Capturing and Composing Parallel Patterns with Intel CnC
Ryan Newton, Frank Schlimbach, Mark Hampton, Kathleen Knobe

Intel Corporation

[1. Introduction } [4. In-Place Memory Operations with CnC--}
e Programmer productivity can be improved by encapsulating e CnC data items are single-assignment, enabling determinism, but
structured, well-understood parallel algorithms, i.e. parallel patterns preventing the implementation of in-place parallel algorithms
* We believe it Is important to support these parallel patterns within a * We address this issue by using a lower-level CnC layer, CnC--
high-level framework that can deliver semantic guarantees such as — CNnC-- can be used by modules which internally violate the rules of CnC
determinism while still providing flexibility for performance tuning — The module system safely isolates the portion of the code that contains in-
* In this work, we present Intel CnC as a candidate substrate for place memory operations, maintaining determinism for the entire program
capturing and combining parallel patterns Consider the following module which defines a divide-and-congquer
pattern (the squiggly lines indicate input from or output to the
[2 What 1s CnC? } module’s external environment, i.e. the module arguments):
eI e The module receives an initial
e Intel Concurrent Collections (CnC) Is a deterministic parallel TDitem instance
programming model that supports task and data parallelism .~ Divide-and-Conquer "\« TDstep will descend the tree,

— It does not explicitly specify the parallel execution of operations

L AViVas <TDtag>
— Only an application’s semantic ordering constraints are specified !

I

dividing its TDitem input data
=BUtag> \ into smaller chunks

\

» There is a separation of concerns between the domain expert—who / ' L Wheh” (tjhe threShc"q”Size ii
focuses on the semantic constraints—and the tuning expert—who '\ (TDstep) (BUstep) ; reached, TDstep will work on
n licati n Iatf \ / the chunk and a BUitem
maps the application to the target platrorm T T / instance will be generated
CnC Collections CnC provides three types of static ’\/\(’[TDitem] ’[BUitem]‘W. - BUstep combines the BUitem
collections: instances as it progresses
Computation Ste - . .
P P i) — Computation steps are high-level back up the tree

~ -~ -
-~ —
- ——

operations ordered according to their
semantic constraints

* The final BUstep will output
the finished data to the
environment

Data Item [x] Except for the initial input and final output, the

_ TDitem and BUitem data are completely private to
— Data items are the data produced and the module, and can be safely operated on in-place
Control Tag Q

consumed by computation steps

— Control tags prescribe steps, 1.e. cause - .
Data Dependence them to execute [5. Step SChedU“ng Controls in CnC-- }
Producer - consumer e Collections are connected via data

e CnC-- can also be used to provide low-level scheduling control,

and control dependences that speci o . .
P pectfy facilitating performance tuning for a wide range of patterns

——> litem] —(C13 %) the program’s ordering constraints
R i e For each static collection, a set of * The scheduling controls of CnC-- include priorities, ordering

dynamie instances is generated at constraints, dynamic Chaining, and affinity
runtime; each data item instance Is

Control Dependence » Scheduling controls are composable and are represented as

Controller - controllee ggtig:'ne]l%iiarggei supporting declarative functions on tags, making them amenable to static analysis
@ - The execution of the CnC graph is » We illustrate the application of two scheduling controls below
(st) invoked by the environment, which Priorities
P can produce and consume data items + A partial dynamic instance
and control tags <D graph is shown to the
- - i left—each step Instance in
[3. USIﬂg Modules in CnC } the collection s generates tag
. 6 Instances In the collection t
» Previously, all CnC graphs : : for its left and right children
V1> 3 D were flat, and there was no ! - _
| . code reuse, so even If steps sl /@\ /@\ * IT we want to ach!eve @
' parallel breadth-first

: and s2 performed identical
ﬁoutl%ﬂ CIR—{out2] computations, the @ @ @ @ schedule, we can specify that

programmer had to write the | the step instance with the
same code twice

CHO® lowest-numbered tag should

have highest priority

lin] —WCIYy—

By abstracting the step as a

"0ut2§ programmer only needs to

write the computation code
o A module takes arguments at its instantiation point (resembling a @_ | .
»[tmp:0]—{ELHD)

lin]

 The partial dynamic instance graph to
the left represents independent iterations
of a loop that performs a computation
step sa and a dependent step sb

P ta:1>3 = th: 1> By chaining sa:i with sb:i, we can

Improve memory locality by forcing
_» each consumer to execute Immediately
G after its producer

once, allowing for code reuse
function) and generates a subgraph as a result

e In addition to code reuse, our module system provides the following
benefits:

— A scoping mechanism for unsafe features
;]] . : Sa:l) mmg
— An isolation mechanism to reason about patterns’ invariants separately from

the larger environment

[tmp:1]

