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Patterns

A parallel pattern is a commonly occurring combination of task 

distribution and data access

• Many common programming models support either only a 

small number of patterns, or only low-level hardware 

mechanisms

– So often common patterns implemented only as “conventions”

Observation: a small number of patterns, most of them 

deterministic, can support a wide range of applications

Thesis: A system that directly supports these deterministic 

patterns and allows their composition can generate efficient 

implementations on a variety of hardware architectures
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Motivation for Pattern-based Design

Deterministic patterns  higher maintainability

– No need to debug race conditions if it not possible to create them

– Allow introduction of races only where necessary, and limit scope

– Determinism and consistency with single serial execution order 

simplifies user understanding, debugging and testing

Application oriented patterns  higher productivity

– Patterns derived from common use cases in applications

– Subset of patterns are universal: gives wide applicability

– Patterns can also target specific domains: 

– Makes simple things simple

– Patterns encourage high-level reasoning 

– Focus users on what really matters: parallelism and data locality

– Simplifies learning how to write efficient programs
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Serial  Patterns

The following patterns are the basis of “structured 

programming” for serial computation:

•Sequence

•Selection

• Iteration

•Recursion

•Random read

•Random write

•Stack allocation

•Heap allocation

•Objects/closures

Compositions of control flow patterns can be used in place of 

unstructured mechanisms such as “goto.”
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Parallel  Patterns

The following additional parallel patterns can be used for 

“structured parallel programming”:

•Superscalar sequence

•Speculative selection

•Map

•Recurrence/scan

•Reduce

•Pack/expand

•Nest

•Pipeline

•Partition

•Stencil

•Search/match

•Gather

• *Permutation scatter

• *Merge scatter

• !Atomic scatter

•Priority scatter
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Sequence

f

g

q

p

B = f(A);

C = g(B);

E = p(C);

F = q(A);

A serial sequence is executed in the 

exact order given:
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Superscalar Sequence

f

g

f h

g

r

qp

B = f(A);

C = g(B);

E = f(C);

F = h(C);

G = g(E,F);

P = p(B);

Q = q(B);

R = r(G,P,Q);

• However, tasks only need to be ordered 

by data dependencies
• Depends on limiting scope of data 

dependencies

Developer writes “serial” code:
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Selection

f g

IF (c) {

f

} ELSE {

g

}

The condition is evaluated first, then 

one of two tasks is executed based on 

the result.c
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Speculative Selection

SELECT (c) {

f

} ELSE {

g

}

• Effort in cancelled task “wasted”

• Use only when a computational 

resource would otherwise be idle, or 

tasks are on critical path

Both sides of a conditional and the 

condition are evaluated in parallel, 

then the unused branch is cancelled.

f g

c

Examples: collision culling; 

ray tracing; clipping; 

discrete event simulation;

search 
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Map

• Map replicates a function over 
every element of an index set 

(which may be abstract or 

associated with the elements of 

an array).

• This replaces one specific usage 

of iteration in serial programs: 

processing every element of a 

collection with an independent 
operation.

A = map(f,B);

f f f f

Examples: gamma correction and 

thresholding in images; color space 

conversions; Monte Carlo sampling; 

ray tracing.
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Reduction

• Reduce combines every element 
in a collection into one element 

using an associative operator.

• For example, reduce can be used 

to find the sum or maximum of an 

array.

• There are some variants that 

arise from combination with 

partition and search

b = reduce(f,B);
f f

f

Examples: averaging of Monte Carlo 

samples; convergence testing; 

image comparison metrics; sub-task 

in matrix operations.
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Scan

• Scan computes all partial 

reductions

• Allows parallelization of 

many 1D recurrences

• Requires an associative 

operator

• Requires 2n work over serial 

execution, but lg n steps

Examples: integration, sequential 

decision simulations in financial 

engineering, can also be used to 

implement pack

12

f f f f

f f

f

f

fff



Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved. 

*Other brands and names are the property of their respective owners.

Recurrences

• Recurrences arise from the 

data dependency pattern 
given by nested loop-

carried dependencies.
• nD recurrences can always be 

parallelized over n-1 

dimensions by Lamport’s

hyperplane theorem

• Execution of parallel slices 

can be performed either via 

iterative map or via 

wavefront parallelism

f ff f

f ff f

f ff f

f ff f

Examples: infinite impulse response 

filters; sequence alignment (Smith-

Waterman dynamic programming); 

matrix factorization
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Recurrences: Implementation Note

• Implementation can use 

blocking for higher 

performance

• When combined with the 

“pipeline” pattern 

recurrences implements 

“wavefront” computation

• Can also be combined with 

superscalar execution (see 

recent ICS paper...)

f ff f

f ff f

f ff f

f ff f
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Partition

• Partition breaks an input 

collection into a collection of 
collections

• Useful for divide-and-conquer 

algorithms

• Variants:
• Uniform: dice

• Non-uniform: segment

• Overlapping: tile

• Issues: 
• How to deal with boundary 

conditions?

• Partitions don’t move data, they 

just provide an alternative “view” 
of its organization

Examples: JPG and other 

macroblock compression; divide-

and-conquer matrix multiplication; 

coherency optimization for cone-

beam reconstruction
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Stencil

• Apply function to all 
neighbourhoods of an array

• Neighbourhoods given by set of 

relative offsets

• Optimized implementation 
requires blocking and sliding 

windows

• “Boundary modes” on array 

accesses useful

Examples: image filtering including 

convolution, median, anisotropic 

diffusion; simulation including fluid 

flow, electromagnetic, and financial 

PDE solvers, lattice QCD
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Pipeline

• Tasks can be organized in chain with local state

• Useful for serially dependent tasks like codecs
• Whole chain applied like map to collection or stream

• Implementation of many sub-patterns may be optimized for 

pipeline execution when inside this pattern

Examples: codecs with variable-

rate compression; video 

processing; spam filtering.
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Pack

• Pack allows deletion of 

elements from a 

collection and elimination 

of unused space

• Useful when fused with 

map and other patterns 

to avoid unnecessary 

output

Examples: narrow-phase collision 

detection pair testing (only want to 

report valid collisions), peak 

detection for template matching.
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Expand

• Expand allows element of 

map operation to insert any 

number of elements 

(including none) into its 

output stream

• Useful when fused with map 

and other patterns to 

support variable-rate output
Examples: broad-phase collision 

detection pair testing (want to report 

potentially colliding pairs); 

compression and decompression.
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Fused Patterns

• Programs are built from combinations of patterns

• Should be able to fuse patterns for performance

• May be useful to explicitly support specific combinations

• Examples:

– Gather = map + random read

– Scatter = map + random write

– Map + reduce for preprocessing before reduction

– Map + pack/expand for culling operations

– Partition + reduce for multidimensional reduction
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Search/Match

• Searching and matching 

fundamental capabilities

• Use to select data for 

another operation, by 

creating a (virtual) collection 

or partitioned collection.

• Example: category reduction

reduces all elements in an 

array with the same “label”, 

and is the form used in 

Google’s map-reduce

1 2 3 4 5 6 7

1 1

7 1

3 3

2 2

3 3

2 3

6 6

6 6

4 4

3 4

7 7

7 7

2 2

7 4

4 5

4 5

5 6

6 6

5 5

5 5

f

Examples: computation of metrics on 

segmented regions in vision; 

computation of web analytics
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Gather

• Map + Random Read

– Read from a random (computed) location in an array

– When used inside a map or as a collective, becomes a parallel operation

– Views into arrays, but no global pointers

– Write-after-read semantics for kernels to avoid races

August 18, 2008

A B C D E F G 1 5 0 2 2 4

B F A C C E

Examples: sparse matrix 

operations; ray tracing; 

proximity queries; collision 

detection.
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*!Scatter

• Map + Random Write

– Write into a random (computed) location in an array

– When used inside a map, becomes a parallel operation

– Race conditions possible when there are duplicate write addresses 

(“collisions”)

– To obtain deterministic scatter, need a deterministic rule to resolve 
collisions

C A ? F B 1 5 0 2 2 4

A B C D E F
Examples: marking pairs in 

collision detection; handling 

database update transactions.
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*Permutation Scatter

• Make collisions illegal

• Only guaranteed to work if no duplicate addresses

• Danger is that programmer will use it when addresses do in fact have 

collisions, then will depend on undefined behaviour

• Similar safety issue as with out-of-bounds array accesses.

• Can test for collisions in “debug mode”

C A E D F B 1 5 0 2 3 4

A B C D E F Examples: FFT scrambling; 

matrix/image transpose; 

unpacking.
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*Merge Scatter

• Use an associative operator to combine values upon collision

• Problem: as with reduce, depends on programmer to define associative 

operator

• Gives non-deterministic read-modify-write when used with non-

associative operators

• Due to structured nature of other patterns, can still provide tool to check 

for race conditions.

2 0 7 5 1 1 5 0 2 2 4

0 1 2 3 4 5 Examples: histogram; mutual 

information and entropy; 

database updates.
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!Atomic Scatter

• Resolve collisions atomically but non-deterministically

• Use of this pattern will result in non-deterministic programs

• Structured nature of rest of patterns makes it possible to test 

for race conditions

C A D F B 1 5 0 2 2 4

A B C D E F

E

or

Examples: marking pairs in 

collision detection; computing 

set intersection or union (used 

in text databases)
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Priority Scatter

• Assign every parallel element a priority

– NOTE: Need hierarchical structure of other patterns to do this

• Deterministically determine “winner” based on priority

• When converting from serial code, priority can be based on 
original ordering, giving results consistent with serial program

• Efficient implementation is similar to hierarchical z-buffer...

C A E F B 1 5 0 2 2 4

A B C D E F

0 1 2 3 4 5
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Nesting
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 Patterns can be used to reason about and organize 
development of parallel algorithms and programming models

– Integrating these patterns into Ct for heterogeneous computing

 Many useful patterns are deterministic

 Compositions of deterministic patterns lead to deterministic 

programs

Discussion:

– Are there a smaller number of “primitive” patterns?

– Are any important patterns missing?

– Can “structured” be well-defined?

– How important are non-deterministic patterns?

– Can any of these be considered “structured”?

Conclusion
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Challenge:
Multiple Parallelism Mechanisms 

Modern processors have many kinds of parallelism:

• Pipelining

• SIMD within a register (SWAR) vectorization

• Superscalar instruction issue or VLIW

• Overlapping memory access with computation (prefetch)

• Simultaneous multithreading (hyperthreading) per core

• Multiple cores

• Multiple processors

• Asynchronous host and accelerator execution

• HPC adds: clusters, distributed memory, grid…
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General Factors Affecting Algorithm Performance

1. Parallelism

• Choose or design a good parallel algorithm

• Large amount of latent parallelism, low serial overhead

• Asymptotically efficient 

• Should scale to large number of processing elements

2. Locality

• Efficient use of the memory hierarchy

• More frequent use of faster local memory

• Coherent use of memory and data transfer

• Good alignment, predictable memory access; blocking

• High arithmetic intensity
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