JaRec: Record/Replay for Multi-threaded Java Programs

Mark Christiaens Stijn Fonck

Dries Naudts Michiel Ronsse

Koen De Bosschere
Department ELIS
Ghent University
Sint-Pietersnievwstraat 41
Gent 9000, Belgium

{mchristi, sfonck, dnaudts, ronsse, kdb}@elis.rug.ac.be

1 Introduction

Debugging programs is hard but debugging multi-
threaded programs is even harder. The main reason
for this is that multi-threaded programs are usu-
ally non-repeatable due to races. A simple example
of a race is shown in Figure 1. We see two execu-
tions of a program consisting of two threads, T'1 and
T2. Thread T1 adds 2 to the variable A while T2
multiplies A by 2. Depending on which thread ex-
ecutes faster, there are two possible results. Either
A=B8+2)x2=100or A=3x2)+2=8.1If
we were to continue from here, a totally different
execution could result from the different content of
the variable A.

This non-repeatability makes life very hard during
debugging. Programmers usually repeat the pro-
gram execution and focus in detail on some parts
that may be at fault. This technique is called cyclic
debugging. The main precondition of cyclic debug-
ging is that a faulty program will always reproduce
the same error over and over again. When deal-
ing with multi-threaded programs this property of
repeatability is usually lost.

In order to solve this problem, a technique called
record /replay was developed [2, 3, 4]. It consists
of two phases: a record phase and a replay phase.
During the record phase, a trace is generated that
contains information on the order of the interactions
between two threads. This trace can then be used
during the replay phase to reproduce the exact same
interaction between threads as occurred during the
record phase. A major goal during the record phase
is very low intrusion. During the replay phase, ev-
ery debugging trick is allowed since intrusion can no
longer alter the execution of the program.

T1 T2 T1 T2

v v

Figure 1: A simple race

2 JaRec

Our record/replay approach is based on a construct
called "Lamport clocks’ [1]. In Figure 2 the essence
is shown. We see three Java threads, T'1, T2 and
T3. These threads enter and exit two monitors us-
ing monitor_enter, monitor_exit or through calls
to synchronized member functions. Entering and
exiting a monitor is indicated by the opening and
closing brackets. The order in which these monitors
are entered is indicated by the arrows between the
brackets.

We assume that all the accesses to shared objects
are correctly synchronized using these monitors i.e.
that there are no data races. There might still be
races between threads trying to obtain a lock (syn-
chronisation races). By forcing the order in which
threads enter the monitors, we will have assurance
that the whole execution will be replayed exactly as
it was recorded. The order in which threads gain
access to the monitors is stored in a trace file using
Lamport clock values.

The Lamport clock values are also shown in Fig-



Figure 2: Lamport clocks obtained during the
record phase

ure 2. Every thread is assigned a Lamport clock
which is initialized to time 0. Each time a monitor
is entered or exited, we verify which thread accessed
the monitor previously. The Lamport clock of the
current thread is updated to be 1 larger than the
maximum of its own current Lamport value and that
of the previous thread accessing the monitor. These
consecutive Lamport clock values are stored in the
trace file. During replay, when multiple threads are
trying to enter a monitor, only the thread with the
smallest Lamport clock value is allowed to proceed.

Both the record phase and the replay phase in
JaRec are being implemented using the Java Virtual
Machine Profiler Interface (JVMPI). We use the
JVMPI to intercept a class when it is being loaded
by the JVM. It is then transferred, over a socket, to
a second JVM which replaces every monitor_enter,
monitor_exit and synchronised member function
by a call to our instrumentation routines. Then the
class is returned to the original JVM and actually
loaded.

We are building two types of instrumentation: one
for the record phase and one for the replay phase.
During record phase, our instrumentation is respon-
sible for calculating and logging the Lamport clocks
while during replay it is responsible for forcing the
order in which threads gain access to the monitors.
A second responsibility of the replay phase is to
check whether the assumption that there are no data
races is indeed correct. If this assumption does not
hold, it will be flagged to the user who can then
adjust his program.

Due to this data race detection the replay phase has
usually been a magnitude slower than the original
execution. This is mainly caused by the fact that
every read operation and write operation is observed

in isolation in order to detect data races. Using
our approach, we will be able to instrument classes
as a whole and to remove many of the unnecessary
checks that were repeated time and time again for
every instruction. A simple example occurs when a
field in an object is accessed several times in a loop
without intervening synchronisation. It is clear that
if the first access to this field is a data race, then all
following accesses will also be data races. Therefor,
we can limit the amount of checks to just the first
access in the loop.

3 Conclusion and Work in Progress

Multi-threaded programs are in general non-
repeatable due to races. This makes debugging
multi-threaded programs very hard. We are build-
ing a record/replay system which will allow pro-
grammers to replay an execution of a multi-threaded
Java program. We achieve this by instrumenting
a Java program on-the-fly using the JVMPI inter-
face. We are currently finishing the record phase
and starting to implement the replay phase of our
system.

References

[1] Leslie Lamport. Time, clocks, and the ordering
of events in a distributed system. Communica-
tions of the ACM, 21(7):558-565, July 1978.

[2] Thomas J. LeBlanc and John M. Mellor-
Crummey. Debugging parallel programs with
Instant Replay. IEEE Transactions on Comput-
ers, C-36(4):471-482, April 1987.

[3] Robert H. B. Netzer. Optimal tracing and re-
play for debugging shared-memory parallel pro-
grams. In Summary of the ACM/ONR workshop
on Parallel and distributed debugging, pages 1-
11. ACM, May 1993.

[4] Michiel Ronsse and Koen De Bosschere. Rec-
play: A fully integrated practical record/replay
system. ACM Transactions on Computer Sys-
tems, 17(2):133-152, May 1999.



