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Abstract
The most accessible and successful parallel tools today
are those that ask programmers to write only isolated se-
rial kernels, hiding parallelism behind a library interface.
Examples include Google’s Map-Reduce [5], CUDA
[13], and STAPL [12]. This encapsulation approach ap-
plies to a wide range of structured, well-understood al-
gorithms, which we call parallel patterns. Today’s high-
level systems tend to encapsulate only a single pattern.
Thus we explore the use of Intel CnC as a single frame-
work for capturing and composing multiple patterns.

1 Introduction

The computing version of Alfred North Whitehead’s
maxim1 is that software advances in proportion to the
functionality that a programmer can access without
thinking about it. Libraries and frameworks make this
possible, but when it comes to parallel programs, com-
posing new software from old is more problematic.

Today, parallel software is built on top of scheduling
systems that assume control over machine resources and
are not designed to cooperate [3, 1, 15]. Cooperation
requires conventions, which can be established anywhere
from the hardware layer to the programming language.

Where to put them? High-level conventions can mean
more changes to legacy code. Further, we agree with pre-
vious authors [8] that a single high-level tasking frame-
work with a global scheduler cannot be a universal solu-
tion. On the other hand, a low-level or unstructured com-
bination of parallel codes cannot deliver semantic guar-
antees, such as deterministic parallelism. Therefore we
believe that reusable parallel software should, wherever
possible, be integrated into a high-level framework se-
mantically, irrespective of how it is implemented.

Those functions which we strive to package and reuse
range from fixed-function library routines (MKL [10]) to

1“Civilization advances by extending the number of important op-
erations which we can perform without thinking about them.”

programming paradigms in their own right (MapReduce
[5]). We are concerned with the more flexible end of this
spectrum and will call our targets parallel patterns. Our
goal is a framework for capturing patterns—individually
well understood—and combining them.

In this paper, we consider Intel Concurrent Collections
(CnC)[9]. as a candidate substrate for patterns. CnC
is a parallel model of computation that supports flexi-
ble combinations of task and data parallelism while re-
taining determinism. CnC is implicitly parallel, with the
user providing serial functions called computation steps,
which, together with their semantic ordering constraints,
form a CnC graph.

One feature of CnC is a separation of concerns be-
tween the domain expert and the tuning expert. The
domain expert focuses on the semantics of the applica-
tion as a graph with declarative constraints, whereas the
tuning expert, obeying those constraints, maps the graph
onto a target platform. Consistent with this philosophy,
the mechanisms in this paper allow the domain expert to
choose among common reusable patterns (based only on
their semantics and interfaces) such as tree-based algo-
rithms, pipelines, stencils, and other patterns specific to a
domain of interest. The tuning expert can then choose an
implementation, such as depth-first tree traversal, wave-
front stencil, etc. Our proposal for supporting this sepa-
ration consists of:

1. A module system for encapsulating patterns.

2. An unsafe API for step code, controlling execution
details such as memory management. This API can
only be used within modules that are certified to
provide safe external interfaces.

3. A language of tuning constraints for expressing
scheduling strategies for each pattern.

The benefits of the these mechanisms are two-fold: the
domain expert can more easily put together applications,



drawing from a library of parallel patterns, and the li-
brary writer can implement patterns more easily by com-
posing and re-tuning existing modules. In this paper we
describe our experience in a series of case studies, exam-
ining parallel patterns and their scheduling constraints.

2 Using CnC: Now with modules

To develop an application in CnC, the domain expert
identifies the data and control dependencies in the appli-
cation and captures them as related collections of com-
putation steps, data items and control tags. We say that
tags control steps (cause them to execute) which produce
items and more tags. Statements in the CnC specifica-
tion language correspond to edges in a graph, and use
the following notation:

<tags> :: (step); // prescribe step
(step) → <tags2>, [items];

The bracketing characters in the syntax are inspired by
the CnC graphical notation [9]. In this paper, types are
omitted from these specifications for brevity.

Computation steps take a tag as argument and may
read and write item collections (which are single-
assignment associative containers). Normally, compu-
tation steps are written externally in a host programming
language (C++, Java and Haskell are supported), but here
we will write steps directly within a CnC spec using a
micro-subset of C++:

step mystep(i) {
x = items1.get(i);
y = items2.get(i);
items3.put(i, x+y);

}

A CnC specification file is processed by the translator
which generates the code necessary for creating and ex-
ecuting a graph. For the domain expert, that’s all there
is to it. All parallelism is implicit. Next, the tuning ex-
pert uses the exposed knobs to control parallel execution
and increase performance. For example, she can control
the relative priorities and processor affinities of different
steps. A contribution of this work is to add new and more
powerful means of scheduling control to CnC (Section
3.2).

2.1 Module System
To date, CnC programs have been flat graphs, transcribed
directly in the specification file with no means of “graph
reuse”. For example, a subgraph describing a matrix
multiplication would have to appear twice in order to
perform two matrix multiplications in an application.
Clearly this is a limitation.

In this paper, we propose a module system that ab-
stracts subgraphs in a reusable way. Further, we get
mileage out of our module system by using it as: (1) a

scoping mechanism for unsafe features, and (2) an isola-
tion mechanism to reason about patterns’ invariants sep-
arately from the larger environment.

CnC modules take arguments at their instantiation
point and generate subgraphs as results. Module argu-
ments might be item collections, tag collections, serial
functions (defined externally), and even other modules.
As a simple example, to use a pipeline module, the user
provides two stages (themselves modules) along with in-
put and output item collections.

// Instantiate a module by prescription:
<MyTags> :: Pipeline2( [in], Mod1, Mod2, [out] );

The Pipeline2 module is controlled by (invoked by)
<MyTags>. Thus modules closely resemble computation
steps, being controlled by a single tag collection. This
convention is assumed without loss of generality because
multiple tag collections can always be unioned. Further,
the convention allows a form of self-similarity that en-
courages hierarchical design.

Defining modules is as simple as writing normal graph
specifications but with certain pieces abstracted and
placed in the argument list. (Indeed, this looks much
like a function definition.) For example, to abstract a step
from the item collections and tag collections it is “wired”
to, we would write the following:

// Wrap an instance of our step as a module:
module Mod1<tag>( [in], [out] )
{

<tag> :: (my step1);
[in] -> (my step1) -> [out];

}
// ... Same for Mod2 ...

Two steps, referring to the same serial computation,
and referred to by the same name, are distinct instances
if they fall into different module scopes. Given steps
abstracted as modules, the definition of our Pipeline2

module is as follows:
module Pipeline2<tag>( [in], (M1), (M2), [out] )
{

[tmp]; // Fresh item collection
<tag> :: M1( [in], [tmp] );
<tag> :: M2( [tmp], [out] );

}

3 Low-level CnC: CnC--

This paper presents the first design for a lower-level CnC
layer to be used by library-writers providing modules
that, while internally breaking the rules of CnC, are ex-
ternally safe to use by general CnC programmers (i.e.
they don’t compromise determinism or memory safety).
We call this layer CnC--, read “CnC minus minus”.
CnC-- is our answer to the question “Why can’t I do X
in CnC?” (a question asked of all high-level program-
ming models). Thus, the answer is “Yes, you can—if the
violating portions are isolated safely.”
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module DivideConquer<TDtag>
(bottom, split, merge, work, [in], [out])

{
// Build subgraph, introduce new steps/items/tags
<TDtag> :: (TDstep);
<BUtag> :: (BUstep);

// All data dependencies:
[TDitem] -> (TDstep) -> [TDitem], [BUitem];
[BUitem] -> (BUstep) -> [BUitem];

// Skeleton definitions for the new steps:
step TDstep(node) {
// Copy first input from [in]:
if (root(node))

x = in.get(node)
else x = TDitem.getRW(node)

work(x); // e.g. sort in place

// If at bottom start going back up:
if ( bottom(node, x) )
BUitem.put(node, x);

else {
l, r = split(x, param);
TDitem.put(node.left, l);
TDitem.put(node.right, r);
BUtag.put(node);

}
}
step BUstep(node) {
r = BUitem.getRW(node.right);
l = BUitem.getRW(node.left);
lr = merge(L, R);
// Copy final output to [out]:
if (root(node))

out.put(node, lr)
else BUitem.put(node, lr);

}
}

Figure 1: A divide-and-conquer pattern as a CnC mod-
ule. The contents of the module includes the introduc-
tion and wiring of new collections, as well as skeletons
for new serial steps.

There are three capabilities provided by CnC--:

• Stateful step computations (not treated here)

• Control over in-place memory operations

• Control over scheduling

The first two extend the API used by step code and the
third extends the graph specification language.

3.1 Controlling Memory Management

CnC item collections are single-assignment and contain
only immutable data. This is key to achieving a deter-
ministic parallel model. Unfortunately, in-place parallel
algorithms then become impossible. To fix this limita-
tion, CnC-- includes unsafe memory operations such as
getRW on item collections (get to modify). But then does
a single use of getRW spoil the determinism of an entire
CnC program? No, because modules provide isolation.

Figure 1 contains a module definition for a divide-
and-conquer pattern, which, if provided the appropriate
serial functions as arguments, would implement Quick-
sort. The pattern is implemented using in-place oper-
ations, including two unsafe operations in addition to
getRW: split and merge. These act on a memory buffer
in-place, returning pointers into subranges of the buffer
and recombining them, respectively.

The collections [TDitem] and [BUitem] are effectively
private to the module. All puts and gets to them are local
and thus can be confirmed to never destructively modify
memory without exclusive access. Such a module is safe
for general use—similar to how native calls in Java are
hidden behind library interfaces, or side-effecting func-
tions in Haskell can be encapsulated to provide a purely
functional interface.

For Quicksort, enabling in-place operation increases
performance by 3.39x on an 8-core Nehalem with hyper-
threading. CnC-- can take credit for this speedup, by al-
lowing CnC to safely do what it could not before. Today,
however, patterns must be certified by hand. In the fu-
ture, there are many existing techniques that could be au-
tomatically applied, including linear type systems [17].

3.2 Four Controls for Step Scheduling

There is an extensive literature on parallel scheduling of
directed task graphs. With CnC-- we provide a frame-
work for navigating this space, tailoring scheduling be-
havior to individual parallel patterns.

It is important in CnC to make both the domain expert
and tuning expert’s jobs easier, especially as the prolif-
eration of new multicore architectures makes re-tuning
more frequent. The power of CnC--’s scheduling con-
trols lies in their separation from the code itself2, their
composability (highlighted in Section 4), and their rep-
resentation as declarative functions on tags, making them
amenable to static analysis (future work).

Priorities: A pre-existing tuning mechanism of CnC,
priorities allow the tuning expert to provide each step
collection with a function that, given a tag as input, com-
putes a priority for the step. For example, given a tree-
shaped computation of a known size, the tag (tree index)
is sufficient to compute the step’s order within a depth-
first tree traversal. Interpreting this number as a priority
yields a parallel depth first scheduling of the computa-
tion [2].

(myTreeStep : ti | priority = indInDF(ti))

The tag ti (tree index) is used to set the priority by com-
puting ti’s index in a depth-first traversal.

2The snippets of tuning specifications in this section would be part
of a CnC specification but relegated to a separate file from the applica-
tion logic.
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Ordering Constraints: The control and data dependen-
cies within an application provide semantic constraints
on the order steps are executed. The tuning expert adds
additional constraints to further control the execution.

Ordering constraints are declarative rules that con-
strain step orderings. For example, if a computation b
depends on a computation a and both are indexed by a
one dimensional iteration space, i, then the following
would ensure that b is executed before a moves on to the
next iteration:

(b : i) before (a : i+1);

Dynamic Chaining:
An important aspect of implementing parallel algo-

rithms is deciding which computations are serialized
(and therefore run without returning control to the sched-
uler). To this end, CnC-- allows chaining steps together
when two steps match a chaining rule specified by the
tuning expert. Chaining is dangerous in general due to
the potential for an infinite chain to starve other steps,
but can be used in a controlled way inside a pattern im-
plementation.

Chaining is permitted in two situations: (1) producer /
consumer relationships and (2) sibling steps that respond
to the same collection of tags. The translator generates
code to catch chained invocations in the step where tags
are produced. In a simple scenario, if we wanted to seri-
alize the invocation of a and b from the previous exam-
ple, within each iteration, we would write:

(a : i) chainwith (b : i)

Affinity: Whereas chaining helps achieve temporal
locality within consecutive tasks on a single thread,
to maximize the overlap in working sets between
non-consecutive tasks and between different hardware
threads (constructive cache sharing [2]), CnC-- provides
an affinity mechanism. Each a step collection may have
an additional tag function to compute an integer affinity
group. These integers are interpreted as binary tree in-
dices. Therefore affinity numbers sharing longer binary
prefixes are “closer” and should be mapped nearer to one
another in the machine hierarchy (e.g. the same socket,
or hardware threads in the same core).

By setting affinities, the tuning expert can control data
distribution, for example, implementing a row-oriented
decomposition of 2D data as follows:

(myStep : i,j | affinity = i % NUMPROCS)

Discussion: Implementation on TBB

In constructing the scheduler interface, we wanted to
avoid discrete choices between schedulers in favor of
composable controls. But this requires a runtime system
with the flexibility to simultaneously support the above
four mechanisms. Intel’s TBB (Thread Building Blocks)

[15] is well suited to this task and is the basis for our cur-
rent CnC/C++ implementation. (Other recent systems,
like PFUNC [11] would also make good candidates.)

Of the four controls above TBB makes two of them
easy to implement. TBB already supports its own form
of affinity. Also, TBB supports a form of “chaining”
wherein one task returns another task-pointer to be in-
voked immediately. Ordering constraints can be imple-
mented simply by introducing fake data dependencies in
the code generated by the translator. Finally, priorities
needed to build into CnC ourselves and are the only no-
table feature we would like to see added to TBB.

4 Case Studies

Both at Intel and through our collaborators, we have ap-
plied CnC to a variety of parallel applications. In this
section we describe a subset of these applications, the
parallel patterns they represent, and the lessons learned
about scheduling.

Graphics: In one of our graphics-related applications we
deal with the problem of parallelizing a directed graph
of mesh computations, containing both data-parallelism
(within the mesh) and task parallelism. In tuning this ap-
plication we found that data parallelism was more impor-
tant than task parallelism. In particular, we found that by
chaining together the execution of mesh transformers on
a given piece of data increased scalability—increasing
the maximum parallel speedup (on an 8-core Nehalem
machine with hyper-threading) from 4.2x to 8.12x.

If the opposite were true, and it were advantageous to
complete each transformer on all data before proceeding
to the next, we would instead have used ordering con-
straints to effect barriers between the transformers.

Data Deduplication: Data deduplication is a form of
compression that eliminates duplicate copies of identi-
cal data. This is relevant, for example, in large email
systems such as Gmail. In CnC, our deduplication ap-
plication consists of a pipeline of three stages: Produce,
Filter, and Compress. The first stage splits raw data up
into blocks, computes fingerprints, finds anchor-points,
and further splits the data into small chunks. The Filter
stage uses SHA1 hashes to eliminate duplicates. Finally,
the Compress stage further compresses unique items.

In spite of the simple pipeline structure of this CnC
graph, there are significant per-application tuning de-
cisions in terms of scheduling. With any pipeline in
CnC, there is a trade-off between task-parallelism be-
tween the pipeline stages and data-parallelism. Depend-
ing on memory constraints and other factors one or the
other may be desirable. In the deduplication application
disk IO plays a substantial role. The domain expert, how-
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ever, does not worry about these considerations when se-
lecting the Pipeline pattern.

In tuning this application, we tested six scheduler con-
figurations. Rather than simply chaining together the
pipeline stages, the solution in this case was to assign
priorities to the stages such that (1) later stages were
more likely to execute, and (2) data elements near the be-
ginning of the stream were more likely to be processed.
This strategy encouraged flushing results to disk early,
and limiting the amount of work in flight. It performed
60.1% faster than our baseline scheduler (TBB with de-
fault task scheduling).

Stencil Computations: Typical stencil computations re-
peatedly update the value in each position in a matrix
based on the values of neighboring positions. Frequently
the computation at each position is lightweight (e.g. the
game of life) and the problem becomes memory bound.
Cache affinity becomes important. In a wavefront sten-
cil, each position depends on its north and west neigh-
bors from the same iteration, and computation can pro-
ceed one diagonal at a time. Therefore, one could exploit
locality by, for example, assigning contiguous pieces of
the diagonal to different processors:
(stencilStep : i,j |
affinity = (i-j) / (i+j) * NUMPROCS)

More complex strategies could also be encoded. For ex-
ample, some implementations give special treatment to
the early and late diagonals. These are too short to paral-
lelize; thus they should be serialized (chaining). Further,
the tail-end of one iteration can be explicitly overlapped
with the start of the next iteration (ordering constraints).

5 Related Work

There has been substantial effort invested in characteriz-
ing parallel patterns and their taxonomies. Patterns may
also go by the name “algorithmic skeleton” [14, 6, 4].

Recent years have seen major improvements in the
selection of widely accessible libraries providing task-
schedulers and concurrent data structures. These in-
clude the Microsoft Parallel Patterns Library (PPL),
the java.util.concurrent library, and Intel’s Thread
Building Blocks (TBB). TBB, along with other recent
systems such as PFUNC [11] and Manticore [7] provide
highly parameterized or extensible schedulers. Lithe [8]
excels in this respect, composing completely unrelated
schedulers based on rationing machine resources. These
systems, however, focus on low level parallel building
blocks and have not aimed to capture higher level paral-
lel patterns. Thus our effort is complimentary to this line
of work, and indeed, our flagship CnC implementation is
built on top of TBB.

The particular focus of CnC on separating the role of
domain-expert and tuning-expert has precedents. For ex-

ample, in the context of Haskell, parallel strategies [16]
refers to a technique for physically separating algorithm
and execution strategy in the code.

6 Conclusion

We have begun to collect parallel patterns in CnC. Rather
than change the implementation for each new pattern that
doesn’t strictly fit the CnC model, we introduced a well-
defined lower layer called CnC--. Once implemented
through CnC--, many important patterns are determin-
istic and can be integrated with the CnC framework.

In this paper we reported on some of the patterns we
integrated. For a sample of applications that did not
achieve peak performance using CnC’s default scheduler
(and many do), significant improvements were made us-
ing the scheduling mechanisms exposed by CnC--.
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