
Implementing JNI in Java for Jalape~no

Ton A. Ngo and Steve E. Smith

IBM T. J. Watson Research Center

Yorktown Heights, NY 10598

ton@us.ibm.com, steves@us.ibm.com, http://www.research.ibm.com/jalapeno

Developed at the IBM T. J. Watson Re-
search Center, Jalape~no [1] is a Java vir-
tual machine (JVM) written in Java that tar-
gets high-performance servers. The strate-
gic decision early in the project to imple-
ment Jalape~no in Java [2] leads to many im-
portant advantages, but also several implica-
tions; therefore when the Java Native Inter-
face (JNI) was implemented for Jalape~no, we
were heavily in
uenced by this philosophy. In
this short paper, we present a JNI implemen-
tation that is written in Java1. We discuss the
advantages and implications that arise from
a Java implementation.

1 JNI Functions in Java

The bulk of the JNI speci�cation [3] consists
over 200 functions accessible through a JNI
environment pointer that allow native code to
access Java objects or invoke Java methods in
the JVM. In large part, these have a similar
functionality to the standard Java re
ection
interface. Since Jalape~no already implements
Java re
ection based on Jalape~no's own low-
level internal re
ection interface, there is a
strong motivation to reuse the same internal
re
ection interface instead of adding a sep-
arate interface to access the JVM internal
structures.

In Jalape~no it is natural that we implement
the set of JNI functions in Java, rather than
in C as may be expected. This allows most of
the functions to implement the required func-
tionality by simply invoking the appropriate
internal Jalape~no re
ection methods. Many
cases only require a few lines of Java code.

1Except for a small set of JNI functions intended

to be invoked outside the JVM, e.g. to create a JVM.

These functions by necessity are written in C.

This approach leads to two important soft-
ware engineering bene�ts. First, any internal
change in Jalape~no is transparent to the JNI
implementation. Second, being written in
Java, the implementation for these JNI func-
tions is completely portable when Jalape~no is
ported to a new platform, even though it is
by de�nition a native interface.

2 Stub compiler

For a Java method to call a native func-
tion and vice versa, we must be able to
transfer control between the two environ-
ments. Since Jalape~no uses its own conven-
tion for stack frames and registers, this trans-
fer consists of mapping between Jalape~no
convention and the native convention. Since
Jalape~no is a compile-only JVM, a runtime
stub compiler generates the prologue and epi-
logue surrounding the native procedure or
Java method that is being called. The spe-
cial prologue establishes a transition frame on
the stack to conform to the callee's conven-
tion by shu�ing the parameters in the stack
frame and in the registers. Similarly, the epi-
logue ensures that the return value matches
the expected convention in the caller.

The transfer from Java to C involves all
native procedures that implement Java na-
tive methods. These procedures are nor-
mally packaged in a library that is loaded
from a Java program. As a class is loaded in
Jalape~no, its native methods are linked to a
special static method in the compiler. When
a native method is invoked for the �rst time,
this special method attempts to resolve the
native method with the corresponding proce-
dure in the library. It then invokes the stub
compiler to generate the prologue and epi-



logue and links it with the native procedure
found in the library. Finally, the new code
is backpatched to become the actual code
for the native method. A bene�t with this
lazy compilation approach is that only native
methods that are called require compilation.

The transfer from C to Java involves the
JNI functions described above. For conve-
nience, these functions are collected in one
class that implements a special nativeInter-
face. When this class is loaded and its meth-
ods are dynamically compiled into machine
code, the runtime compiler recognizes the
special nativeInterface and invokes the stub
compiler to generate the necessary prologue
and epilogue.

3 References and GC

For research purposes, Jalape~no hosts a fam-
ily of dynamic compilers and type accurate
garbage collectors; therefore it is important
that no limitation on the GC policy arises
from a JNI implementation. The JNI spec-
i�cation provides for this capability by only
allowing the native code to operate on Java
objects through the well-de�ned interface.

In Jalape~no JNI, no direct pointer to a Java
object is passed to the native code since this
would prevent the GC from scanning for the
pointer and updating it. Instead, each Java
object to be passed to the native code is saved
in a side stack and an ID is given to the na-
tive code in its place. When the native code
returns an object ID to the caller or passes
an object ID to a JNI function (in Java), the
actual object is retrieved from the side stack.
The prologue and epilogue perform the push-
ing and popping of objects to/from the side
stack as needed.

During a garbage collection cycle, the stack
is scanned for references. All Jalape~no com-
pilers implement a StackMapIterator class
which presents a common interface for report-
ing the location of live references in the stack
frames of the methods they have compiled.
The Jalape~no JNI implementation follows
this mechanism by providing a StackMapIter-

ator which is invoked for each contiguous se-
quence of native frames in the stack. The iter-

ator then consults the side stack to report the
location of references associated with these
native stack frames. This approach allows
native codes to conform to a uniform garbage
collection interface that accommodates all of
Jalape~no garbage collectors.

4 Conclusions

Written in Java and interfacing directly with
the internal JVM re
ection, the Jalape~no
JNI implementation is simple, portable, and
transparent to changes in the JVM internal
structures. The scheme for capturing all ob-
jects passed to the native codes allows any
garbage collection policy to be explored with
no limitation.

Currently, our JNI implementation on the
PowerPC/AIX platform is completed and we
are porting to the Intel/Linux platform. This
will only require rewriting the stub compiler
for the Linux stack and register convention.
The few JNI functions written in C should
only require some minimal porting e�ort. We
are also investigating issues concerning the in-
teraction between Java and native programs.

References

[1] B. Alpern, C. R. Attanasio, J. J. Barton,
M. G. Burke, P. Cheng, J.-D. Choi, A.
Cocchi, S. J. Fink, D. Grove, M. Hind,
S. F. Hummel, D. Lieber, V. Litvinov,
M. F. Mergen, T. Ngo, J. R. Russell,
V. Sarkar, M. J. Serrano, J. C. Shep-
herd, S. E. Smith, V. C. Sreedhar, H.
Srinivasan, and J. Whaley. The Jalape~no

Virtual Machine, IBM Systems Journal,
2000, Vol 39, No 1, pp 211-238.

[2] B. Alpern, D. Attanasio, J. Barton, A.
Cocchi, S. Hummel, D. Lieber, T. Ngo,
M. Mergen, J. Shepherd, and S. E.
Smith, Implementing Jalape~no in Java,
ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Lan-
guages and Applications (OOPSLA),
November 1999, pp 314-324.

[3] S. Liang, The Java Native Interface,

Programmer's Guide and Speci�cation,
Addison-Wesley Publishers (1999).


