
Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Structured Parallel Programming with

Deterministic Patterns

May 14, 2010
USENIX HotPar 2010, Berkeley, California

Michael McCool, Software Architect, Ct Technology
Software and Services Group, Intel Corporation

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Patterns

A parallel pattern is a commonly occurring combination of task

distribution and data access

• Many common programming models support either only a

small number of patterns, or only low-level hardware

mechanisms

– So often common patterns implemented only as “conventions”

Observation: a small number of patterns, most of them

deterministic, can support a wide range of applications

Thesis: A system that directly supports these deterministic

patterns and allows their composition can generate efficient

implementations on a variety of hardware architectures

2

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Motivation for Pattern-based Design

Deterministic patterns  higher maintainability

– No need to debug race conditions if it not possible to create them

– Allow introduction of races only where necessary, and limit scope

– Determinism and consistency with single serial execution order

simplifies user understanding, debugging and testing

Application oriented patterns  higher productivity

– Patterns derived from common use cases in applications

– Subset of patterns are universal: gives wide applicability

– Patterns can also target specific domains:

– Makes simple things simple

– Patterns encourage high-level reasoning

– Focus users on what really matters: parallelism and data locality

– Simplifies learning how to write efficient programs

3

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Serial Patterns

The following patterns are the basis of “structured

programming” for serial computation:

•Sequence

•Selection

• Iteration

•Recursion

•Random read

•Random write

•Stack allocation

•Heap allocation

•Objects/closures

Compositions of control flow patterns can be used in place of

unstructured mechanisms such as “goto.”

4

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Parallel Patterns

The following additional parallel patterns can be used for

“structured parallel programming”:

•Superscalar sequence

•Speculative selection

•Map

•Recurrence/scan

•Reduce

•Pack/expand

•Nest

•Pipeline

•Partition

•Stencil

•Search/match

•Gather

• *Permutation scatter

• *Merge scatter

• !Atomic scatter

•Priority scatter

5

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Sequence

f

g

q

p

B = f(A);

C = g(B);

E = p(C);

F = q(A);

A serial sequence is executed in the

exact order given:

6

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Superscalar Sequence

f

g

f h

g

r

qp

B = f(A);

C = g(B);

E = f(C);

F = h(C);

G = g(E,F);

P = p(B);

Q = q(B);

R = r(G,P,Q);

• However, tasks only need to be ordered

by data dependencies
• Depends on limiting scope of data

dependencies

Developer writes “serial” code:

7

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Selection

f g

IF (c) {

f

} ELSE {

g

}

The condition is evaluated first, then

one of two tasks is executed based on

the result.c

8

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Speculative Selection

SELECT (c) {

f

} ELSE {

g

}

• Effort in cancelled task “wasted”

• Use only when a computational

resource would otherwise be idle, or

tasks are on critical path

Both sides of a conditional and the

condition are evaluated in parallel,

then the unused branch is cancelled.

f g

c

Examples: collision culling;

ray tracing; clipping;

discrete event simulation;

search

9

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Map

• Map replicates a function over
every element of an index set

(which may be abstract or

associated with the elements of

an array).

• This replaces one specific usage

of iteration in serial programs:

processing every element of a

collection with an independent
operation.

A = map(f,B);

f f f f

Examples: gamma correction and

thresholding in images; color space

conversions; Monte Carlo sampling;

ray tracing.

10

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Reduction

• Reduce combines every element
in a collection into one element

using an associative operator.

• For example, reduce can be used

to find the sum or maximum of an

array.

• There are some variants that

arise from combination with

partition and search

b = reduce(f,B);
f f

f

Examples: averaging of Monte Carlo

samples; convergence testing;

image comparison metrics; sub-task

in matrix operations.

11

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Scan

• Scan computes all partial

reductions

• Allows parallelization of

many 1D recurrences

• Requires an associative

operator

• Requires 2n work over serial

execution, but lg n steps

Examples: integration, sequential

decision simulations in financial

engineering, can also be used to

implement pack

12

f f f f

f f

f

f

fff

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Recurrences

• Recurrences arise from the

data dependency pattern
given by nested loop-

carried dependencies.
• nD recurrences can always be

parallelized over n-1

dimensions by Lamport’s

hyperplane theorem

• Execution of parallel slices

can be performed either via

iterative map or via

wavefront parallelism

f ff f

f ff f

f ff f

f ff f

Examples: infinite impulse response

filters; sequence alignment (Smith-

Waterman dynamic programming);

matrix factorization

13

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Recurrences: Implementation Note

• Implementation can use

blocking for higher

performance

• When combined with the

“pipeline” pattern

recurrences implements

“wavefront” computation

• Can also be combined with

superscalar execution (see

recent ICS paper...)

f ff f

f ff f

f ff f

f ff f

14

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Partition

• Partition breaks an input

collection into a collection of
collections

• Useful for divide-and-conquer

algorithms

• Variants:
• Uniform: dice

• Non-uniform: segment

• Overlapping: tile

• Issues:
• How to deal with boundary

conditions?

• Partitions don’t move data, they

just provide an alternative “view”
of its organization

Examples: JPG and other

macroblock compression; divide-

and-conquer matrix multiplication;

coherency optimization for cone-

beam reconstruction

15

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Stencil

• Apply function to all
neighbourhoods of an array

• Neighbourhoods given by set of

relative offsets

• Optimized implementation
requires blocking and sliding

windows

• “Boundary modes” on array

accesses useful

Examples: image filtering including

convolution, median, anisotropic

diffusion; simulation including fluid

flow, electromagnetic, and financial

PDE solvers, lattice QCD

16

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Pipeline

• Tasks can be organized in chain with local state

• Useful for serially dependent tasks like codecs
• Whole chain applied like map to collection or stream

• Implementation of many sub-patterns may be optimized for

pipeline execution when inside this pattern

Examples: codecs with variable-

rate compression; video

processing; spam filtering.

17

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Pack

• Pack allows deletion of

elements from a

collection and elimination

of unused space

• Useful when fused with

map and other patterns

to avoid unnecessary

output

Examples: narrow-phase collision

detection pair testing (only want to

report valid collisions), peak

detection for template matching.

18

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Expand

• Expand allows element of

map operation to insert any

number of elements

(including none) into its

output stream

• Useful when fused with map

and other patterns to

support variable-rate output
Examples: broad-phase collision

detection pair testing (want to report

potentially colliding pairs);

compression and decompression.

19

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Fused Patterns

• Programs are built from combinations of patterns

• Should be able to fuse patterns for performance

• May be useful to explicitly support specific combinations

• Examples:

– Gather = map + random read

– Scatter = map + random write

– Map + reduce for preprocessing before reduction

– Map + pack/expand for culling operations

– Partition + reduce for multidimensional reduction

20

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Search/Match

• Searching and matching

fundamental capabilities

• Use to select data for

another operation, by

creating a (virtual) collection

or partitioned collection.

• Example: category reduction

reduces all elements in an

array with the same “label”,

and is the form used in

Google’s map-reduce

1 2 3 4 5 6 7

1 1

7 1

3 3

2 2

3 3

2 3

6 6

6 6

4 4

3 4

7 7

7 7

2 2

7 4

4 5

4 5

5 6

6 6

5 5

5 5

f

Examples: computation of metrics on

segmented regions in vision;

computation of web analytics

21

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Gather

• Map + Random Read

– Read from a random (computed) location in an array

– When used inside a map or as a collective, becomes a parallel operation

– Views into arrays, but no global pointers

– Write-after-read semantics for kernels to avoid races

August 18, 2008

A B C D E F G 1 5 0 2 2 4

B F A C C E

Examples: sparse matrix

operations; ray tracing;

proximity queries; collision

detection.

22

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

*!Scatter

• Map + Random Write

– Write into a random (computed) location in an array

– When used inside a map, becomes a parallel operation

– Race conditions possible when there are duplicate write addresses

(“collisions”)

– To obtain deterministic scatter, need a deterministic rule to resolve
collisions

C A ? F B 1 5 0 2 2 4

A B C D E F
Examples: marking pairs in

collision detection; handling

database update transactions.

23

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

*Permutation Scatter

• Make collisions illegal

• Only guaranteed to work if no duplicate addresses

• Danger is that programmer will use it when addresses do in fact have

collisions, then will depend on undefined behaviour

• Similar safety issue as with out-of-bounds array accesses.

• Can test for collisions in “debug mode”

C A E D F B 1 5 0 2 3 4

A B C D E F Examples: FFT scrambling;

matrix/image transpose;

unpacking.

24

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

*Merge Scatter

• Use an associative operator to combine values upon collision

• Problem: as with reduce, depends on programmer to define associative

operator

• Gives non-deterministic read-modify-write when used with non-

associative operators

• Due to structured nature of other patterns, can still provide tool to check

for race conditions.

2 0 7 5 1 1 5 0 2 2 4

0 1 2 3 4 5 Examples: histogram; mutual

information and entropy;

database updates.

25

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

!Atomic Scatter

• Resolve collisions atomically but non-deterministically

• Use of this pattern will result in non-deterministic programs

• Structured nature of rest of patterns makes it possible to test

for race conditions

C A D F B 1 5 0 2 2 4

A B C D E F

E

or

Examples: marking pairs in

collision detection; computing

set intersection or union (used

in text databases)

26

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Priority Scatter

• Assign every parallel element a priority

– NOTE: Need hierarchical structure of other patterns to do this

• Deterministically determine “winner” based on priority

• When converting from serial code, priority can be based on
original ordering, giving results consistent with serial program

• Efficient implementation is similar to hierarchical z-buffer...

C A E F B 1 5 0 2 2 4

A B C D E F

0 1 2 3 4 5

27

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Nesting

28

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

 Patterns can be used to reason about and organize
development of parallel algorithms and programming models

– Integrating these patterns into Ct for heterogeneous computing

 Many useful patterns are deterministic

 Compositions of deterministic patterns lead to deterministic

programs

Discussion:

– Are there a smaller number of “primitive” patterns?

– Are any important patterns missing?

– Can “structured” be well-defined?

– How important are non-deterministic patterns?

– Can any of these be considered “structured”?

Conclusion

29

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

BACKUP

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Legal Disclaimer

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

Intel, Intel Core and the Intel logo are trademarks of Intel Corporation in the U.S. and other
countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2010. Intel Corporation.

http://intel.com/software/products

31

http://www.intel.com/software/products

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

Challenge:
Multiple Parallelism Mechanisms

Modern processors have many kinds of parallelism:

• Pipelining

• SIMD within a register (SWAR) vectorization

• Superscalar instruction issue or VLIW

• Overlapping memory access with computation (prefetch)

• Simultaneous multithreading (hyperthreading) per core

• Multiple cores

• Multiple processors

• Asynchronous host and accelerator execution

• HPC adds: clusters, distributed memory, grid…

32

Software & Services Group, Developer Products Division

Copyright © 2010, Intel Corporation. All rights reserved.

*Other brands and names are the property of their respective owners.

General Factors Affecting Algorithm Performance

1. Parallelism

• Choose or design a good parallel algorithm

• Large amount of latent parallelism, low serial overhead

• Asymptotically efficient

• Should scale to large number of processing elements

2. Locality

• Efficient use of the memory hierarchy

• More frequent use of faster local memory

• Coherent use of memory and data transfer

• Good alignment, predictable memory access; blocking

• High arithmetic intensity

33

