions need

to be used to acquire it. Several pieces of related work

(which we discuss in Section 6) explore simple forms of lock

predictability to improve lock implementations. Given these

existing success stories for lock prediction, we are optimistic

about applying lock prediction techniques to other domains.

Temporal Scheduling Lock prediction could enable more

efficient OS-level scheduling, as the predicted next acquirer

of a lock is more likely to be on the critical path of an exe-

cution than a thread not accessing shared resources. An OS

scheduler can boost the priorities of threads on the estimated

critical path, accelerating overall application performance.

Prefetching and Spatial Scheduling Knowing the next ac-

quirer of a lock L can enable smarter prefetching: L’s re-

leaser can preemptively push the cache line containing L
(and potentially data guarded by L as well) into the cache

of the processor likely to next acquire L. This saves cache

misses for the next acquirer. Alternatively, the thread pre-

dicted to next acquire L could be migrated to the processor

where L and its associated data are locally cached.

Anomaly detection With a sufficiently accurate predictor

mispredictions can be viewed as anomalies, indicative of

unexpected behavior, security breaches, or bugs.

Determinism Deterministic execution for data-race free

programs can be implemented using just a library of deter-

ministic synchronization primitives [5]. Lock prediction can

help avoid situations where a program must stall to ensure

a deterministic outcome. Given a deterministic prediction

mechanism, a superior schedule with fewer stalls can be

chosen based on the predicted behavior of the program.

3. Lock Prediction Design Space
The basic prediction problem is the following: given a his-

tory of lock operations up to the current time, what will be

the next operation? In this paper we lay out the design space

of solutions to this problem along four dimensions:

What to predict We explore lock’s-next-thread prediction

in Section 4 and thread’s-next-lock prediction in Section 5.

How to predict A variety of statistical methods can be

applied to the lock prediction problem. We explore a few

such methods in Section 4.1.

Aliasing Locks need not be named uniquely; they may

alias. For example, when two locks are aliased, the predic-

tion information for both locks is effectively merged. Simi-

larly, different threads need not be named uniquely. We ex-

plore the consequences of and motivation for aliasing in Sec-

tion 4.2.

Context A history of lock operations can be enhanced by

adding context to each operation, for example the call stack

at the operation. We explore this possibility in Section 5.1.

In the following sections we explore this design space

qualitatively and quantitatively. We start with lock’s-next-

thread and discuss aliasing, and then describe thread’s-next-

lock and explore the effect of adding context.

We have evaluated the prediction accuracy of several

techniques in this design space using the PARSEC bench-

mark suite of multithreaded C/C++ programs [1], config-

ured to run with 8 threads. We omit applications that per-

form fewer than 200 dynamic lock acquires when run with

the native input set. Using a trace generator written as a

wrapper around pthreads, we collected traces of calls to lock

acquisition functions, recording the calling thread and the

dynamic address of the lock being acquired. We fed these

traces to offline implementations of our prediction tech-

niques. We used a trace-based approach for an accurate com-

parison across prediction techniques. For all applications

we used the native input size, except fluidanimate, for

which we used the simlarge input due to the prohibitive

size of the trace produced using native. All results pre-

sented are the average of values from 30 different execu-

tions. We computed 95% confidence intervals for values

shown, and none was larger than ±0.3%.

4. Predicting Lock’s-next-thread
This section presents a series of algorithms from simple to

more sophisticated. We describe these algorithms in terms of

lock’s-next-thread prediction, which is the problem of pre-

dicting the next thread to acquire a given lock. Figure 1(a)

demonstrates these algorithms with a simple example. Ta-

ble 1 summarizes the accuracy along with the number of dy-

namic lock acquires (Column 2) and distinct locks that are

acquired at least once (Column 3).

T1 T2 T1 T2 T1

Lock L's Acquirer History

Next Prediction

First-To-Acq:

Last-To-Acq:

Most-Freq-Acq:

Most-Freq-Trans:

T1

T1

T1

T2

L1 L2 L1 L2 L1

Thread T's Lock History

Next Prediction

First-To-Acq:

Last-To-Acq:

Most-Freq-Acq:

Most-Freq-Trans:

L1

L1

L1

L2

Old NewOld New

Lock's-Next-Thread
Prediction

(a)

Thread's-Next-Lock
Prediction

(b)

Figure 1. lock’s-next-thread and thread’s-next-lock predic-

tion

4.1 Algorithms
4.1.1 First-to-acquire
The simplest scheme we consider is to track the first thread

to acquire a lock and always predict that thread. This exploits

the observation that many locks are local to one thread for

the whole execution. It has been shown that this simple

predictor works well for many Java programs because many

locks are predominantly acquired by only one thread [3].

4.1.2 Last-to-acquire
Another simple scheme is to predict that the last thread to

acquire a lock will acquire it next. Like first-to-acquire, this

technique exploits the fact that locks tend to be acquired by

the same thread, but accounts for the fact that some data is

local to different threads at different points in an execution.

4.1.3 Most-frequent-acquirer
A third scheme is to monitor how many times each thread

has acquired a given lock, then predict that the next thread

to acquire a lock is the one that has most frequently acquired

it in the past. This predictor works well when a lock shows

affinity for a particular thread, i.e. when it is mostly thread-

local. Unlike the above predictors, this technique takes the

entire history of a lock into account, making it more robust

to temporary deviations from a global pattern.

Accuracy Last-to-acquire (Column 5) outperforms first-

to-acquire (Column 4) in most cases, by as much as 66.5%
(ferret). It predicts significantly less accurately than first-

to-acquire in the cases of vips, x264, and bodytrack.

Most-frequent-acquirer (Column 6) and last-to-acquire are

accurate to within 15% of each other in all but two cases:

dedup and vips.

All three predictors perform very poorly (less than 15%
accuracy) on bodytrack and x264. For bodytrack, this

is explained by the fact that every lock in the program is

acquired by every thread at approximately the same rate for

the entire course of execution; thus the locks do not exhibit

any temporal locality or any affinity for particular threads.

App
App Characteristics % Correct Predictions

Dyn. Acquires # Distinct Locks First-to-acq Last-to-acq Most-freq-acq Most-freq-trans
bodytrack 6.8M 3 12.7 0.9 12.8 15.3

dedup 994K 98K 5.6 61.8 38.9 63.3
facesim 1.8M 12 32.5 44.1 50.4 59.1
ferret 3.3K 33 32.6 99.1 87.8 99.9

fluidanimate 9.3M 477K 76.6 94.7 90.9 95.2
vips 644K 67 49.7 4.0 49.5 63.9
x264 207K 27 12.7 5.2 14.9 25.3

Table 1. Accuracy of lock’s-next-thread prediction.

4.1.4 Most-frequent-transition
During an execution there will likely be repeating patterns

of lock handoff from one thread to another. This suggests

we can use the frequency of handoff events to make predic-

tions. For each lock, we maintain a weighted, directed graph

in which nodes represent threads and edges represent hand-

offs. The edge connecting the nodes for threads T1 and T2

represents the situation where T2 acquired the lock when T1

was the last thread to have acquired the lock, i.e., the edge

represents the lock’s handoff from T1 to T2. The weight of

the edge is the frequency of the handoff.

For a lock last held by thread T , we predict that the next

thread to acquire the lock is the thread targeted by the edge

of greatest weight originating at T ’s node.

Accuracy Most-frequent-transition’s prediction accuracy

is shown in Column 7 of Table 1. In our experiments, it out-

performed the other predictors across the board. It works

well because it takes advantage of both the frequency of

events, like most-frequent-acquire, and temporal locality,

like last-to-acquire. This advantage is made clear by dedup
and vips: dedup performs poorly with most-frequent-

acquire but well with last-to-acquire, while the opposite

is true for vips. However, both perform well with most-

frequent-transition, showing that most-frequent-transition

has superior accuracy compared to the other prediction tech-

niques we have seen so far.

4.1.5 Most-frequent-sequence
We generalize most-frequent-transition by using arbitrary
length sequences of handoffs, instead of single handoffs. In

this scheme, each lock keeps an ordered history of the last

n threads to acquire it. This is the “current sequence” for

the lock. In addition to this, for each lock, we maintain a

weighted, directed, bipartite graph. The two disjoint sets of

nodes in the graph are sequence nodes and next-in-sequence
nodes. There is a sequence node for every length-n sequence

of threads to acquire the lock during an execution. There is

a next-in-sequence node for every thread. An edge connects

the sequence node for a sequence, S, to the next-in-sequence

node for a thread, T , if when the lock’s current sequence was

S, the next thread to acquire the lock was T . The weight of

the edge is the frequency of this event.

Given a lock with current sequence S, we predict that

the next acquirer is the thread targeted by the edge with the

greatest weight originating at the sequence-node for S.

Using this prediction technique we saw very little or

no improvement in accuracy over most-frequent-transition

using sequences ranging from 1 to 10 acquisitions in length.

We omit the complete results for the sake of brevity.

Quantifying “Cold-Start” Effects Our predictors need to

amass information on which to base predictions before they

can predict. The initial collection period is the “cold-start”

period. During the cold-start period, no prediction is made.

In general, the fraction of predictions not made is low, often

less than 0.01%, and never more than 3.26% in our experi-

ments. There is a useful distinction between cold-starts and

mispredictions: in some situations there may be a high mis-

prediction cost but if instead, no prediction is made, it may

be possible to avoid incurring the cost.

Quantifying Storage Overheads The per lock space over-

head of lock prediction depends on the prediction strategy.

For first-to-acquire and last-to-acquire, the overhead is a sin-

gle thread id. This small amount of information could poten-

tially be embedded in the lock word itself. In most-frequent-

acquirer, the per-lock overhead is a counter per thread. For

most-frequent-transition, the per-lock overhead increases to

one counter for each possible handoff – a number of coun-

ters that is the square of the number of threads. While the lat-

ter techniques maintain more information, because the num-

ber of threads is typically small, the storage overhead is not

likely to be problematic.

4.1.6 Adding Bias
All of the above techniques are specific instances of a gen-

eral prediction technique. Each technique defines a predictor

as a function of the per-lock frequency distribution of acqui-

sition events (or handoff events, in most-frequent-transition

and most-frequent-sequence). The techniques vary in the im-

portance, or weight, placed on each entry in the distribution.

In first-to-acquire, for instance, all entries have a weight of 0

except the entry for the first acquirer of the lock, which has

a weight of 1. Similarly, in last-to-acquire, all entries have a

weight of 0 except the thread that last acquired the lock. In

the other techniques, all entries are equally weighted.

More generally, we can adjust the individual weight of

each entry in the per-lock distributions. For instance, we

could bias the most-frequent-acquirer predictor toward the

recent past by using heavy weights for recent events and

smaller weights for less recent events. Periodically reducing

accumulated frequencies efficiently achieves this effect.

Unique Naming

(a)

Lock 1

Lock 2

T1 T2 T3

T1 T2 T3

Lock 1

Lock 2 T1 T2 T3

Lock 1

Lock 2

T3

T1
& T2

T3

T1
& T2

Lock Aliasing

(b)

Thread Aliasing

(c)

Figure 2. Aliasing for Lock’s-Next-Thread prediction

4.2 Aliasing
We have thus far assumed that each lock is given a unique

name at runtime. One simple scheme is to name locks by

their address in memory. However, lock names need not be

unique. In fact, it can be beneficial to group many locks into

“buckets”, for a few reasons. First, when groups of locks

behave similarly, it is more space efficient to maintain a

single prediction data structure for an entire bucket, rather

than a separate structure for each individual element. Sec-

ond, bucketing makes prediction less susceptible to cold-

start problems because buckets aggregate the histories of

many elements. Finally, for some uses it is beneficial to use

data from prior runs as the basis for prediction. However,

unique names are not usually stable across multiple runs of

a program; across runs, there may be different numbers of

threads and locks allocated in different orders at different

addresses. Thus, when using data from prior runs for predic-

tion we must use a stable bucketing scheme.

When locks are placed in the same bucket, we say they

alias. The prediction data structures for all locks in the same

bucket are merged. For example, under most-frequently-

acquired prediction, all locks in the same bucket will share a

set of acquire frequencies.

There are many ways to bucket locks. Three interesting

ones are by class, by initialization site, and by one-bucket.
Bucketing locks by static type or class may be useful in

languages like Java. Bucketing locks by initialization site
can partition locks based on behavior, since locks initialized

by the same piece of code tend to be used similarly. Finally,

bucketing all locks together is equivalent to predicting which

thread will be next to acquire any lock.

Like locks, threads may also alias. Instead of naming

threads by unique dynamic threads IDs, we can merge

threads into groups, for example by merging all threads

spawned from the the same creation site into the same group.

Thread aliasing has benefits in space efficiency, cold-starts,

and cross-run stability similar to lock aliasing.

Figure 2 illustrates the effects of aliasing, using most-

frequent-acquirer prediction as an example. Figure 2(a)

shows prediction with no aliasing. Figure 2(b) shows lock

aliasing: two aliased locks, L1 and L2, share the same pre-

diction information, in effect, merging L1’s and L2’s in-

dividual frequency distributions. Figure 2(c) shows thread

aliasing: the frequencies of two aliased threads, T1 and T2,

are merged in the frequency distributions of both locks.

App.
Init % Correct Predictions
Sites Unique Init-Site One-Bucket

bodytrack 1 15.3 15.3 15.3
dedup 14 63.3 66.0 65.4

facesim 2 59.1 43.5 56.0
ferret 8 99.9 99.9 99.9

fluidanimate 1 95.2 31.9 31.9
vips 3 63.9 71.4 71.4
x264 1 25.3 75.8 75.8

Table 2. Accuracy for Most-Frequent-Transition Lock’s-

Next-Thread Prediction with lock aliasing

Accuracy We evaluate the impact of lock aliasing on the

accuracy of most-frequent-transition prediction. We buck-

eted locks based on initialization site (init-site) and by

putting all locks into one bucket (one-bucket). Table 2 shows

the accuracy of both, as well as with no aliasing (unique).

For facesim and fluidanimate accuracy decreases

when locks are bucketed. This follows the intuition that valu-

able per-lock information can be lost when locks alias.

In vips and x264, putting all locks in one bucket is

beneficial — In the case of x264, accuracy increases by

about 50%. This suggests that for these applications, it is

easier to decide which thread will be acquiring any lock

next, but more difficult to determine which thread will next

acquire a given lock.

Three benchmarks (fluidanimate, vips, x264) saw ex-

actly the same accuracy for init-site bucketing as for one-
bucket. In x264 and fluidanimate, this is because there is

only one initialization point, and hence, only one bucket. In-

terestingly, in vips, there are three buckets when using init-
site bucketing and accuracy is the same as with one-bucket.
This suggests that there are some locks that, when grouped,

are more predictable. Using either init-site bucketing, or one-
bucket, these locks alias and accuracy improves.

Locks share prediction information when they alias, so

cold starts are less frequent than with unique naming. In all

cases, cold starts occurred less than 1.2% of the time.

Overall, the disparity in prediction accuracy in the pres-

ence of aliasing suggests that its impact is largely dependent

on the application.

5. Predicting Thread’s-next-lock
Thread’s-next-lock prediction is symmetric to lock’s-next-

thread prediction. In fact, the prediction techniques de-

scribed in the previous section can be applied to thread’s-

next-lock by simply swapping the roles of threads and locks.

Figure 1 demonstrates how this mapping works.

Accuracy Table 3 shows the accuracy of our last-to-

acquire (Column 2), most-frequently-acquired (Column 3),

and most-frequent-transition (Column 4) thread’s-next-lock

prediction schemes. For all applications, most-frequent-

transition has the highest accuracy. For most applications,

last-to-acquire is outperformed by most-frequently-acquired.

Most-frequent-transition achieves around or greater than

50% accuracy for all applications except fluidanimate
and x264. This is because in these applications there is a

App.
% Correct Predictions

Last-to-acq Most-freq-acq Most-freq-trans
bodytrack 98.9 77.0 99.3

dedup 39.6 42.0 46.0
facesim 43.7 39.5 59.1
ferret 0.8 50.4 76.6

fluidanimate 9.2 0.0 17.5
vips 0.5 24.7 76.2
x264 0.2 6.6 31.3

Table 3. Accuracy for Thread’s-Next-Lock Prediction

great deal of data dependent control-flow making the next

acquire hard to predict.

5.1 Adding Context to Lock Operations
The most-frequent-transition and most-frequent-sequence

predictors can be more precise when lock operations are la-

beled by the context in which they occur. One example of

context is a call stack; lock operations can be tagged by some

or all of the addresses on the call stack at the operation.

Conceptually, this is the dual to bucketing (Section 4.2).

Adding context effectively reduces locks’ aliasing with
themselves, by distinguishing them in the history based on

acquire context. Conversely, bucketing increases aliasing.

Accuracy We implemented a lightweight version of this

in which just the top-most return address on the call stack is

included. Table 4 reports the accuracy for the most-frequent-

transition scheme performing thread’s-next-lock prediction.

Column 2 shows accuracy with no context (reproduced from

Table 3 for comparison), and Column 3 shows the accuracy

when the top-most return address is added as context. In

many cases, context has little or no effect on accuracy. In

our experiments, adding context never decreased accuracy.

Two benchmarks see a substantial improvement in ac-

curacy – as much as 21% – with the addition of context:

facesim and fluidanimate. With context, each thread

maintains a frequency distribution per lock for each context

in which it was acquired, instead of just a single distribution

per lock. This adds a notion of control-dependence. It is of-

ten the case that different phases of a program have distinct

locking behavior which are potentially easily predictable in

isolation. When lock operations are not labeled by context,

these differences are lost, and accuracy suffers.

With context, the number of cold-starts increases be-

cause information must be accumulated for each context,

instead of just for each lock. Still, cold starts occurred for

no more than 4.1% of acquires. The largest increase was in

fluidanimate, which saw 3.3% more cold start scenarios

with context than without.

6. Related Work and Conclusions
Limited forms of lock prediction have proved useful in the

context of accelerating the performance of synchronization

primitives. Work by Kawachiya et al. first proposed “lock

reservations”, the ability to bias a lock towards a particular

thread, said to “own the bias” on that lock [3]. A lock can be

acquired by the bias owner without the use of any atomic or

App
% Correct Predictions

No Context Last Acquire Context
bodytrack 99.3 99.3

dedup 46.0 46.0
facesim 59.1 80.7
ferret 76.6 77.4

fluidanimate 17.5 27.5
vips 76.2 76.3
x264 31.3 35.5

Table 4. Accuracy for Most-Frequent-Transition Thread’s-

Next-Lock Prediction with context

memory ordering instructions. As soon as a non-bias-owner

thread tries to acquire a biased lock, however, the lock “in-

flates” back to normal (e.g., a CAS-based implementation).

The prediction used by lock reservations is equivalent to our

first-to-acquire scheme, with the additional restriction that

the first misprediction disables the optimization.

Later work generalized lock reservations to handle in-

termittent lock acquisition by non-bias-owning threads [6],

making lock reservation’s prediction fully equivalent to our

first-to-acquire scheme. Subsequently, it was also shown

how to support switching the bias among multiple threads

[2, 4, 9]. Bias typically gets transferred based on the lock’s

most recent acquirer, just like our last-to-acquire scheme.

These biased locking techniques have been implemented

in several production Java Virtual Machines, and provide

noticeable speedups (5-10%) for single- and multithreaded

Java applications running on commodity hardware.

There have also been several hardware techniques to re-

duce the overhead of synchronization, via speculation [7]

and identifying dynamically unnecessary memory ordering

instructions [12]. These optimizations leverage the same lo-

cality properties of lock acquisition that help our predictors

to perform well. Work on cache prefetching for multipro-

cessor workloads [11] exploits similar locality properties,

though not for synchronization objects per se.

Rajwar, et al [8] proposed an optimization leveraging

temporal locality of lock and protected data accesses. The

key is “speculative push” of data to processors waiting to

acquire the lock protecting the data at lock release time.

Lock prediction may enable more aggressively pushing data.

We find it encouraging that the straightforward predic-

tion mechanisms already proposed can accelerate shared-

memory synchronization primitives. We have shown that a

generalization of these techniques (i.e., our most-frequent-

transition predictor) can provide a substantial boost in

accuracy. Given the improvement, coupled with the fact

that many of our proposed uses of lock prediction – such

as scheduling and anomaly detection – are less latency-

sensitive than low-level mutex implementations, we are op-

timistic that lock prediction can be successfully applied to

new domains. We have presented a first step toward this

goal; we encourage the community to join us in investigat-

ing more accurate prediction strategies and the new uses of

lock prediction that greater accuracy will enable.

References
[1] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC

Benchmark Suite: Characterization and Architectural Impli-

cations. In PACT, 2008.

[2] D. Dice, M. Moir, and W. Scherer III. Quickly Reacquirable

Locks. http://home.comcast.net/∼pjbishop/Dave/QRL-

OpLocks-BiasedLocking.pdf.

[3] K. Kawachiya, A. Koseki, and T. Onodera. Lock reservation:

Java locks can mostly do without atomic operations. In OOP-
SLA, 2002.

[4] T. Ogasawara, H. Komatsu, and T. Nakatani. To-lock: Re-

moving lock overhead using the owners’ temporal locality. In

PACT, 2004.

[5] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient

Deterministic Multithreading in Software. In ASPLOS, 2009.

[6] T. Onodera, K. Kawachiya, and A. Koseki. Lock Reservation

for Java Reconsidered. In ECOOP, 2004.

[7] R. Rajwar and J. Goodman. Speculative lock elision: enabling

highly concurrent multithreaded execution. In MICRO, 2001.

[8] R. Rajwar, A. Kägi, and J. R. Goodman. Inferential queue-

ing and speculative push for reducing critical communication

latencies. In ICS, 2003.

[9] K. Russell and D. Detlefs. Eliminating synchronization-

related atomic operations with biased locking and bulk rebi-

asing. In OOPSLA, 2006.

[10] G. Sohi, S. Breach, and T. N. Vijaykumar. Multiscalar proces-

sors. In ISCA, 1995.

[11] S. Somogyi, T. Wenisch, A. Ailamaki, B. Falsafi, and

A. Moshovos. Spatial memory streaming. In ISCA, 2006.

[12] C. von Praun, H. Cain, J.-D. Choi, and K. D. Ryu. Conditional

memory ordering. In ISCA, 2006.

