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Abstract 

Processor vendors are integrating more and more cores into their chip. These many-core processors usually imple-
ment hardware coherence mechanisms, but when the core count goes to hundreds or more, it becomes prohibitively 
difficult to design and verify efficient hardware coherence support. Despite this, many parallel applications, for ex-
ample RMS applications [9], show little data sharing, which suggests that providing a complex hardware coherence 
implementation wastes hardware budget and design effort. Moreover, in some increasingly important domains, such 
as server and cloud computing, multiple applications may run on a single many-core chip. Those applications re-
quire coherence support among the cores that they are running on, but not between different applications. This indi-
cates a strong requirement for dynamically reconfigurable coherence domains, which is extremely hard to support 
with hardware-only mechanisms. In addition, hardware coherence is believed to be too complex to support hetero-
geneous platforms such as combined CPU-GPU systems, regardless whether the GPU is integrated or discrete. 

In this paper, we argue that software managed coherence is a better choice than hardware coherence for many-core 
processors. We believe that software managed coherence can make better use of silicon, efficiently support emerg-
ing applications, dynamically reconfigure coherence domain, and most importantly, still be able to provide perfor-
mance comparable to hardware coherence. We implemented a prototype system with software managed coherence 
over a partially-shared address space and show promising results. 

 

1. Introduction 

When single-CPU designs hit the power wall, processor 
architecture entered the multi-core era [7]. Today, mul-
ti-core processors dominate the market from client to 
server platforms, and it is believed that general purpose 
many-core chips will emerge soon that have several 
tens to hundreds of cores on a single chip. Moreover, 
accelerator processors such as GPUs are being inte-
grated into heterogeneous architectures as well. 

Cache coherence is a fundamental issue that must be 
addressed during many-core design. With a small num-
ber of cores (e.g., less than ten), a hardware coherency 
implementation has proven effective. However, when 
the core count goes to several tens or hundreds, it be-
comes prohibitively expensive and difficult to design 
and verify efficient hardware coherence support [3][4]. 

Even when hardware coherence in a many-core proces-
sor is feasible, it still shows a couple of limitations 
compared to a software implementation. First, hardware 
coherence is not as flexible as its software counterpart. 
Given the increasing importance of server and cloud 

computing, many applications will run concurrently on 
a single chip. Dynamically forming a coherent domain 
for each application is challenging for a hardware cohe-
rence implementation, but not for software managed 
coherence. Second, emerging applications show charac-
teristics like limited data sharing that suggest full hard-
ware coherence support may be unnecessary. 

In this paper, we propose not implementing complex 
hardware coherence mechanisms. Instead, we argue that 
software managed coherence is a better choice for 
many-core processors because it can utilize silicon 
more efficiently, support more flexible usage, and pro-
vide comparable performance. 

This paper makes the following contributions: 

• It advocates software managed coherence for 
many-core architecture. Software managed cohe-
rence can be flexible and performance competitive. 
 

• It describes our prototype implementation that runs 
on both an Intel 32-core server and a machine con-
taining an experimental Intel microprocessor called 



the “Single-chip Cloud Computer” (SCC) [14]. The 
results demonstrate that performance of software 
managed coherence can be comparable to hardware 
coherence. 

The rest of the paper is organized as follows. Section 2 
argues why software managed coherence is a better 
choice to meet the demands of many-core applications. 
Section 3 describes our implementation of software 
managed coherence. We show performance results in 
section 4, describe related work in section 5 and con-
clude in section 6. 

2. Why software managed coherence is a 
better choice 

We advocate using software managed coherence in 
future many-core processors, instead of relying on 
hardware coherence across the full chip. In this section, 
we explain why software managed coherence is a better 
choice for many-core processors given emerging archi-
tectural trends and application characteristics.  

Dynamically reconfigure coherence domains 

We expect that in the near future, single-chip cloud 
computers such as SCC [14] will become popular. 
These will typically have multiple applications running 
at the same time on the chip. While these applications 
may require coherence support among the cores they 
run on, they will not need coherence support between 
applications. Static partitioning cannot solve the prob-
lem totally, since the applications may request more 
cores or free cores during execution. Therefore, sup-
porting dynamically-reconfigurable coherence domains 
will be important. Unfortunately, current hardware co-
herence protocols are not flexible enough to do so. It is 
not too difficult to add extensions to statically partition 
cores into coherence domains. However, it is nontrivial 
to support dynamic reconfiguration.  

Software managed coherence is a more natural way to 
support dynamic partitioning than hardware coherence. 
It maintains the metadata of coherence domain informa-
tion in runtime data and flexibly reconfigures domains 
based on that runtime information. It is much easier to 
add or remove a core from a coherence domain com-
pared to hardware coherence. Moreover, higher-level 
information such as load balance, data location, and 
other data can be leveraged to decide the optimal policy 
for a particular coherence domain.  

Support emerging applications 

Emerging many-core applications may not require full 
hardware coherence at all. We found that there are two 
important characteristics for server and cloud work-
loads: one is little data sharing and few accesses to 
shared data, and the other is coarse-grained data syn-
chronization. For example, one important application 
domain for many-core processors is RMS applica-
tions [9]. However, we observed that the parallel 
threads of these applications share little data both stati-
cally and dynamically [10]. This implies that the vast 
majority of executions only operate on their non-shared 
data. Thus these applications do not need any coherence 
enforcement, which means a complex hardware cohe-
rency implementation would be an overdesign for them. 
Better use could have been made for those transistors. 

Moreover, even in the presence of data sharing, coarse-
grained data synchronization dominates. For example, 
map-reduce [16] and BSP [17] models both need only 
coarse-grained data synchronization. This also suggests 
that full hardware coherence is unnecessary. Further-
more, software managed coherence can achieve compa-
rable performance by taking advantage of coarse-
grained data synchronization. We believe a release con-
sistency model is a perfect match for such many-core 
workloads.  In addition, release consistency models can 
generally be implemented in software efficiently. 

Reduce hardware cost 

As we mentioned, when processors integrate several 
tens or hundreds of cores, it becomes increasingly diffi-
cult to design and verify efficient hardware coherence 
support. As [3] and [4] point out, the difficulties come 
from two aspects: 1) The conventional interconnect is 
expected to become the system bottleneck with so many 
cores competing for the communication channels if 
existing coherence protocols are used; 2) The new scal-
able interconnects not only make the implementation of 
hardware coherence protocols extremely complicated, 
but they make them notoriously hard to verify. This 
leads to a dilemma between interconnect scalability and 
coherence protocol complexity. We view that scalable 
interconnects are the future for many-core processors 
and believe that coherence enforcement can be best 
achieved by a software-only approach. 

Previous software managed cache coherence proposals 
have demonstrated that comparable or better perfor-
mance can be achieved with zero or a few hardware 
additions such as new instructions, modified cache 
structures, and new replacement policies [5][6]. How-



ever, additional optimizations can be done to further 
improve the performance of software approaches. For 
example, instead of managing coherence at the 
cache/physical memory level, software managed cohe-
rence can maintain coherence of virtual memory space. 
This results in hardware cache resources like hardware 
directories and complex circuitries being saved. As 
another example, release consistency models keep 
memory updates locally until a release point, and trans-
fer the updates at an acquire point. Thus, many individ-
ual coherence messages are effectively combined into a 
bulk communication that reduces pressure on the inter-
connection and lowers power consumption. 

Support heterogeneous computing 

Heterogeneity is expected to proliferate in future com-
puting platforms. This trend can be seen in the TOP500 
machine list [15], where many systems with both CPUs 
and GPUs appear. We believe heterogeneity will be 
common in future many-core systems. Since their cores 
can have different architectures and instruction sets, 
software managed coherency will be a better solution 
than hardware mechanisms [8]. 

In summary, we believe that software managed cohe-
rence is a better choice for future both homogeneous 
and heterogeneous many-core platforms. In fact, some 
experimental microprocessors like SCC have already 
begun to remove hardware coherence support, and 
leave coherency handled by software in order to get 
better scalability and lower power consumption. 

3. Implementation of software managed 
coherence 

We implemented a system that uses a software-only 
approach to enforce coherence. Our system runs on 
both multi-core servers and SCC. Figure 1 describes 
our system architecture. There are two key components 
in our runtime. One is a domain management module 
that manages dynamically partitioned coherence do-
mains. It also manages any related resources. Another is 
a coherence policy module that implements a set of 
software managed coherence policies. For a certain 
domain, the user can specify a policy managed by the 
policy module.  

Coherence domain management 

The coherence domain management module exports 
APIs to the application to allocate/free and ex-
pand/shrink coherence domains. After the application is 
bound to a domain, our system provides resource virtu-

alization for it that intercepts system calls related to the 
domain resources. For example, the Windows system 
call GetSystemInfo will only return core information in 
its domain, and the following SetProcessAffinityMask 
call only sets affinity in this domain. 

 
 

 

We implemented this module in two systems. In a sys-
tem with a single operating system, we don’t change the 
OS scheduler, but instead wrap all system calls related 
to CPU information such as GetSystemInfo and fork. 
When the program forks a task, we intercept the request 
and set its affinity to a core in the domain before it re-
turns. In a system with multiple operating systems such 
as SCC, we have to build an abstract software layer 
above the operating system to manage the coherence 
domain.  

Consistency model 

Each coherence domain can choose its own consistency 
model from the consistency control module. This al-
lows different applications running on the same chip to 
use different consistency models. For example, some 
applications (e.g. a simple web server) do not require 
consistency; while other applications need release con-
sistency; and still others may need mixed consistency 
models.  

In our implementation, we choose to support release 
consistency [19] since it has proved very useful at re-
ducing communication overhead in coherency man-
agement. It also matches the coarse-grained data syn-
chronization model of many parallel applications.  

Figure 1 Architecture of the system with software managed 
coherence 
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Partially-shared virtual memory  

Our system adopts the shared virtual memory approach 
of [13] to provide a coherent, shared virtual address 
space among all threads at page granularity. For each 
shared virtual page, there is a single home thread main-
taining the golden copy of the page, and all the local 
copies maintained in other threads need to synchronize 
with that golden copy at synchronization points.  

When one thread performs an acquire operation, all 
subsequent writes are recorded. At a release point, the 
changes are merged into the golden copy. The bulk 
communication at release points reduces the number of 
communication messages and so reduces the communi-
cation overhead. 

We use the virtual memory protection mechanism to 
detect accesses to these shared pages. Based on access 
modes, each shared page can be Invalid, Read-only, or 
Read-Write for each thread. We use twin pages for each 
shared virtual page to compute page differences to up-
date the golden copy. We maintain the metadata (e.g., 
status, home info) for the page in a local directory 
structure.  

We also choose to only provide a partially-shared vir-
tual memory space. In our system, the virtual address 
space of each thread is divided into two parts. One is 
shared virtual address space that is shared and accessi-
ble by all threads of the same application; and the other 
is private virtual address space that is private to each 
thread and only it can access. The shared space contains 
just shared data, which cuts down the amount of memo-
ry that needs to be kept coherent. We introduce one 
new type qualifier “shared” to the standard C/C++ lan-
guages. By default, all data are private and allocated in 
the private space. It is the programmer’s responsibility 
to mark shared data by using the new qualifier or by 
calling a special memory allocation API. 

4. Experimental evaluation 

We used both a SCC machine and a 32-core server to 
evaluate our software managed coherence implementa-
tion. The research SCC microprocessor contains a total 
of 48 cores on a single chip connected with a fast and 
scalable on-chip mesh network. It has no hardware 
cache coherence support in order to simplify the design 
and reduce power consumption. The 32-core server we 
used is a SMP machine that contains four 8-core Intel® 
Core™ i7 processors. We measured two workloads, 
Black Scholes and Art, which are typical kernel 
benchmarks for many core servers. Black Scholes is a 

financial workload from MCBench [18] that prices op-
tions using the Black Scholes method. Art is a workload 
from SpecOMP that performs image recognition. Stan-
dard input sets are used for both workloads. 

We used two versions of each workload. One is the 
original Pthreads/OpenMP version of the workload. We 
ran this version to determine the performance when 
there is hardware coherence support. We cannot run the 
original version on SCC due to its lack of hardware 
coherency. We also ported the two workloads to our 
software coherence system by inserting explicit cohe-
rence API calls to manage coherence. We ran the ported 
versions to get performance data with software ma-
naged coherence on both SCC and the 32-core server. 

 

 
Figure 2 compares the performance on the 32-core sys-
tem between software managed coherence and hard-
ware coherence. Note that both performance numbers 
for software and hardware coherence are relative to a 
sequential version on single core. This figure shows 
that software managed coherence produces comparable 
performance to hardware coherence. It also shows good 
scalability for both software managed coherence and 
hardware coherence.  

We believe that we can get better performance for 
software coherence by further optimizing the imple-
mentation. For example, a large part of the overhead is 
from changing the protection of the shared virtual pages 
and recording dirty pages when they are modified. This 
overhead can be reduced if we can modify the OS to 
support these operations more efficiently. 

We show the performance of the two workloads run-
ning on SCC in Figure 3. Scalability for these two 
workloads is good even though coherence is managed 
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Figure 2 Performance comparison of software managed 
coherence and hardware coherence 



by software. These results show that the SCC scalabili-
ty compares well with the 32-core server. As we men-
tioned, there is no hardware coherence support, so we 
have no way to directly compare the performance of 
software managed coherence with hardware coherence 
on SCC. We believe that performance of software ma-
naged coherence would be close to that for hardware 
coherence on SCC if that were implemented. 

 

 
5. Related work 

In the past, several authors advocated using software 
coherence for multi-chip systems [1][2] but expressed 
concern about uncertain performance. Today, however, 
computer technology is entering the many-core era. The 
on-chip interconnects of many-core systems are much 
faster than the network in SMP or cluster systems. Also, 
emerging many-core applications tend to show coarse-
grained data synchronization and little data sharing. 
These trends suggest revisiting the idea of using soft-
ware coherence. Our belief is that software-managed 
coherence will help solve the power and complexity 
issues of many-core chips, and will better match the 
requirements of emerging applications. 

Fensch et al. [5] propose using software to map lines to 
physical caches and hardware to support remote cache 
access. With these changes, there is no need for hard-
ware-coherence support. They extend the TLB structure 
to enable an OS-based mapping mechanism. Compared 
to our approach, their proposal involves nontrivial 
hardware logic and state storage that makes it difficult 
to use current designs as building blocks for many-core 
processors. In addition, their OS-based scheme requires 
significant kernel modifications that may not be possi-
ble without OS sources. 

Rigel [6] is an architecture using software to manage 
cache coherence. All local stores are invisible to other 
cores until an eviction occurs or the data is explicitly 
flushed by software. Compared to our work, Rigel has a 
different architecture (cluster cache and global cache) 
and different algorithms (local operation and global 
operation). On another hand, it maintains the cluster’s 
cache coherence by software with additional hardware 
support, while our implementation is a pure software- 
managed coherence approach. 

6. Conclusion and future work 

In this paper, we advocate supporting software ma-
naged coherence for many-core processors instead of 
expensive hardware coherence. Our software managed 
coherence mechanism can dynamically support mul-
tiple coherence domains, efficiently supports emerging 
applications, reduces hardware cost for coherence man-
agement, and more easily supports heterogeneous com-
puting platforms. We implemented a system using our 
software-only approach to manage the coherence of a 
partially-shared virtual address space. The experimental 
results show that in both SCC and a 32-core server, the 
performance of software managed coherence is compa-
rable to hardware coherence. 

In the future, we may quantify the hardware savings 
with our software managed approach, and explore op-
portunities to further improve software managed cohe-
rence performance with simple hardware extensions.  
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