
Dynamic Processors Demand

Dynamic Operating Systems

Sankaralingam Panneerselvam

Michael M. Swift
Computer Sciences Department

University of Wisconsin, Madison, WI

HotPar 20101

Motivation

 Chip Multiprocessor

 Does not support well for sequential workloads

HotPar 2010

P
o

ss
ib

le
 C

o
n

fi
g
u

ra
ti

o
n

s

“Amdahls law in the multicore era”

[IEEE computer, July 2008]

256 128 64 32 16 8 4 2 1
Number of effective cores

Sp
e

ed
u

p
 sy

m
m

et
ri

c

System with up

to 256 cores

250

200

150

100

50

0

2

Motivation

 Asymmetric Chip Multiprocessor

 To satisfy diverse workloads

HotPar 2010

256 255 253 249 241 225 193 129 1
Number of effective cores

Sp
e

ed
u

p
 a

sy
m

m
et

ri
c

“Amdahls law in the multicore era”

[IEEE computer, July 2008]

System with up

to 256 cores

250

200

150

100

50

0

3

Motivation

 Dynamic Multiprocessor

 Flexible to cast to the right configuration based

on the need

HotPar 2010

Sp
e

e
d

u
p

 D
yn

am
ic

Number of elementary cores that gets configured dynamically to
make a powerful core

“Amdahls law in the multicore era”

[IEEE computer, July 2008]

System with up

to 256 cores

1 2 4 8 16 32 64 128 256

250

200

150

100

50

0

4

Core Fusion

[ISCA’07]

Examples of Dynamic Multiprocessors

Intel Turbo Boost

[Nehalem]

HotPar 20105

Motivation

 Many mechanisms lead to dynamically variable

processors

 Performance

 Merging resources: Core Fusion, Speculative

Multithreading

 Shifting power: Turbo Boost, Over-provisioned

systems

 Reliability

 Redundant execution [ISCA’07]

HotPar 20106

Why reconfigure the OS?

 What happens if a processor goes to offline

state without any notification?

 Servicing of interrupts, IPI, Bottom halves is stopped

 Other processors might wait for spinlock

 RCU stall

 Thread execution is stopped

HotPar 20107

Can the OS adapt to changing

processors ?

 Common theme: the number of physical

execution contexts may change dynamically and

frequently

 Our work:

 Analysis of Linux mechanisms for changing processors

 Two new techniques for dynamically varying processors

 Processor Proxies

 Deferred/Parallel Hotplug

HotPar 20108

Outline

 Motivation

 Current Mechanisms

 Processor Proxies

 Deferred/Parallel hotplug

HotPar 20109

Why is changing processors hard?

 Many pieces of code know which processors

are available

 Scheduler

 Per-CPU structures

 Distributed operations require processors to

communicate

 Communication between processors - IPI

 Read Copy Update (RCU) mechanism

HotPar 201010

CPU dependence in Linux

HotPar 2010

 Analysis of Linux 2.6.31-4 kernel on a 4 CPU

machine

 Inference: CPU dependences are widespread

Number of per-CPU data

structures

446 data structures

Number of callbacks when CPU

set changes

35 callbacks

Frequency of global RCU

operations

90 callbacks/second

11

Current solution: Linux Hotplug

 Hotplug allows dynamic addition/removal of a

processor

 Partitioning/virtualization

 Physical repair

 Used for long-term reconfigurations

 Assumes that processors, once off lined, never

comes online

 Notifies all relevant subsystems, creates/deletes all

per-CPU state

HotPar 201012

31 2 4

CPU_DOWN_PREPARE

CPU_DEAD

CPU_POST_DEAD

CPU 3 going down

HotPar 2010

Time

13

take_cpu_down

- disables interrupt

- remove cpu from

cpu_online_mask

-schedule idle thread on this cpu

CPU_DYING

NOP

loop

NOP

loop
NOP

loop

Hotplug performance

 Good for virtualization but too slow for rapid

reconfiguration

Hotplug

Operations

Cores Latency

(msec)

OFFLINE

1 25

2 60

3 137

ONLINE

1 106

2 214

3 331

HotPar 201014

Outline

 Motivation

 Current Mechanisms

 Processor Proxies

 Deferred/Parallel hotplug

HotPar 201015

Our approach

 Strategy

 Do very little for short-term changes

 Do long-term changes off line, asynchronously and

in parallel

 Solutions

 Processor proxies address short-term

reconfiguration

 Deferred and Parallel hotplug reduces the

frequency and latency of long-term

reconfiguration

HotPar 201016

Processor Proxies

 A processor proxy is a fill-in for offline

processor

 Provides separate execution context on the

proxying CPU called the proxy context

 Participates in operations that requires the

offline processor:

 Servicing Inter Processor Interrupts (IPI)

 Ensuring progress in RCU mechanism

 Does not execute threads

HotPar 201017

CPU A

Native

context

Proxy

context

Interrupts destined to CPU A

Interrupts destined to CPU B

CPU B

Interrupt/Bottom halves servicing

B is offline and A is proxying for B

HotPar 201018

Processor Proxy Evaluation Result

 Offline / Online performance compared to

native

Hotplug

Operations

Cores Native

(msec)

Proxy

(msec)

OFFLINE

1 25 1.7

2 60 4

3 137 6.5

ONLINE

1 106 1.2

2 214 2.8

3 331 6

HotPar 201019

Deferred and Parallel Hotplug

 Processor proxies are not a long term solution

 Threads don’t run on a proxy

 If the reconfiguration is long lasting, move to a

stable state

 Solutions:

 Deferred hotplug: remove a CPU that is currently

proxied

 Parallel hotplug: reconfigure multiple CPUs

simultaneously

HotPar 201020

Evaluation Results

 Performance of CPU online is greatly improved
 Major time spent in initialization for CPU online

 Initialization can happen in parallel

Hotplug

Operations

Cores Native

(msec)

Parallel

(msec)

OFFLINE

1 25 25

2 60 60

3 137 130

ONLINE

1 106 106

2 214 111

3 331 131

HotPar 201021

Conclusions

 Dynamic reconfiguration

 Operating systems are not prepared

 Hotplug mechanisms is too slow

 Low latency solutions

 Processor Proxies

 Deferred and Parallel hotplug

 Future work

 Resource management

HotPar 201022

