
A Case for Software Managed Coherence in Many-core Processors

Xiaocheng Zhou, Hu Chen, Sai Luo, Ying Gao, Shoumeng Yan, Wei Liu, Brian Lewis, Bratin Saha

Intel Corporation
[xiaocheng.zhou, hu.tiger.chen, sai.luo, ying.gao, shoumeng.yan, wei.w.liu, brian.t.lewis, bratin.saha]@intel.com

Abstract

Processor vendors are integrating more and more cores into their chip. These many-core processors usually imple-
ment hardware coherence mechanisms, but when the core count goes to hundreds or more, it becomes prohibitively
difficult to design and verify efficient hardware coherence support. Despite this, many parallel applications, for ex-
ample RMS applications [9], show little data sharing, which suggests that providing a complex hardware coherence
implementation wastes hardware budget and design effort. Moreover, in some increasingly important domains, such
as server and cloud computing, multiple applications may run on a single many-core chip. Those applications re-
quire coherence support among the cores that they are running on, but not between different applications. This indi-
cates a strong requirement for dynamically reconfigurable coherence domains, which is extremely hard to support
with hardware-only mechanisms. In addition, hardware coherence is believed to be too complex to support hetero-
geneous platforms such as combined CPU-GPU systems, regardless whether the GPU is integrated or discrete.

In this paper, we argue that software managed coherence is a better choice than hardware coherence for many-core
processors. We believe that software managed coherence can make better use of silicon, efficiently support emerg-
ing applications, dynamically reconfigure coherence domain, and most importantly, still be able to provide perfor-
mance comparable to hardware coherence. We implemented a prototype system with software managed coherence
over a partially-shared address space and show promising results.

1. Introduction

When single-CPU designs hit the power wall, processor
architecture entered the multi-core era [7]. Today, mul-
ti-core processors dominate the market from client to
server platforms, and it is believed that general purpose
many-core chips will emerge soon that have several
tens to hundreds of cores on a single chip. Moreover,
accelerator processors such as GPUs are being inte-
grated into heterogeneous architectures as well.

Cache coherence is a fundamental issue that must be
addressed during many-core design. With a small num-
ber of cores (e.g., less than ten), a hardware coherency
implementation has proven effective. However, when
the core count goes to several tens or hundreds, it be-
comes prohibitively expensive and difficult to design
and verify efficient hardware coherence support [3][4].

Even when hardware coherence in a many-core proces-
sor is feasible, it still shows a couple of limitations
compared to a software implementation. First, hardware
coherence is not as flexible as its software counterpart.
Given the increasing importance of server and cloud

computing, many applications will run concurrently on
a single chip. Dynamically forming a coherent domain
for each application is challenging for a hardware cohe-
rence implementation, but not for software managed
coherence. Second, emerging applications show charac-
teristics like limited data sharing that suggest full hard-
ware coherence support may be unnecessary.

In this paper, we propose not implementing complex
hardware coherence mechanisms. Instead, we argue that
software managed coherence is a better choice for
many-core processors because it can utilize silicon
more efficiently, support more flexible usage, and pro-
vide comparable performance.

This paper makes the following contributions:

• It advocates software managed coherence for
many-core architecture. Software managed cohe-
rence can be flexible and performance competitive.

• It describes our prototype implementation that runs
on both an Intel 32-core server and a machine con-
taining an experimental Intel microprocessor called

the “Single-chip Cloud Computer” (SCC) [14]. The
results demonstrate that performance of software
managed coherence can be comparable to hardware
coherence.

The rest of the paper is organized as follows. Section 2
argues why software managed coherence is a better
choice to meet the demands of many-core applications.
Section 3 describes our implementation of software
managed coherence. We show performance results in
section 4, describe related work in section 5 and con-
clude in section 6.

2. Why software managed coherence is a
better choice

We advocate using software managed coherence in
future many-core processors, instead of relying on
hardware coherence across the full chip. In this section,
we explain why software managed coherence is a better
choice for many-core processors given emerging archi-
tectural trends and application characteristics.

Dynamically reconfigure coherence domains

We expect that in the near future, single-chip cloud
computers such as SCC [14] will become popular.
These will typically have multiple applications running
at the same time on the chip. While these applications
may require coherence support among the cores they
run on, they will not need coherence support between
applications. Static partitioning cannot solve the prob-
lem totally, since the applications may request more
cores or free cores during execution. Therefore, sup-
porting dynamically-reconfigurable coherence domains
will be important. Unfortunately, current hardware co-
herence protocols are not flexible enough to do so. It is
not too difficult to add extensions to statically partition
cores into coherence domains. However, it is nontrivial
to support dynamic reconfiguration.

Software managed coherence is a more natural way to
support dynamic partitioning than hardware coherence.
It maintains the metadata of coherence domain informa-
tion in runtime data and flexibly reconfigures domains
based on that runtime information. It is much easier to
add or remove a core from a coherence domain com-
pared to hardware coherence. Moreover, higher-level
information such as load balance, data location, and
other data can be leveraged to decide the optimal policy
for a particular coherence domain.

Support emerging applications

Emerging many-core applications may not require full
hardware coherence at all. We found that there are two
important characteristics for server and cloud work-
loads: one is little data sharing and few accesses to
shared data, and the other is coarse-grained data syn-
chronization. For example, one important application
domain for many-core processors is RMS applica-
tions [9]. However, we observed that the parallel
threads of these applications share little data both stati-
cally and dynamically [10]. This implies that the vast
majority of executions only operate on their non-shared
data. Thus these applications do not need any coherence
enforcement, which means a complex hardware cohe-
rency implementation would be an overdesign for them.
Better use could have been made for those transistors.

Moreover, even in the presence of data sharing, coarse-
grained data synchronization dominates. For example,
map-reduce [16] and BSP [17] models both need only
coarse-grained data synchronization. This also suggests
that full hardware coherence is unnecessary. Further-
more, software managed coherence can achieve compa-
rable performance by taking advantage of coarse-
grained data synchronization. We believe a release con-
sistency model is a perfect match for such many-core
workloads. In addition, release consistency models can
generally be implemented in software efficiently.

Reduce hardware cost

As we mentioned, when processors integrate several
tens or hundreds of cores, it becomes increasingly diffi-
cult to design and verify efficient hardware coherence
support. As [3] and [4] point out, the difficulties come
from two aspects: 1) The conventional interconnect is
expected to become the system bottleneck with so many
cores competing for the communication channels if
existing coherence protocols are used; 2) The new scal-
able interconnects not only make the implementation of
hardware coherence protocols extremely complicated,
but they make them notoriously hard to verify. This
leads to a dilemma between interconnect scalability and
coherence protocol complexity. We view that scalable
interconnects are the future for many-core processors
and believe that coherence enforcement can be best
achieved by a software-only approach.

Previous software managed cache coherence proposals
have demonstrated that comparable or better perfor-
mance can be achieved with zero or a few hardware
additions such as new instructions, modified cache
structures, and new replacement policies [5][6]. How-

ever, additional optimizations can be done to further
improve the performance of software approaches. For
example, instead of managing coherence at the
cache/physical memory level, software managed cohe-
rence can maintain coherence of virtual memory space.
This results in hardware cache resources like hardware
directories and complex circuitries being saved. As
another example, release consistency models keep
memory updates locally until a release point, and trans-
fer the updates at an acquire point. Thus, many individ-
ual coherence messages are effectively combined into a
bulk communication that reduces pressure on the inter-
connection and lowers power consumption.

Support heterogeneous computing

Heterogeneity is expected to proliferate in future com-
puting platforms. This trend can be seen in the TOP500
machine list [15], where many systems with both CPUs
and GPUs appear. We believe heterogeneity will be
common in future many-core systems. Since their cores
can have different architectures and instruction sets,
software managed coherency will be a better solution
than hardware mechanisms [8].

In summary, we believe that software managed cohe-
rence is a better choice for future both homogeneous
and heterogeneous many-core platforms. In fact, some
experimental microprocessors like SCC have already
begun to remove hardware coherence support, and
leave coherency handled by software in order to get
better scalability and lower power consumption.

3. Implementation of software managed
coherence

We implemented a system that uses a software-only
approach to enforce coherence. Our system runs on
both multi-core servers and SCC. Figure 1 describes
our system architecture. There are two key components
in our runtime. One is a domain management module
that manages dynamically partitioned coherence do-
mains. It also manages any related resources. Another is
a coherence policy module that implements a set of
software managed coherence policies. For a certain
domain, the user can specify a policy managed by the
policy module.

Coherence domain management

The coherence domain management module exports
APIs to the application to allocate/free and ex-
pand/shrink coherence domains. After the application is
bound to a domain, our system provides resource virtu-

alization for it that intercepts system calls related to the
domain resources. For example, the Windows system
call GetSystemInfo will only return core information in
its domain, and the following SetProcessAffinityMask
call only sets affinity in this domain.

We implemented this module in two systems. In a sys-
tem with a single operating system, we don’t change the
OS scheduler, but instead wrap all system calls related
to CPU information such as GetSystemInfo and fork.
When the program forks a task, we intercept the request
and set its affinity to a core in the domain before it re-
turns. In a system with multiple operating systems such
as SCC, we have to build an abstract software layer
above the operating system to manage the coherence
domain.

Consistency model

Each coherence domain can choose its own consistency
model from the consistency control module. This al-
lows different applications running on the same chip to
use different consistency models. For example, some
applications (e.g. a simple web server) do not require
consistency; while other applications need release con-
sistency; and still others may need mixed consistency
models.

In our implementation, we choose to support release
consistency [19] since it has proved very useful at re-
ducing communication overhead in coherency man-
agement. It also matches the coarse-grained data syn-
chronization model of many parallel applications.

Figure 1 Architecture of the system with software managed
coherence

App 1

Core Core Core Core Core Core

$$

App 2

Runtime

Consistency model Domain management

M
em

ory

M
em

ory
$$ $$ $$ $$ $$

$$ $$ $$ $$ $$ $$

Partially-shared virtual memory

Our system adopts the shared virtual memory approach
of [13] to provide a coherent, shared virtual address
space among all threads at page granularity. For each
shared virtual page, there is a single home thread main-
taining the golden copy of the page, and all the local
copies maintained in other threads need to synchronize
with that golden copy at synchronization points.

When one thread performs an acquire operation, all
subsequent writes are recorded. At a release point, the
changes are merged into the golden copy. The bulk
communication at release points reduces the number of
communication messages and so reduces the communi-
cation overhead.

We use the virtual memory protection mechanism to
detect accesses to these shared pages. Based on access
modes, each shared page can be Invalid, Read-only, or
Read-Write for each thread. We use twin pages for each
shared virtual page to compute page differences to up-
date the golden copy. We maintain the metadata (e.g.,
status, home info) for the page in a local directory
structure.

We also choose to only provide a partially-shared vir-
tual memory space. In our system, the virtual address
space of each thread is divided into two parts. One is
shared virtual address space that is shared and accessi-
ble by all threads of the same application; and the other
is private virtual address space that is private to each
thread and only it can access. The shared space contains
just shared data, which cuts down the amount of memo-
ry that needs to be kept coherent. We introduce one
new type qualifier “shared” to the standard C/C++ lan-
guages. By default, all data are private and allocated in
the private space. It is the programmer’s responsibility
to mark shared data by using the new qualifier or by
calling a special memory allocation API.

4. Experimental evaluation

We used both a SCC machine and a 32-core server to
evaluate our software managed coherence implementa-
tion. The research SCC microprocessor contains a total
of 48 cores on a single chip connected with a fast and
scalable on-chip mesh network. It has no hardware
cache coherence support in order to simplify the design
and reduce power consumption. The 32-core server we
used is a SMP machine that contains four 8-core Intel®
Core™ i7 processors. We measured two workloads,
Black Scholes and Art, which are typical kernel
benchmarks for many core servers. Black Scholes is a

financial workload from MCBench [18] that prices op-
tions using the Black Scholes method. Art is a workload
from SpecOMP that performs image recognition. Stan-
dard input sets are used for both workloads.

We used two versions of each workload. One is the
original Pthreads/OpenMP version of the workload. We
ran this version to determine the performance when
there is hardware coherence support. We cannot run the
original version on SCC due to its lack of hardware
coherency. We also ported the two workloads to our
software coherence system by inserting explicit cohe-
rence API calls to manage coherence. We ran the ported
versions to get performance data with software ma-
naged coherence on both SCC and the 32-core server.

Figure 2 compares the performance on the 32-core sys-
tem between software managed coherence and hard-
ware coherence. Note that both performance numbers
for software and hardware coherence are relative to a
sequential version on single core. This figure shows
that software managed coherence produces comparable
performance to hardware coherence. It also shows good
scalability for both software managed coherence and
hardware coherence.

We believe that we can get better performance for
software coherence by further optimizing the imple-
mentation. For example, a large part of the overhead is
from changing the protection of the shared virtual pages
and recording dirty pages when they are modified. This
overhead can be reduced if we can modify the OS to
support these operations more efficiently.

We show the performance of the two workloads run-
ning on SCC in Figure 3. Scalability for these two
workloads is good even though coherence is managed

0

5

10

15

20

25

30

1 2 4 8 16 32

Re
la
ti
ve

 P
er
fo
rm

an
ce

Thread Number

Black Scholes ‐ Hardware
Black Scholes ‐ Software
Art ‐ Hardware
Art ‐ Software

Figure 2 Performance comparison of software managed
coherence and hardware coherence

by software. These results show that the SCC scalabili-
ty compares well with the 32-core server. As we men-
tioned, there is no hardware coherence support, so we
have no way to directly compare the performance of
software managed coherence with hardware coherence
on SCC. We believe that performance of software ma-
naged coherence would be close to that for hardware
coherence on SCC if that were implemented.

5. Related work

In the past, several authors advocated using software
coherence for multi-chip systems [1][2] but expressed
concern about uncertain performance. Today, however,
computer technology is entering the many-core era. The
on-chip interconnects of many-core systems are much
faster than the network in SMP or cluster systems. Also,
emerging many-core applications tend to show coarse-
grained data synchronization and little data sharing.
These trends suggest revisiting the idea of using soft-
ware coherence. Our belief is that software-managed
coherence will help solve the power and complexity
issues of many-core chips, and will better match the
requirements of emerging applications.

Fensch et al. [5] propose using software to map lines to
physical caches and hardware to support remote cache
access. With these changes, there is no need for hard-
ware-coherence support. They extend the TLB structure
to enable an OS-based mapping mechanism. Compared
to our approach, their proposal involves nontrivial
hardware logic and state storage that makes it difficult
to use current designs as building blocks for many-core
processors. In addition, their OS-based scheme requires
significant kernel modifications that may not be possi-
ble without OS sources.

Rigel [6] is an architecture using software to manage
cache coherence. All local stores are invisible to other
cores until an eviction occurs or the data is explicitly
flushed by software. Compared to our work, Rigel has a
different architecture (cluster cache and global cache)
and different algorithms (local operation and global
operation). On another hand, it maintains the cluster’s
cache coherence by software with additional hardware
support, while our implementation is a pure software-
managed coherence approach.

6. Conclusion and future work

In this paper, we advocate supporting software ma-
naged coherence for many-core processors instead of
expensive hardware coherence. Our software managed
coherence mechanism can dynamically support mul-
tiple coherence domains, efficiently supports emerging
applications, reduces hardware cost for coherence man-
agement, and more easily supports heterogeneous com-
puting platforms. We implemented a system using our
software-only approach to manage the coherence of a
partially-shared virtual address space. The experimental
results show that in both SCC and a 32-core server, the
performance of software managed coherence is compa-
rable to hardware coherence.

In the future, we may quantify the hardware savings
with our software managed approach, and explore op-
portunities to further improve software managed cohe-
rence performance with simple hardware extensions.

7. Reference

[1] S. V. Adve, V. S. Adve, M. D. Hill, and M. K.
Vernon. Comparison of Hardware and Software
Cache Coherent Schemes. International Sympo-
sium on Computer Architecture, 1991.

[2] R. N. Zucker and J-L. Baer. Software versus
Hardware Coherence: Performance versus Cost. In-
ternational Conference on System Science, 1994.

[3] R. Kumar, V. Zyuban, and D. M. Tullsen. Inter-
connections in Multi-core Architecture: Under-
standing Mechanisms, Overheads and Scaling. In-
ternational Symposium on Computer Architecture,
2005.

[4] D. Abts, S. Scott, and D. J. Lilja. So Many States,
So Little Time: Verifying Memory Coherence in
the Cray X1. Internal Parallel and Distributed
Processing Symposium, 2003.

[5] C. Fensch, and M. Cintra. An OS-Based Alterna-
tive to Full Hardware Coherence on Tiled CMPs.
High Performance Computer Architecture, 2008.

0

5

10

15

20

25

1 2 4 8 16 32

Sp
ee
du

p

Thread Number

Black Scholes ‐ Software

Art ‐ Software

Figure 3 Performance data on SCC with software
managed coherence

[6] J. H. Kelm, D. R. Johnson, M. R. Johnson, N. C.
Crago, W. Tuohy, A. Mahesri, S. S. Lumetta, M. I.
Frank, and S. J. Patel. Rigel: An Architecture and
Scalable Programming Interface for a 1000-core
Accelerator. International Symposium on Comput-
er Architecture, 2009.

[7] J. Rattner. Tera-Scale Research Program. Intel De-
velopment Forum. Spring 2006.

[8] B. Saha, X. Zhou, H. Chen, Y. Gao, S. Yan, M.
Rajagopalan, J. Fang, P. Zhang, R. Ronen, and A.
Mendelson. Programming model for a heterogene-
ous x86 platform. Programming Language Design
and Implementation, 2009.

[9] Dubey P. Recognition, Mining and Synthesis
moves computers to the era of tera, Technology @
Intel, Feb 2005.

[10] S. Yan, X. Zhou, Y. Gao, H. Chen, S. Luo, P.
Zhang Peinan, C. Naveen, R. Ronny, and S. Bratin.
Terascale Chip Multiprocessor Memory Hierarchy
and Programming Model. International Conference
on High Performance Computing, 2009.

[11] N. Hardavellas, M. Ferdman, B. Falsafi, and A.
Ailamaki. Ractive NUCA: Near-optimal Block
Placement and Replication in Distributed Caches.
International Symposium on Computer Architec-
ture, 2009.

[12] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H.
Lu, R. RajaMony, W. Yu, and W. Zwaenepoel.
TreadMarks: Shared Memory Computing on Net-
works of Workstations. IEEE Computer, Feb 1996.

[13] L. Kontothanasis, R. Stets, G. Hunt, U. Rencuzo-
gullari, G. Altekar, S. Dwarkadas, and M. L. Scott.
Shared Memory Computing on Clusters with
Symmetric Multiprocessors and System Area Net-
works. ACM Transactions on Computer Systems,
August 2005.

[14] Intel Corp. Single-chip Cloud Computer.
At http://techresearch.intel.com/articles/Tera-
Scale/1826.htm

[15] http://www.top500.org
[16] J. Dean and S. Ghemawat. MapReduce: Simplified

Data Processing on Large Clusters. Symposium on
Operating System Design and Implementation. De-
cember, 2004.

[17] L. G. Valiant. A Bridging Model for Parallel Com-
putation. Communications of the ACM 33, 8 (Aug.
1990), 103-111.

[18] T. Mattson, Y. Chen. MCBench: The Many Core
Benchmark Suite, Intel Tracing and Simulation
Summit 2007, Hillsboro, OR, US, May 14-16,
2007.

[19] S.V. Adve, A.L. Cox, S. Dwarkadas, R. Rajamony,
W. Zwaenepoel, A comparison of entry consisten-
cy and lazy release consistency implementations,

Proceedings of Second International Symposium
on High-Performance Computer Architecture,
1996.

http://techresearch.intel.com/articles/Tera-Scale/1826.htm
http://techresearch.intel.com/articles/Tera-Scale/1826.htm
http://www.top500.org/

