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Abstract
Network convergence is becoming increasingly im-

portant for cost reduction and management simplifica-
tion. However, this convergence requires strict perfor-
mance isolation while keeping fine-grained control of
each service (e.g. VoIP, video conference etc.). It is diffi-
cult to guarantee the performance requirements for vari-
ous services with manual configuration of the Quality-of-
Service (QoS) knobs on a per-device basis as is prevalent
today. We propose a network QoS control framework
for converged fabrics that automatically and flexibly pro-
grams a network of devices with the necessary QoS pa-
rameters, derived from a high level set of application re-
quirements. The controller leverages our QoS extensions
of OpenFlow APIs, including per-flow rate-limiters and
dynamic priority assignment. We also present some re-
sults from a testbed implementation to validate the per-
formance of our controller.

1 Introduction
Network Quality of Service (QoS) has been a difficult
target to achieve for quite a while even though newer
applications such as video conferencing, VoIP etc. de-
mand performance guarantees. Despite a large volume
of work, QoS has not been widely deployed in today’s
networks. A primary reason for this is the complex-
ity of proposed QoS solutions and largely manual per-
device configuration of QoS knobs by network adminis-
trators [2]. Such operations are not only prone to human
errors leading to critical service disruptions, but can only
support coarse-grained QoS to different applications [3].

Therefore, the two most commonly adopted tech-
niques to provide QoS today are physical network iso-
lation and network overprovisioning. Data Center net-
works, for instance, have dedicated networks with spe-
cialized hardware and communication protocols for each
class of traffic, e.g., Fiber Channel for storage and In-
finiband for High Performance Computing (HPC) traf-
fic. In some cases, networks are highly over-provisioned

by a large factor of 6x or even more to avoid QoS vi-
olations [8]. However, these solutions not only lead to
increased installation costs but also significant increase
in management and operational costs. Additionally mul-
tiple dedicated networks cannot leverage statistical mul-
tiplexing of traffic from different applications leading to
poor utilization of available network resources even for
best effort traffic.

Network convergence has been recently getting lots of
attention as it is highly desirable to serve traffic from
multiple applications on a single network fabric (e.g,
Ethernet network) for cost reduction and simplified man-
agement. With integrated network infrastructure, net-
works administrators do not have to install and manage
multiple fabrics with different protocols and configura-
tions, leading to reduced costs as well as flexibility in
deploying the management workforce. There are two di-
mensions to network convergence. First, convergence for
traffic from different applications such as storage, VoIP,
VoD etc. onto a single network. Second, convergence
of traffic from different tenants/users in a multi-tenancy
environment such as Amazon’s EC2 offering.

To enable the convergence of multiple services on the
same fabric, it is required to create virtual network slices
on the fabric where each slice can provide strict perfor-
mance isolation to the assigned traffic without interfer-
ing with traffic from other slices. However, the current
state of the art QoS deployments lack fine-grained con-
trol and can only support DiffServ-like class-based traf-
fic controls. Furthermore, even the simple actions re-
quire complicated manual configurations in the network
devices.

In this paper, we present a QoS control framework for
automated fine-grained management of converged net-
work fabric. The QoS controller can create network
slices to assign different applications traffic to differ-
ent slices, and provision the slices dynamically to sat-
isfy the performance requirements across all applica-
tions. With the QoS controller, what network adminis-
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trators only have to do is to specify simple and high level
slice specifications for services (or customers), then the
controller automatically“reserves” network resources to
“preserve” given performance requirements. To max-
imize flexibility, the slice specifications can be applied
to individual flows, aggregate traffic of certain flows, or
even combination of them based on customer’s require-
ments.

Our main contribution is to solve a crucial problem
in deploying network QoS - automation of the low level
QoS knobs with high level service requirements as input.
We propose a new set of QoS APIs and QoS controller
for fine-grained automated QoS control in networks hav-
ing multiple slices. Specifically, we defined QoS APIs as
an extension of OpenFlow [13].

This paper is organized into the following sections. In
Section 2 we describe the proposed control framework
in detail. We introduce our QoS controller implementa-
tion and our OpenFlow testbeds in Section 3. We discuss
evaluation results in Section 4, survey related work in
Section 5, and conclude in Section 6.

2 QoS Control System Description
In this section, we describe the design decisions and each
of the components of the QoS controller.

The design goals for our system are the following:
Automated but fine-grained control. The controller

should be able to automatically find and apply the best
configurations for flows based on given performance re-
quirements at a fine-grain without requiring administra-
tors’ manual intervention.

Adaptive to dynamic workloads. Unlike traditional
approach of setting class-based static priorities, our con-
troller adapts QoS configurations based on monitored
network state for better utilization of network resources.

Deployable in existing networks. In order to pro-
vide end-to-end QoS guarantees, the control framework
should be deployable on legacy devices and only lever-
age simple and commonly available QoS knobs.

Support large-scale networks.The controller’s com-
putation of resource allocation for various flows as well
as QoS control resources such as TCAM entries and rate
limiters should scale with network size.

Efficient use of resources.The controller should pro-
vide network-wide optimization in resource allocation by
utilizing a global view of the network (e.g., admit more
flows into networks without QoS violations).

Figure 1 shows the architecture of the QoS control
framework we designed. The architecture needs the ad-
ministrators to simply specify the high level QoS require-
ments (of the network slices or services) and automates
the process of deriving individual per-device configu-
ration specifications and then configuring the switches.
When a new flow arrives, the controller first applies the
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adaptive aggregatorcomponent to the new flow for bet-
ter scalability, and decides QoS configurations based on
the measurement of network states and network-wide op-
timizations. The resultant configurations are instantiated
on the switches through QoS APIs, and resources are
then reserved to provide the requested performance to the
new flow. The following sections describe more details
of each component.

2.1 QoS APIs
In order to automate the configuration and management
of available QoS knobs by the controller, we added QoS
APIs to OpenFlow. OpenFlow [13] is an open specifica-
tion that provides a rich set of APIs to enable the control
of packet flows in a network device.An OpenFlow switch
maintains a flow table, with each entry defining a flow as
a certain set of packets by matching on 10 tuple packet
information.As shown in Figure 2 the QoS APIs expose
the most common existing hardware switch QoS capa-
bility, namely rate-limiters and priority queues, to the re-
mote controller.1 The QoS APIs enable us to attach flows
to the rate limiters and priority queues. By using the rate
limiter APIs, the controller maps an individual flow or
a set of flows to one of the rate limiters to enforce ag-
gregate bandwidth usage Primarily, the rate-limiters are
used at the network edge. By using the queue mapping

1Recently released OpenFlow v1.0 specification also has mecha-
nisms for network slicing. Though it has more complex queue con-
figurations(not supported by most hardware vendors currently), it does
not support the rate-limiter API. Our QoS controller can be extended to
leverage the complex queue configuration.
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API, the controller maps a flow to one of the priority
queues in the outgoing port of a switch, thus managing
the bandwidth and delay allocation for the flow at each
switch.

The controller dynamically manages these mapping
across all flows and on a per switch basis, enabling fine
grained reactive control. These dynamic mappings are
more flexible than the conventional static priority tagging
because the controller can decide the mappings based on
the current workload at each switch.

When a new flow arrives, according to OpenFlow pro-
tocol, the first packet of the flow is delivered to the con-
troller. Based on the policy configurations, the controller
determines if the flow is a QoS-sensitive flow and what
its performance requirements are. The output of the
QoS controller is the setting of rate limiters at the edge
switches and priority queues for flow at each path hop.
These settings are deployed on the switches via the QoS
APIs.

2.2 Adaptive Aggregator
In large-scale networks, it is not feasible for the con-
troller to compute the resource allocation for every sin-
gle flow and implement QoS actions on switches on a
per-flow basis. Otherwise, it would incur large compu-
tational and storage overhead on the controller and the
switches may end up with a huge amount of flow entries
exceeding available TCAM entries and rate-limiters.
Hence, the QoS controller implements an adaptive flow
aggregator that categorizes individual flows into groups,
and allocates resources based on the groups whenever
possible. For example, in Figure 3, 8 flows from 5 ser-
vices are grouped into 3 network slices based on slice
specification. We note that not every service requires
per-flow isolation. Instead, some services require only
aggregate resource reservation for their traffic, which has
been traditionally provided by a separate network for the
service.

In Figure 3, aFlow Specrepresents a set of flows for
each service in network. Like the OpenFlow specifica-
tion, the spec is given as a set of header fields with wild-
card fields to define the scope of flows belonging to the

slice. Slice Specshows performance requirement for a
network slice such as maximum bandwidth, minimum
delay, etc..

In addition to the performance requirements, the slice
spec also has anaggregatemarker field, and if it is true,
the controller reserves resources for the aggregate flows
in the slice. For example, the controller will configure
QoS knobs for all flows from theSystem backupandLog
archiveservices. Once the configuration is done for the
first flow from the services, all the following flows will
share network resource without contacting the controller.

2.3 Network State Information Manage-
ment

The controller builds and maintains information about
the current network state and uses this information base
for deciding QoS configurations. The network state in-
formation includes network topology, active flows, per-
formance requirements, and available resources in each
switch. It is important to keep this information up-to-date
with the current state of the network because inconsis-
tency can lead to under-utilization of network resources
as well as performance violations.

The controller combines passive and active monitor-
ing on networks to dynamically update the network state.
For passive monitoring, the controller uses packets for-
warded to the controller. For example, the controller
intercepts LLDP and DHCP packets exchanged in net-
works, and updates the network topology accordingly.
The controller updates the available resource database
when it adds or deletes QoS configurations in switches.
However, there is always a possibility of inconsistency
due to unexpected network events. We leverage the
OpenFlow protocol and APIs to enable the controller to
query flow tables from switches to periodically check
and fix any inconsistency. We also extended the Open-
Flow APIs to query QoS configurations in switches from
the controller.

2.4 Performance Model
The controller should be able to estimate the perfor-
mance that a flow will experience in network. We de-
vise an end-to-end performance model that provides the
worst case bandwidth and delay for a flow with a given
QoS configuration. Based on this model the controller
ensures that the new flow will receive its requested per-
formance and the addition of the new flow will not cause
performance violation for existing flows in the network.

We developed our performance models for our QoS
APIs based on the commonly available QoS knobs: rate
limiters and static priority queues. We use a modified
version of RCSP queuing discipline [14] because the rate
limiter in our QoS APIs is different from the traffic po-
licer in RCSP.
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Regarding performance requirement of a flowf , we
consider bandwidth and delay requirement denoted by
(rf , df ) respectively. Bandwidth requirement is rela-
tively simple to satisfy than the delay requirement. To
guaranteef receives the requested bandwidthrf , we can
simply check if the max rate of traffic from the other
flows in the shared links is under(C − rf ) whereC is a
link capacity. In our framework, the controller installs a
rate limiter in the ingress edge switch of the flow to limit
the amount of traffic injected into the network from the
flow source.

However, the end-to-end delay requirement is more
complicated to model because we should consider the
dependent behavior of priority queues. Figure 4 repre-
sents a switch output port with 100 Mbps capacity. Here,
we assume that packets are queued and dropped at output
ports. The port has 8 static priority queuesqi, and 6 flows
(f1, f2, ...,f6) are mapped to one of the queues. Now as-
sume that a new flowf is mapped to the fifth highest
priority queueq5. Then the per-hop delay off , Df , is
determined by 1) how fast packets arrive at queues hav-
ing higher or equal priorities (fromq5 to q8) and 2) how
fast the link can drain the packets.

Therefore, the simple equation forDf is defined as
f(q, Rq:8, C) whereq is the priority queue forf (in this
exampleq = 5), andRq:8 is the sum of max rates of
flows betweenqq andq8.

2.5 Network-wide optimization
The important implication of the delay bound model is
that flows in the same port can impact each other in terms
of delay bound. For example, in Figure 4,f ’s per-hop de-
lay is affected byf1, f2, f3 andf4, andf increases per-
hop delay (and end-to-end delay) forf3, f5, andf6 at the
same time. As a result of addingf , some flows now have
higher end-to-end delay, so the controller might not be
able to find a queue forf in the next hop if one of the af-
fected flows passes the same hop and its end-to-end delay
exceeds the delay requirement. So, the controller should
consider both the interactions between flows in the same
hop and the interactions with flows in the remaining hops
to decide queue assignment for a new flow. However, as
there can be a large number of flows over multiple hops
in practice, it is computationally expensive to find the

high

low
Switch 

Shorter delay bound

More likely to violate other flows 

Longer delay bound

More likely to violate flow f

flow f

Highest level

Lowest level

Figure 5:Highest level and Lowest level

high

low
Switch A Switch B Switch C

src dest

Switch A Switch BSwitch C

Figure 6:Shortest Span First (SSF)

optimalqueue assignment that satisfiesf ’s delay require-
ment while not violating the requirements of the existing
flows. It is important to reduce delay in processing new
flows for faster flow setup time.

We develop a range of techniques from heuristics
to optimization modeling, and introduce SSF (Short-
est Span First) in this paper. The goal is to maximize
the probability of satisfying a new flow’s performance
requirement while minimizing the number of rejected
flows. The output is queue assignments in every output
port thatf passes. The intuition behind SSF is that we
first pay more attention to a port with less available op-
tions to avoid rejection off while trying to find the best
delay bound forf . Given an output port, we can choose
a queue forf from q1 to q8 (q8 is the highest priority
queue). If we putf into q8, f will get the shortest per-
hop delay bound, but negatively affect all the existing
flows in the port. Likewise,f will affect a small number
of flows but will get high delay bound if it is put intoq1.
In each port, we computehighest levelfor f , the highest
possible priority queue not violating existing flows, and
lowest levelfor f , the lowest possible priority queue not
violatingf (see Figure 5). We denote these two priority
queue levels byhighf andlowf respectively. Then, the
span between two levels,highf − lowf , represent the
available options forf in the port. If we assignf into a
queue in the first port, then the spans for the other ports
will shrink because of the new constraint, andf should
be rejected if a port has zero span. Therefore, in SSF, the
controller sorts ports by the computed spans, assignf to
the highest level in the first port, and recompute spans
for the remaining ports. The controller repeats the pro-
cess until there is no remaining port forf (see Figure 6).

Unlike static tagging mechanisms [3, 10], the con-
troller can mapf to different priority queues at each hop
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Flow name Route Rate
Customer DB H3-S3(8)-S1(8)-H1 400 Mbps
Employee DB H4-S3(8)-S1(8)-H2 300 Mbps
VoD H3-S3(7)-S1(7)-H1 100 Mbps
Systems Backup H4-S3(1)-S1(1)-H2 bursty

Table 1:Generated flows in testbeds

depending on the current workloads on the path. For ex-
ample, if a switch port has many delay-sensitive flows,
SSF will mapf to a low priority queue to avoid violating
the existing delay-sensitive flows. It can lead to longer
per-hop delay forf , however, the controller can increase
f ’s priority in the other switches on the path in order to
satisfy the end-to-end delay requirement off .

3 Implementation
We prototyped QoS controller using two kinds of
OpenFlow-enabled switches, a HP ProCurve 5406zl
hardware switch and also a Linux software switch based
on Open vSwitch [11]. Our QoS controller is imple-
mented on top of the NOX platform [7], an open-source
OpenFlow controller. QoS controller has TCP connec-
tions to the switches in our testbeds, and communicates
with the switches through standard OpenFlow APIs to
collect information about network states such as topol-
ogy (Figure 7). When a new flow arrives in the network,
the controller calculates resource allocation based on the
database and performance models. Then, the controller
installs rate limiter in the flow’s edge switch, and con-
figures priority queues in switches on the flow’s path.
Lastly, the controller provides a web interface to network
administrators. The interface provides the current states
of flows in network, interface to controller operations,
and statistical information about flows on run-time.

4 Evaluation
For evaluation, we use three ProCurve 5406zl switches
that implement our QoS extension APIs as well as Open-
Flow platform (Figure 7). We generate contending flows
from the four hosts (H1, H2, H3, and H4) connected to
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the switches via 1G links and observe how the QoS con-
troller affects the performance of contending flows.

To emulate multiple services in real networks, we cus-
tomized iperf network testing tool and generated four test
flows as shown in Table 1. The performance requirement
of each flow is shown in Figure 3. The first three flows
act as QoS flows with guaranteed performance require-
ments. The System Backup flow is a best-effort cross
traffic. To observe the direct effect of QoS control on the
flow performance, we used UDP for the three QoS test
flows while both UDP and TCP are used to generate the
cross traffic.

In the first set of experiments, we started Customer
DB, Employee DB and VoD (Video on Demand) flows at
time zero while the System Backup flow started at 40s.
Figure 8 shows the time-varying throughput of each flow.
Because the System Backup flow is bursty UDP, it causes
throughput fluctuations of other flows. We turned on the
QoS controller at 90s and then each QoS flow gets its re-
quested bandwidth while the System Backup flow is lim-
ited not to overload the 1G bottleneck link capacity by
the controller. Based on the derived performance models
and the given performance requirements, the controller
automatically decides the best priority queues for each
flow. The two DB flows are assigned to the highest pri-
ority queueq8 while the VoD flow is assigned to a lower
priority queueq7 because it has higher delay bound.
Since the System Backup flow requires best-effort ser-
vice without any guaranteed performance, the controller
maps the flow to the lowest priority queueq1.

Unlike UDP flows, TCP flows should have less impact
on other flows because of TCP congestion control mech-
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anisms. To see the effect of QoS control with TCP cross
traffic, we generated a TCP flow that has the same route
as the System Backup flow, and measured the through-
put and packet losses of the three QoS flows. In Fig-
ure 9, a single TCP cross flow starts at 45s and ends at
110s. According to TCP congestion control, a TCP flow
always tries to increase its congestion window, so it also
causes packet losses of the QoS flows even though its
impact is much smaller than the case with UDP cross
traffic. However, as we generate more TCP cross flows,
the aggregate effect of the TCP flows on the QoS flows
increases. In Figure 9, we generated 10 and 30 paral-
lel TCP flows during the time windows of [127s,190s]
and [210s, 400s], respectively; the QoS flows suffer from
more packet losses accordingly. As we turn on the QoS
controller at 280s, the three QoS flows suffer no packet
loss and it clearly indicates the QoS controller is needed
even with congestion-controlled TCP cross flows. The
result implies that we need fine-grained QoS control even
when most traffic in network is TCP.

The QoS controller incurs certain processing and com-
munication overheads to run the admission control and
queue assignment algorithms and to implement rate lim-
iter and queue mapping configurations on switches. To
observe the controller induced overhead, we measured
the additional delay of the first packets of the newly ar-
rived flows. The result shows that the controller makes
average 11.7ms additional delay for the first packets, but
there is no change on the following packets.

5 Related Work

The QoS mechanisms proposed in the past have either
failed to be deployed [4] or lack fine-grained adaptive
control [3]. RSVP-TE [1] allows resource reservation
along a flow path. Similarly MPLS can be used to
setup tunnels with QoS guarantees. But an automated
controller with global view could improve network re-
source utilization further. FlowVisor [12] enables net-
work slicing by providing virtualized views of network
resources, and can be used with QoS controller to pro-
vide more strict isolation between network slices in con-
gestion. QoS Policy manager from Cisco [5] alleviates
the problems of manual configuration by automation but
is limited by the lack of flow-management flexibility in
today’s non-programmable network devices. Recently
there have been several proposals for network conver-
gence [6, 9]. Though these protocols provide better QoS
control, that we plan to leverage in future, they still suf-
fer from the limited number of classes as well as the lack
of automated control for adaptive flow aggregation Our
approach provides automated scalable QoS - by disag-
gregating to the level of sub-flows, or to aggregate flows
into classes as required.

6 Conclusion
In this paper, we propose a QoS control framework for
converged network fabrics. It aims at solving the cru-
cial problem in deploying QoS - that of automating the
process of setting low level QoS knobs from high level
descriptions of application/service requirements. In ad-
dition, by utilizing a global view of the network at the
controller, we implement network-wide optimizations in
the controller for better utilization of available resource
in a converged network fabric.

Our ongoing work includes a evaluation of the opti-
mization algorithms by simulation. Based on the cur-
rent prototype implementation, we also plan to extend
the QoS controller algorithms for legacy network device
awareness. This will allow true end-to-end QoS in a het-
erogeneous network environment. Automatic detection
of the different application flows and their performance
requirements will further alleviate the manual configura-
tion errors.
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