Molatomium:
Parallel Programming Model in Practice

Motohiro Takayama, Ryuji Sakai, Nobuhiro Kato, Tomofumi Shimada
Toshiba Corporation

Abstract

Consumer electronics products are adopting multi-core
processors. What is important for such adoption is to bal-
ance productivity and performance with high portability.
To achieve this goal, we developed Molatomium, a pro-
gramming model for the multi-core paradigm. It consists
of a C-like coordinate language named Mol and a C/C++
part called Atom. In practice, our latest flagship digital
TV, CELL REGZA™, uses Molatomium to parallelize its
media processing applications. In this paper, we describe
Molatomuim’s programming model, language constructs
and performance. Also, we discuss the pitfalls we faced
during the development and the future plan.

1 Introduction

The multi-core paradigm shift is coming not only to per-
sonal computers but also to consumer electronics prod-
ucts such as TVs and smartphones. What makes it dif-
ficult to build software for such products is diversity.
There are various types of processor architecture to be
supported. Those can be homogeneous or heterogeneous
multi-core, or have different cache hierarchies and un-
balanced distances between cores. On the other hand,
the tight development schedule places emphasis on soft-
ware reusability. In addition, the short development cy-
cle requires high productivity in writing efficient soft-
ware. The tool for the development should have the abil-
ity to fully exploit the processing power. At the same
time, it should ease writing parallel algorithms. In short,
we need a way to develop efficient parallel programs with
high portability with high productivity.

Molatomium is a practical approach to solve this prob-
lem. It has a coordinate language called Mol that ease
describing parallel processing. Mol has a C-like syn-
tax that many developers could feel familiar with. The
parallelism is described declaratively in data-flow man-
ner to make it hard for developers to put in concurrent

bugs such as race condition and deadlock. Mol code is
compiled to the portable byte code, which enables de-
velopers to port applications to other platforms without
recompiling. Afom is the unit which is executed in par-
allel. Atom code is written in C/C++ and is compiled to
native code. This allows developers to fully exploit the
performance of target platforms. The balance between
productivity of Mol and efficiency of Atom is the key
of Molatomium. The runtime system is implemented as
an autonomous distributed virtual machine. It takes care
of the platform difference, schedules the concurrent exe-
cution of Atoms, and manages the dependencies among
Atoms. Fig 1 shows the roles of Mol, Atom and the run-
time.

Portability
Scalability

Figure 1: Constructs of Molatomium

Thinking and debugging a parallel program by text
only is difficult. We developed a graphical development
tool that consists of: an editor to support the designing
process of parallel algorithms, a debugger to find out
where the parallel program is wrong, and a visualizer to
trace running parallel processes.

Molatomium is not just a research project but is used
in the real world. It is shipped with our latest digital TV,
CELL REGZA, which is powered by a Cell Broadband
Engine™ (Cell/B.E.)'. Molatomium is also used in our
PCs, which is equipped with SpursEngine™ (a variant

of Cell/B.E.), to parallelize the applications such as im-
age processing. These applications prove the practical-
ity of Molatomium. Section 4 shows an experimental
result about the scalability compared with that of other
programming models.

In developing software for consumer electronics prod-
ucts using Molatomium, we found another crucial factor
that developers should pay attention to: bandwidth. We
would like to share what we have learned in the devel-
opment. In Sec 5 we discuss why the bandwidth matters
and give an insight to manage it. Also, we explain a plan
to expand Molatomium from multi-core platforms to dis-
tributed systems.

2 Programming Model

A Molatomium program is composed of two parts: Mol
and Atom. The runtime system executes Atom codes
concurrently according to dependencies expressed in
Mol code. This separation makes it possible to construct
a scalable yet efficient parallel program.

2.1 Mol

Mol is a coordinate language based on a data-flow model
like Oz[6] and Cilk[1]. Its syntax is a C-like one. That
reduces the migration cost that experienced C developers
need to pay. Data dependency is expressed by connect-
ing Atoms with array variables. Arrays are also used for
memoization of computation. The runtime ensures that
no simultaneous computation of the same array element
occurs. Variables in Mol are treated as single-assigned
data-flow variables.

extern plus(); 1 void *plus(void *a, void *b) {

2 return a + b;
3

main() {
local fib[0..20]; Atom

1

2

3

4

5

6 fib[0] = o;

7 fib[1] = 1;

8 fib[n] := plus(fib[n-2], fib[n-11);
9
10
11

return fib[19];

Mol

Figure 2: Fibonacci in Molatomium

Molatomium employs lazy evaluation to compute the
data-flow variable. Fig 2 is an example of Mol and Atom
code that computes Fibonacci numbers. Line 8 of the
Mol code expresses the relationship among fib[n],
fib[n-2] and fib[n-1]. The use of ”:=" opera-
tor indicates that £ib [n] is computed lazily. Its ac-
tual computation begins when line 10 is evaluated: it
demands the value of £ib[19] that leads to the ac-
tual computation of the evaluation of fib[17] and
fib[18], and continues the evaluation recursively.

Lazy evaluation lets developers just describe the data
dependencies, not the order of computations. It enables

the runtime to exploit the opportunities to parallelize the
whole process, like out-of-order execution in hardware.

Mol code is compiled into platform independent byte
code. The byte code semantics is simple load-store archi-
tecture, except that the execution of byte code is deferred
if some of its operands have not computed yet. In partic-
ular, load instruction triggers some computation for its
operands.

2.2 Atom

Atom is a serial code of parallel execution like kernels
in OpenCL[4] and CUDA[S]. The Atom code written in
C/C++ is compiled to platform native binary, and linked
to the Molatomium runtime together with Mol byte code.
In the Fibonacci example, plus () is a simple Atom
code that returns the sum of its arguments.

Developers can write highly optimized code for the
target platform, such as utilizing SIMD instructions.

Currently Mol is an untyped language and (void =)
is used to pass all data between Mol and Atom. While
Atom code should take care of the data type between dis-
tinctly different Atoms, it provides the developers with
flexibility similar to C.

While developers of Atom should take care to inter-
pret the data consistently by themselves, Atom code can
be written for each platform. This provides developers
room for optimizing the serial part by using platform spe-
cific knowledge and technique. Molatomium aims at the
practical balance between portability and performance.

2.3 Runtime

Molatomium runtime is implemented as a virtual ma-
chine that resides in each core. It runs Mol byte code,
invokes Atoms with maintaining dependencies, and man-
ages the data flow. Fig 3 shows the states of cores at run-

Atom

argumeh

return value

,"’waiting for runtime lock

Memory

Global Runtime
Lock Context \
Runtime Atom

Figure 3: States of Each Core at Runtime

update runtime context

time. Current design of the runtime targets the shared-
memory multi-core. The runtime stores its state and a
global lock in a shared memory.

At most, one core can acquire the global lock to be
an executor of Mol byte code. The core holding the
global lock interprets Mol byte code sequentially until
it encounters an executable Atom. Other cores run Atom
code or wait for the global lock. Those core behaviors
result in an autonomous runtime switching, and dynamic
scheduling of Atoms. The absence of central scheduling
core improves the scalability.

Mol B Atom L Wwait

Figure 4: Core Activities

Fig 4 details the timeline of core activities. In this ex-
ample, four cores are working on an application written
in Molatomium. All cores are utilized for running Atoms
in the period marked as ¥¢. Molatomium runtime is de-
signed to maximize the period to achieve the good scala-
bility.

I QO :value resolved
: value not resolved yet
> :executable Atom

: pending Atom

Figure 5: Data Flow Graph

Byte code execution builds a dependency graph. Fig
5 shows the graph which is constructed by the byte code
execution. An executable Atom (white square) is one
that all values of its arguments are computed (white cir-
cle). If there is an argument that is not computed yet
(gray circle), the runtime creates a link for its arguments
and return value pointer, enqueues its execution to the
pending Atom collection (gray square), and then con-
tinues the byte code interpretation. After all arguments
are computed, the runtime releases the global lock and
starts executing the Atom code. This allows other core
to become the next executor of Mol code by acquiring
the global lock. When an Atom execution is finished, the
core stores its return value into the return value pointer,
and then waits for the global lock again.

3 Applications in the Real World

Molatomium has been employed as a basis to paral-
lelize applications in consumer electronics products us-
ing Cell/B.E. and PCs with a SpursEngine.

1 extern run_edge(Q);

2 extern run_ccr();

3 extern run_pocs_even(), extern run_pocs_odd();

4 extern get_loop_count();

5 extern get_frame(), put_frame(Q);

6

7 mainQ)

8 {

9 frame(frame_no, input)

10

11 local loop;

12 local edge[-1..9] outside(@);

13 local pocs[-1..9] outside(0);

14 local ccr[-1..9] outside(@);

15

16 loop = get_loop_count();

17 edge[i] := run_edge(input, i);

18 ccr[i] := run_ccr(edge[i-1], edge[i], edge[i+1], 1);
19 pocs[i] := (i%2==0)

20 ? run_pocs_even(ccr[i-1], ccr[i], ccr[i+1], loop, i)
21 : run_pocs_odd(pocs[i-1], ccr[i], pocs[i+1], loop, i);
22

23 return &pocs;

24}

25

26 sync for(i in [0..30]) {

27 put_frame(frame(i, get_frame());

28

29 }

Figure 6: Super Resolution in Molatomium

For instance, we have parallelized applications such
as super resolution, frame interpolation, noise reduction,
and various media codecs by Molatomium. Fig 6 shows
the parallelized Super Resolution algorithm in Mol that
is actually used in CELL REGZA.

wen

Figure 7: Editing N-Queen in IDE Editor

To enhance the development process further, we are
developing a kind of IDE for Molatomium. Fig 7 dis-
plays the screenshot of the IDE. The IDE has an edi-
tor to create a Mol code intuitively by connecting Atom
modules (rendered as rectangle), a graphical debugger to
trace which thread alters the variable, a profiler to check
which Atom is a bottleneck, and a 3D visualizer to ob-
serve how the parallel program is actually running con-
currently.

In developing and parallelizing applications for CELL
REGZA, first, we wrote and debugged the Mol code on

x86 platforms, which are more flexible for tracing the
problems. Then we moved on to the Cell/B.E. environ-
ment to link with highly optimized Atom code. This de-
velopment process was less painful than was developing
the application in Cell/B.E. platform from the beginning.

Migrating from x86 system to Cell/B.E. or SpursEn-
gine platforms was painless. Developers just need to fo-
cus on Atom optimization rather than on parallelization.
Therefore, Molatomium can help developers to raise pro-
ductivity, and reduce the developing period by half com-
pared with the traditional approach, and that shows the
productivity of Molatomium.

4 Experimental Result

This section presents the experimental result of two
benchmark programs. The main concern in the experi-
ment is the scalability. We examined the scalability with
respect to the platform difference and the productivity in
parallelizing a serial application.

14-Queen @ x86 14-Queen @ Cell

Threads Threads

O Molatomium # Hand Parallelized O Molatomium # Hand Parallelized

Figure 8: Evaluation of Scalability: 14-Queen

Fig 8 compares the parallel N-Queen program in Mo-
latomium with a hand-parallelized one where N is 14.
We evaluated it on a x86 system and Cell/B.E. plat-
form. The x86 system consists of Intel® Core™? i7
(4 physical cores with hyper-threading) running Ubuntu
Linux 8.04. We used Sony Playstation 3®?’ for the
Cell/B.E. platform, which has 1 PPE and 7 SPEs run-
ning Fedora™* Core 9. Note that both programs on a
x86 system scale up to 4 threads, because there are only
4 physical cores in this evaluation environment.

This result shows that how efficient the Molatomium’s
dynamic Atom scheduling is. The strategy of hand-
parallelized scheduling is to assign Atoms statically to
each core, while that of Molatomium runtime is to ex-
ecute Atoms dynamically as soon as they are ready. It
scales almost linearly up to 4 cores on x86 system, and
fully utilizes all the cores on Cell/B.E. platforms.

Table 1 compares the scalability and the lines-of-code
(LoC) needed to parallelize a serial code with those of
other parallel programming methods. It runs blacksc-
holes application included in the PARSEC[2] benchmark

Methods Scalability | LoC
Pthread 3.92 | 100
OpenMP 3.04 40
TBB 39 | 125
Molatomium 391 75

Table 1: Comparing with other models about Scalability
and LoC in blackscholes

suite. We employ blackscholes because the PARSEC
distribution bundles implementations of other paralleliz-
ing methods including Pthread, OpenMP, and Intel®)
Threading Building Blocks (TBB). The scalability is
measured in the same environment above, using 4 cores.
The result shows that Molatomium comes second on
both aspects of the experiment. Molatomium has good
balance that achieves good scalability with less code
modifications.

5 Discussion

This section presents what we have learned in the devel-
opment and the future plan of Molatomium.

5.1 Bandwidth

Though achieving good parallelism is a laborious task,
it is not enough to optimize the parallel processing on
multi-cores. There is another hidden factor: bandwidth.

We experienced a confusing issue in developing an ap-
plication that processes lots of video data. We carefully
balanced each task load and crafted data dependency
paths so that no unnecessary waiting occurred, but could
not achieve the required performance. What caused the
slowdown was the huge traffic on the bus. The data
transferred between cores consumed huge bandwidth and
increased idle times on cores which is running Atoms
whose arguments were ready.

Though we have a way to describe how much band-
width is required, it has not been used effectively yet.
The bandwidth reservation system can schedule the task
dynamically by considering its bandwidth usage. If a
task does not fully consume specified bandwidth, other
tasks can utilize the rest of the bandwidth. That sounds
nice, but leads developers to assign unnecessarily high
bandwidth, because the requirement of the bandwidth
changes in the whole development cycle. That results
in contention and a decrease in performance.

The more the number of cores increases, the higher
the traffic will be. Parallel programming models today
should help in solving this issue.

We have preliminary implemented a dynamic granu-
larity adjustment facility on Molatomium runtime (Fig

Combined
Atom

Figure 9: Dynamic Granularity Adjustment

9). When Atoms have dependencies and are assigned to
distant cores, the transfer between cores consumes the
bus bandwidth. This traffic can be avoided by combining
those Atoms into one coarse-grained Atom so that the
entire computations are executed on the same core. Thus
it is recommended to make Atoms as fine-grained as pos-
sible so that the runtime can dynamically assemble them
appropriately. To decompose coarse-grained Atoms dy-
namically is one of our tasks for the future.

What annoyed us is the invisibleness of bandwidth
and its non-determinism. While we can see how good
the cores are utilized with debuggers or hardware facili-
ties like performance counters, there is no standard way
to examine the bandwidth. We have started developing
such system to analyze the bandwidth utilization that is
available on different configurations of processor archi-
tectures and memory hierarchies.

5.2 Distributed System

Our target devices include discrete multi-processors as
well. The programming model should be consistent be-
tween multi-cores and distributed multi-processors in-
cluding heterogeneous configuration. Mol can be a co-
ordinate language that glues Atoms running on such dis-
crete processors. An Atom code can be optimized for
each processor architecture and be combined into a fat
binary.

In order to schedule effectively on such distributed
systems, it is important to exploit locality. Some other
parallel programming models express locality explicitly.
For instance, X10[3] express locality as places. In Mo-
latomium, we can use arrays to exploit locality between
tasks implicitly. The runtime can assign a sequence of
Atoms that computes the value of a single array to the
cores that are close together. That would be a coarse
grain task grouping, and be suitable for the situation in
which the distance between cores are relatively long.
Also, the runtime can assign the same core a series of
Atoms which result in the value for an array element.
This strategy is regarded as a fine grain task grouping,

and as kind of data-parallel processing such as preformed
by the GPU does.

To make Molatomium work on such distributed sys-
tems, we have to avoid using shared memory. One strat-
egy is to adopt a distributed tuple-space model to share
the runtime context, and that is another task for the fu-
ture.

6 Conclusion

Consumer electronics industries are adopting multi-core
processors. It is considered as promising of energy ef-
ficiency and high performance, but the programming
model has not been matured yet. Molatomium eases de-
velopers from thinking about troublesome synchroniza-
tion and helps them concentrate on developing the appli-
cations.

References

[1] R Blumofe, C Joerg, and B Kuszmaul. Cilk: An effi-
cient multithreaded runtime system. ACM SIGPLAN
Notices, Jan 1995.

[2] Christian Bienia et al. The parsec benchmark suite:
Characterization and architectural implications. In
Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques,
October 2008.

[3] Philippe Charles et al. X10: an object-oriented ap-
proach to non-uniform cluster computing. OOP-
SLA °05: Proceedings of the 20th annual ACM SIG-
PLAN conference on Object-oriented programming,
systems, languages, and applications, Oct 2005.

[4] Aaftab Munshi. Opencl: Parallel computing on the
gpu and cpu., 2008.

[5] NVIDIA. Nvidia cuda compute unified device archi-
tecture programming guide, 2007.

[6] Gert Smolka. The oz programming model. In Com-
puter Science Today, Lecture Notes in Computer Sci-
ence, pages 324-343. Springer-Verlag, 1995.

Notes

ICell Broadband Engine and Cell/B.E. are trademarks of Sony
Computer Entertainment, Inc., in the United States, other countries,
or both and is used under license therefrom.

2Intel Core is a trademark of Intel Corporation in the U.S. and other
countries.

3PlayStation 3 is a trademark or registered trademarks of Sony
Computer Entertainment Inc. All rights reserved.

“#Fedora and the Infinity design logo are trademarks of Red Hat, Inc.

