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Abstract

We study one of the basic multicore and GPU pro-
gramming models, namely, SPMD (Single-Program
Multiple-Data) programs. We define a formal model
of SPMD programs based on interleaving threads
that manipulate global and local arrays, and synchro-
nize via barriers. SPMD programs are written with
the intention to be deterministic, although program-
ming errors may result in this not being true. SPMD
programs are also frequently modified toward optimal
performance. These facts motivate the need for meth-
ods to check determinism and program equivalence.
A key property in achieving this is non-interference.
We formulate non-interference as validity of logical
formulas automatically derived from the program,
we show that non-interference implies determinism,
and we report on a prototype that can prove non-
interference of NVIDIA CUDA programs.

1 Introduction

The goal of this paper is to develop methods that help
programmers build correct multi-threaded programs,
and in particular programs running on modern graph-
ics processing units (GPUs). GPUs enjoy great pop-
ularity today, as a result of offering great computing
power at relatively low cost [11]. Motivated by this,
we consider the CUDA programming model [1], used
in NVIDIA’s GPUs.

CUDA is based on the Single Program, Multiple
Data (SPMD) parallel computation paradigm, where
concurrent threads execute the same code, although
they may not follow exactly the same execution path.
CUDA is free from some of the plagues of parallel
programming: for instance, it does not provide locks
explicitly (although it does provide barrier synchro-
nization). However, CUDA programming is still dif-
ficult because of another reason: a “naive” parallel
implementation of a given algorithm is in most cases
non-optimal in terms of run-time, i.e., the program
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runs too slow. Because of this, a significant effort
is spent trying to optimize the program to achieve
better performance [11]. This is done by exploiting
the particularities of the architecture. Although no
general rule exists, it is often the case that global-
memory accesses are very expensive and thus need to
be reduced to a minimum so that they do not cre-
ate a bottleneck. Moreover, memory bandwidth of-
ten depends on how memory is accessed, that is, on
the memory access patterns. Subtle modifications in
such patterns can result in orders-of-magnitude per-
formance improvements [11, 1].

Optimizing the program is done by transforming
it so that it uses the specifics of the underlying plat-
form optimally. Currently, these transformations are
done “manually”, since automating them is beyond
the reach of state-of-the-art compilers. Although
methodologies and guidelines exist to help program-
mers (e.g., coalesced global memory access [11, 1]),
these are fairly general and leave a large gap which
must be filled by the programmer’s creativity and
care. This is a difficult and error-prone task (a sim-
ple example is provided in this paper).

Our ultimate goal is to develop methods and tools
to make this task error-free. In particular, methods
that allow the programmer to check equivalence of
two programs: the program before the transforma-
tion and the one after the transformation.

After studying publicly available CUDA pro-
grams [1], it has come to our attention that these
programs are written to be deterministic, in the sense
that their final result does not depend on the inter-
leaving order. It is not surprising for programmers
to want to write deterministic programs. However,
determinism by no means comes for free in CUDA. It
is achieved by ensuring that concurrent threads are
non-interfering. Non-interference roughly states that
different threads access different array elements, or
the same element but at different times.

The main contribution of this paper is a method to



automatically check non-interference in SPMD pro-
grams. The method relies on checking validity of log-
ical formulas that can be automatically derived from
the program. Non-interference is shown to be a suffi-
cient condition for determinism. We also report on a
prototype tool that checks non-interference of CUDA
programs. [13] is an extended version of this report
that includes ideas on checking equivalence.

2 Related work

There is a large body of research on checking cor-
rectness of parallel programs (see [13] for references).
Most of this research, however, deals with quite gen-
eral versions of the verification problem, in terms
of either the model used (e.g., threads synchroniz-
ing with locks), or the properties to be checked. In
contrast, the SPMD model we use in this paper is
restricted, e.g., there are no locks, only barrier syn-
chronization, and we focus on a specific property:
non-interference.

The interference-free property used in the proof
framework of [9] is weaker than ours. Ours essen-
tially guarantees absence of races, where two or more
threads access the same memory location and at least
one access is a write. Races have been heavily stud-
ied in the context of programs with synchronization
mechanisms such as locks. Many techniques to detect
races that are not “protected” by locks have been
proposed, both static (e.g., see [2, 8]) and dynamic
(e.g., see [12]). [7] observes that this notion of races
does not capture all problematic interactions among
threads, and proposes the stronger non-interference
property of atomicity, in the context of Concurren-
tJava [2]. The fact that many parallel programs
are written to be deterministic has been observed by
other researchers as well (e.g., see [10]). Currently, at-
tempts are being made to bring determinism to main-
stream object-oriented languages (e.g., Deterministic
Parallel Java [4]).

Checking nondeterminacy has been considered
in [6], but the model and method used there are dif-
ferent from ours. Their method is based on building
ordering graphs from the synchronization primitives.

Non-interference has received a lot of attention in
the parallel compilation community, in particular un-
der the general problem of data dependency analysis
for arrays (e.g., see [14]). The major difference of this
body of work with ours is that, in parallel compila-
tion, the problem is how to extract parallelism from a
sequential piece of code (with loops manipulating ar-
rays, etc.), whereas here, the parallelization has been

performed by the programmer, and our objective is
to prove that the parallel code is non-interfering.

[3] proposes a method to check the barrier-based
synchronization patterns of SPMD programs. Incor-
rect barrier synchronization may occur when barriers
are executed conditionally. This problem does not
arise in our model where barriers are assumed to be
unconditional.!

3 SPMD programs

Our model of SPMD programs is inspired by
CUDA [1]. A SPMD program is defined to be a tu-
ple P = (G,L,F). G is a list of global array names,
each with a type and size. L is a list of local ar-
ray names, each with a type and size. F is an au-
tomaton formalizing the thread function of the pro-
gram: F = (Q,qo, R). Q is a finite set of locations
(the “control states” of the automaton). ¢o € Q is
the initial location. R is a set of program transi-
tions. A program transition is a tuple (g, ¢’, ), also
denoted ¢ % ¢/, where ¢,¢' € Q are the source and
destination locations, respectively, and « is either a
condition statement, an assignment statement, or the
special sync statement, as described below. A pro-
gram transition labeled with a condition (resp., as-
signment) statement is called a condition (resp., as-
signment) transition. A program transition labeled
with sync is called a sync transition. Our model does
not contain explicit local (i.e., per thread) variables,
but these can be easily modeled using local arrays.
Let us provide an example of a SPMD program.
This example models an array reversal program. We
first model a naive version of the program as a tuple
P = (G, L' FY), with G = {A[C-T|,B[C-T|}, Lt =0
(no local arrays), and F'! being the automaton shown
in Figure 1 (top). A[C-T] denotes an array of length
C-T (in this case both arrays A and B are unidimen-
sional). C and T are parameters, representing the
number of processing cores and number of threads
per core, respectively. This program implements the
parallel assignment Bli] := A[M — 1 — ], for i = 0 to
M — 1, where M = C- T. Index ¢ is implemented by
the expression T-b+t. b is a parameter representing
the index of the core that a given thread is running
on: it ranges from 0 to C — 1. t represents the local
index of a thread in its core: it ranges from 0 to T—1.

1 [1] states that “__syncthreads() is allowed in conditional
code but only if the conditional evaluates identically across the
entire thread block, otherwise execution is likely to hang or
produce unintended side effects.” Conditional barriers appear
in only 3 out of 57 examples included in the CUDA SDK.



C B[C-T—l—T~b—t]:=A[T~b+t]O
9OLoc[t]::A[Tb-kt])@g@ B[(C—l—b)~T+t]::Loc[T—l—t]>Q

Figure 1: Thread automata F* (top) and F? (bottom).

A second, optimized version of the program can be
modeled as a tuple P, = (G, L?, F?), with G same as
for Py, L? = {Loc[T]}, and F? being the automaton
shown in Figure 1 (bottom).

It is not at all trivial to see that the alternative im-
plementation is equivalent to the original implemen-
tation of array reversal, that is, produces the same
output array B for any input array A. Our ultimate
goal is to devise methods to check that the two SPMD
programs are indeed equivalent.

SPMD programs are given interleaving semantics
of threads communicating through global and local
arrays, and synchronizing via barriers. The semantics
are defined for fixed positive integer values C and T'
of parameters C and T, respectively. Given a SPMD
program P, and given C' and T, the semantics, de-
noted [P, C,T], is a labeled transition system (LTS)
(S, So, —) where: S is the set of states, recording the
values of all elements in the local and global arrays,
plus the program counters (locations) of all threads;
So the set of initial states, and — is the transition
relation (generally non-deterministic because of in-
terleaving). Due to lack of space, we omit the details
and refer the reader to [13].

We assume that F' is deterministic, deadlock-free,
and acyclic (loops are handled by our tool as dis-
cussed in Section 6). We also assume that the struc-
ture of F' is as illustrated below:

= sync
~ 7

=

~ 7

= sync sync
7 -

That is, F' is a chain of k sub-automata, linked with
sync transitions. Each sub-automaton, called a sync-
segment, has no sync transition. In the examples of
Figure 1, F'! consists of a single sync-segment since it
contains no sync statement. F? consists of two sync-
segments.

4 Determinism

Our ultimate goal is to prove equivalence of SPMD
programs. But what does equivalence exactly mean?
For sequential programs, which are deterministic, it is
reasonable to define equivalence as follows: programs
P, and P, are equivalent if, given the same inputs,

they produce the same outputs. This definition does
not directly apply to SPMD programs, because the
latter are inherently non-deterministic: the outputs
of a SPMD program may be different depending on
thread interleavings. We are thus motivated to define
determinism.

Before doing so, however, we must also define pre-
cisely what we mean by “inputs” and “outputs”.
Usually, in GPU applications, one is not interested
in the values of local arrays or other local variables,
but only in the values of global arrays. Motivated by
this, we say that two runs p; and py in [P, C,T] are
equivalent, denoted p; = po, if, assuming all global
arrays have the same value when the programs be-
gin, they will have the same value when the programs
end. The two runs are said to be strongly equivalent,
denoted p; =~ po, if, assuming they start at the same
state, they end up at the same state.

P is said to be deterministic with respect to C, T if
for any two runs p and p’ in [P, C, T], we have p =~ p'.
If p ~ p' then P is said to be strongly deterministic
with respect to C,T. P is said to be deterministic (re-
spectively, strongly deterministic) if it is deterministic
(respectively, strongly deterministic) with respect to
C,T, for any C,T € N.

5 Non-Interference

In the system [P, C,T], there are C - T threads run-
ning, where C' is the number of cores and 7' the num-
ber of threads per core. All these threads may access
the same locations of global memory. Moreover, for
each core, the T' threads running on that core may ac-
cess the same location of local memory of this core.
To ensure determinism, we need to ensure that no
race conditions occur in these global or local memory
accesses. Race conditions can occur when two threads
access the same memory location, at least one access
is a write, and the two accesses may happen in any
order. Non-interference ensures that race conditions
do not occur.

Let F' be the thread automaton on which we wish
to ensure absence of race conditions. Because F is



structured in segments, it suffices to ensure absence
of races separately on each sync-segment F; of F.
Indeed, threads must synchronize on sync transitions,
thus it is impossible for two sync-segments Fj;, F; with
i # j to interfere: if ¢ < j then, in any execution, all
transitions of F; are guaranteed to take place before
any transition of Fj.

Thus, it suffices to check, for each sync-segment
F; of F, that we cannot have two threads executing
statements of F; that interfere with each other. F;
is a special thread automaton (without sync), so let
F; = (Q, qo, R). We define the following sets of ex-
pressions: LHS(F;), called the set of all left-hand side
expressions of Fj, is defined to be the set of all expres-
sions [ such that [ := e is some assignment statement
of F;. RHS(F;), called the set of all right-hand side
expressions of Fj, is defined to be the set of all array
sub-expressions of an expression e, such that either
l := e is some assignment statement of F; or e is some
condition statement of F;. An array sub-expression
of e is a sub-expression of e which is also an array
expression. For example, if e = A[3+ B]t]] then e has
two array sub-expressions: e itself and Bit].

LHS only contains array expressions, since, by def-
inition, in every assignment [ := e, [ is an array ex-
pression. The reason we include only array expres-
sions in RHS is because only array expressions can be
assigned to, thus, only such expressions can interfere
with each other. Although we could have included all
sub-expressions in RHS without affecting the results
given below, this would result in redundant expres-
sions in RHS. Note that LHS and RHS are finite sets.

Let us illustrate LHS and RHS on our running ex-
ample. First, consider F'! (Figure 1, top). F! has a
single sync-segment: F itself. We have:

LHS(F!) =
RHS(F!) =

{BIC-T-1-T-b—1t}
{A[T -b+t]}.

Next, consider F? (Figure 1, bottom). F? consists of
two sync-segments: F? = F2 — FZ. We have:

LHS(F?) = {Loc[t]},
RHS(F?) = {A[T-b+1t]},
LHS(F2) = {B[(C—1—b)-T+1t]},

RHS(F2) = {Loc[T —1—1t]}.

We next define two set of potentially interfering
expression pairs of F;. The set &,(F;) is defined to
be the set of all (e1,es) such that there exists global
array symbol A € G such that Ale;] € LHS(F;) and
Ales] € LHS(F;) URHS(F;). The set &(F;) is defined
to be the set of all (e1, e2) such that there exists local

array symbol B € L such that Ble;] € LHS(F;) and
Bles] € LHS(F;) URHS(F;). The intuition is that two
threads interfere iff there exists a pair of potentially
interfering expressions (ej,e2) such that e; and ey
evaluate to the same value in the two threads. Notice
that we need not worry about expressions of the form
Ale1] € LHS(F;) and Bles] € LHS(F;) U RHS(F;),
where A and B are different array symbols. This is
because, even if e; and ey can be made equal, A and
B refer to different locations in memory, thus, there
is no possibility for races.

Fix C,T € N. We say that sync-segment F; is
non-interfering with respect to C, T if

1. for every (e1,e2) € E4(F}), the following formula
is valid:

Vb1, be € {0,,0 — 1},Vt1,t2 S {0,...,T* 1} :
(b1 7é by V ty 7'5 tg) = 61(0, T, bl,tl) 7é 62(0, T, bg,tg)

2. for every (e1,es) € & (F;), the following formula is
valid:

Vb e {0,...,C — 1},Vt1,t2 € {0,..., T — 1} :
t1 7& to = 61(0, T, b, tl) 7é 62(0, T, b, tQ)

The above formulas are formulas of first-order logic
with equality, with array symbols considered to
be unary function symbols. For an expression e,
e(C,T,...) denotes the expression obtained by replac-
ing variables C, T, ... in e by concrete values C, T, ....

We say that F' is non-interfering with respect to
C,T if for all ¢ € {1,...,k}, F; is non-interfering with
respect to C, T. We say that F; is non-interfering if it
is non-interfering with respect to C,T for all C,T €
N. We say that F' is non-interfering if for all ¢ €
{1,...,k}, F; is non-interfering.

Theorem 1 Let P = (G,L,F) be a SPMD program
and let C,T € N. If F is non-interfering w.r.t. C,T
then P is strongly deterministic with respect to C,T.

Let us apply Theorem 1 to show that the SPMD
program of Figure 1 (top) is deterministic. The sets
LHS(F!) and RHS(F1!) have been given above. Ac-
cording to the definition above, £,(F') = {(e,e)},
where e is C- T —1—b T —t, and &(F!) = 0.
To show non-interference, we must prove that for all
C,T € N, for all by,by € {0,...,C — 1} and for all
t1,to € {0,...,T — 1} such that by # bs or t1 # to, the
following inequality holds: C'-T —1 — (b1 - T + 1) #
C-T —1—(by-T +ty). This follows directly from



the assumptions. Similarly, we can show that the al-
ternative array-reversal program P, with thread au-
tomaton F? is also non-interfering. F? consists of
two sync-segments, F? and F3. Following the def-
initions, we get: &, (FE) = 0, &(F?) = {(t,t)},
E,(F3) = {(e,e)}, where e is (C—1—b) - T +1t,
and &(F2) = (. Then, to prove that F? is non-
interfering, we show the two facts: t; # to = t1 # to,
and (bl 7é bo V t1 7é tg) = (C—l—bl)'T—Ftl 7é
(C—=1—=10b9) - T+ts.

It is instructive to consider a third implementa-
tion of array reversal, which does not satisfy the non-
interference property. This happens if we remove
the sync statement from thread automaton F?2: call
the resulting thread automaton F3. F3 has a sin-
gle sync-segment (itself) and we have: LHS(F3) =
{Loc[t], B(C—1—b) - T+1t]},RHS(F?) = {A]b- T +
t], Loc[T — 1 —t]}. Then, &(F?) includes the pair
(t, T—1—t) and we can no longer prove the implica-
tion t1 # to = t1 # T —1—t5. In fact, the implication
can be shown to be false simply by setting ¢; = 0 and
ty = T — 1. Thus, F? is interfering. In fact, this
implementation is non-deterministic and incorrect.

6 Tool and experiments

We have built a prototype tool that can automatically
check non-interference in CUDA programs. This
functionality is not available in other tools, as far
as we know. The tool uses CIL (http://hal.cs.
berkeley.edu/cil/) to parse and analyze CUDA
programs. The tool then generates non-interference
conditions that are submitted to the Yices SMT
solver (http://yices.csl.sri.com/). Yices cannot
handle non-linear constraints, therefore, in expres-
sions such as b-T 4+ t, we instantiate T' to a constant.
Our tool can handle multidimensional arrays.

At present our tool can run on the reversel,
reverse2 programs presented in this paper and
on the following programs from the CUDA SDK
suite [1]:  clock, nbody, simpleZeroCopy and
transpose. All these programs are proved non-
interfering completely automatically in < 1 sec. Our
tool currently handles loops with statically known
bounds by wunrolling the loop, an approach that
does not extend to programs with unknown loop
bounds. We are currently extending our method
to handle more loops, by generating a variant of
non-interference condition that guarantees absence
of interference at any iteration of a loop. It is
worth noting that such formulas are guaranteed to
be quantifier-free [13].

7 Conclusions, future work

We described a method and tool for check-
ing non-interference and proving determinism in
SPMD/CUDA programs. Future work includes:
strengthening our tool so that it can handle a
larger set of CUDA programs; implementing meth-
ods to check program equivalence [13]; enhancing the
method with elements from the theory of arrays [5].
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