

# Proactive Network Management of IPTV Networks

Rakesh K. Sinha, K. K. Ramakrishnan, Bob Doverspike, Dahai Xu, Jorge Pastor, Aman Shaikh, Seungjoon Lee, Chris Chase AT&T Labs - Research, New Jersey, USA

#### **IPTV** service

- High visibility: direct customer impact.
- Service is very sensitive to delay and packet loss
  - Congestion on links -> packet loss-> video quality impairment
  - Need to tackle multiple failures, which are not very rare.
  - Higher layer mechanisms FEC, retransmission based recovery of lost packets - can handle (with reasonable delays), burst losses of about 50 milliseconds
    - Fast restoration is critical

#### AT&T's IPTV service:

- 2+ million customers;
- Triple play: video, internet, and voice



#### **Network backbone**

- One Video hub office (VHO) per metro area
- National content is acquired at Super hub office (SHO)
- Content is distributed to VHOs using single source specific mode multicast tree

(PIM-SSM)

 a separate multicast tree for each channel

Details in 2009
'IEEE Internet
Computing' Paper





#### Local Link-Based Fast Re-Route (FRR)



"Virtual link" between AB with virtual interfaces

Virtual link consists of both a primary and backup

Path: The OSPF topology (and multicast tree) built on top of the virtual link



# FRR example on virtual link (10,11)

Normal traffic forwarded on primary link (10,11)

When primary link fails, link layer mechanism using FRR switches to backup

No OSPF/PIM-SSM convergence required





#### **Challenges in implementing IPTV services**

- Due to high sensitivity of IPTV service, must plan for multiple, concurrent outages
  - In a study of link outages over 4 months, we found that in 17% of cases, at least 2 links were down concurrently.
- IP Multicast results in a very efficient network -> smaller overbuild capacity -> requires more careful multi-layer restoration planning, design, and management.
- Because FRR is invisible to IGP/PIM, these protocols can potentially interact in a 'bad' way creating congestion in the network.



#### **Our approach**

- Be proactive in dealing with the effect of multiple failures
- Maintenance activity is often planned far in advance and is often agnostic to real-time network state
  - We coordinate planned network maintenance activity with realtime network state.
- Need a comprehensive view across many different network layers.
  - Example (details later): an SNMP based tool can tell when a link is congested but by looking at a variety of data sources, we can pinpoint to one of 3 or 4 different reasons for link congestion.



#### Dealing w/ Network component failures

- (Reactive) Use FRR whenever backup path is available; Use IGP otherwise. There is potential for congestion with multiple failures
  - overlap of two FRR paths, OR
  - overlap of FRR path with multicast tree.
- (Proactive) Avoid potential overlap by using a cross-layer approach to reconfigure the multicast tree after a successful FRR event. [COMSNETS 2010]

<u>Another issue:</u> Alert the operator to any changes in network state. E.g,

- An FRR event may reroute traffic to a different set of links
- A PIM re-convergence may alter the multicast tree



# **Dealing w/ Network maintenance**

- Maintenance activity is often planned far in advance and is often agnostic to real-time network state
  - Coordinate planned network maintenance activity with real-time network state. Examples
    - any link carrying traffic should not have a maintenance activity
    - IPTV networks are typically shared as an access network providing Internet connectivity to customers and a pair of routers within a metro office maintain BGP sessions with ISP edge routers. If one of these BGP sessions is down, its 'mate' router should not be touched.



# Pinpoint the cause of link congestion

- An SNMP based tool can point out which links are congested. However knowing the underlying cause can for congestion gives an insight in how to fix it.
- Holistic view needed to disambiguate cause
- Different ways that a link can get congested
- Oversubscribed? Too many TV channels/VoD
- Overlap between different FRR paths and/or multicast tree
- Lots of parallel links between offices and sometimes we can get load imbalance: high bandwidth channels on one link and low bandwidth channels on the other link.



#### Multiple views of the network

- NetDB tool (developed at AT&T Research): parses router configuration files to build failure-free topology
- OSPFMon tool (developed at AT&T Research): establishes a partial adjacency with one or more routers to receive LSAs and create a real-time topology
- FRR is invisible to IGP and may appear self-healing but it alters the network state significantly
  - Need logic to infer that successful FRR has happened
  - Use NetDB to get links in the back-up path being used
- MRTG tool: collects link utilizations
- BGP reachability: compare number of routes to a threshold; also monitor various alarms
- Operations Support System: list of links scheduled to undergo maintenance during the next 24 hours.



# Web based visualization tool: Birdseye

Synthesizes and interprets data from a variety of data sources to obtain a comprehensive network view. Our overall philosophy is to

- Maintain an idealized, failure-free state
- List of links and routers, link capacities, multicast tree, FRR backup paths, etc.
- Maintain real-time state
- Real-time topology, link utilization, BGP reachability, database of links planned for scheduled maintenance
- Either directly from tools or by interpreting data from multiple tools.
- Parse the differences and show necessary alerts to the operator
- Has been in use in AT&T Network Operations Center for 1+ yr.



# Sample GUI snapshot: triple link failure





#### Sample snapshot: updated multicast tree





#### **Conclusion**

- IPTV services have high sensitivity to impairments and high visibility in terms of customer impact
- Need careful designing of network protocols to deal with multiple failures
- Operators need a comprehensive view of the network
- Our Birdseye tool distills network data from multiple AT&Tdeveloped systems and public tools and domain knowledge of networking protocols to compile a holistic view to the operators
- Has been in use at Network Operation Center for over a year for a service with 2+ million customers

