
USENIX Association

Proceedings of the
Java™ Virtual Machine Research and

Technology Symposium
(JVM '01)

Monterey, California, USA
April 23–24, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:

Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rights to individual papers remain with the author or the author's employer.

 Permission is granted for noncommercial reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

On the Software Virtual Machine
for

the Real Hardware Stack Machine

Takashi Aoki
Autonomous System Laboratory,

Fujitsu Laboratories Limited

Takeshi Eto
Semiconductor Group,

Fujitsu Limited

Abstract

Several technologies for Java1 [1] program ex-
ecution have been reported, e.g., Just-In-Time
(JIT) compilation, pre-compilation engine, etc.,
to improve its running speed. Bytecode engine
is another approach by taking advantage of the
hardware acceleration.

This paper is concerned with the brief intro-
duction to the picoJava-II core technology and
its implementation at Fujitsu. Then, we will
present our software mapping approach onto the
hardware stack machine, focusing on Fujitsu’s
picoJava-II implementation, MB867992. Finally,
we will report some benchmark results of Java
virtual machine execution on the real stack ma-
chine and discuss yet unresolved problems.

1 Introduction

Our work aims at combining hardware bytecode
stack machine with software Java virtual ma-
chine. This section explains how picoJava-II ar-
chitecture works to help you understand our soft-
ware development and porting work.

1Java, picoJava, JDK, J2ME, and PersonalJava are trade-
mark or registered trademark of Sun Microsystems, Inc.

2MB86799 is an evaluation chip. Note that our project was
not targeted on the specific end-user product, such as mobile
phones or PDA’s

1.1 picoJava-II Architecture

Sun’s picoJava-II core is a Java bytecode execu-
tion engine. First of all, we briefly describe the
architecture of picoJava-II core for the better un-
derstanding of our software approach.

McGhan et al. [2] reported the core technol-
ogy of the picoJava architecture. Sun pub-
lished the Programmer’s Reference Manual[3].
Data sheets and other technical documentation
are available through Sun Community Source Li-
censing (SCSL) program[4] as well.

1.1.1 Registers

The picoJava-II architecture has registers for spe-
cific purposes as depicted in Table 1. Among
these, it is notable that the stack registers, the
constant pool register, the monitor caching reg-
isters, and the garbage collection register are de-
signed to contribute to the performance improve-
ment of Java program execution. Their access
can be realized by simple register read/write op-
eration in picoJava-II. On the other hand, these
registers are assigned to the variables in the soft-
ware virtual machine implementation, such as
JDK, instead.

Table 1: picoJava-II Registers

Category Register

Program Counter PC
Stack Registers VARS

FRAME
OPTOP
OPLIM
SC BOTTOM

Constant Pool CONSTPOOL
Memory Protection USERRANGE1

USERRANGE2
Program Status PSR
Monitor Caching LOCKCOUNT0

LOCKCOUNT1
LOCKADDR0
LOCKADDR1

Trap TRAPBASE
Garbage Collection GCCONFIG
Breakpoint BRK1A

BRK2A
BRK12C

Global GLOBAL0
GLOBAL1
GLOBAL2
GLOBAL3

1.1.2 Instructions

The picoJava-II supports 226 bytecode instruc-
tions which Java Virtual Machine Specification
[5] defines and 115 extended instructions added
in picoJava-II Programmer’s Reference Manual.
The extended instructions are capable of either
one of the following functions.

� Direct memory access

� C language interface

� Cache manipulation

1.1.3 Traps

Trap handlers can be divided into the following
categories.

� Instruction emulation

� Hardware origin

� Monitor cache interface

� Garbage collection interface

Some of the Java bytecode instructions are too
complicated to implement in hardware, such as
new. This is originated in the fact that these in-
structions are strongly related to the constant pool
resolution. Therefore, the system programmers
should write the emulation code for such instruc-
tions for picoJava-II and the specific Java plat-
form.

Similar to the conventional microprocessors, the
picoJava-II core notifies the error condition in
hardware as a trap of the software. The errors in-
clude wrong memory alignment, illegal instruc-
tion, and so on.

As we see above, the picoJava-II core supports
not only the monitor cache register but also its
bytecode instructions,monitorenterand moni-
torexit in hardware. When the exception occurs
in the monitor cache interface of hardware, a trap
is notified to the software. Then, it is up to the
software’s task to continue the appropriate action
for the monitor.

The picoJava-II core has a register for the garbage
collector. When the garbage collection timing
can be observed by the hardware, this is also no-
tified to the software.

1.2 The picoJava-II core features

The picoJava-II core directly executes Java byte-
code instructions defined in picoJava-II Program-
mer’s Reference Manual and supports extended
bytecode instructions which enable a direct mem-
ory access. Its instruction set also includes the
quick instructions by which the resolved object

can be handled in a much faster manner. The
instructions that require constant pool resolution
are processed in the trap handler software fol-
lowed by the trap. The picoJava-II core has the
following features to improve the Java applica-
tion performance.

� Stack cache

� Stack dribble

� Instruction folding

� Write barrier support

� C function interface

1.2.1 Stack Cache

As the Java VM Specification defines a stack ma-
chine architecture, the picoJava-II core is based
on a stack machine architecture. Software imple-
mentation JVM, such as JDK, uses a straightfor-
ward memory area as the Java stack. On the other
hand, the picoJava-II core takes advantage of the
hardware cache for the stack. This improves the
bytecode execution performance. The Java stack
cache of the picoJava-II core consists of 64 word
entries. Once the stack pointer grows/shrinks be-
yond hardware limits, stack dribbling starts and
the contents of the cache are moved to and from
the memory. Therefore, the stack cache is trans-
parent to the software.

1.2.2 Stack Dribble

The picoJava-II caches the top 64 entries of the
stack. When the software accesses the stack
within this range, the core takes advantage of
benefits from the high performance of the stack
access. Here, one of the following two opera-
tions will be started by the hardware. Thespill
writes entries in the stack cache out to the data
cache to make some space for new value, while
thefill reads entries into the stack cache from the
data cache to provide the value for the coming in-
struction. These are operated concurrently in the
background.

1.2.3 Instruction folding

The picoJava-II core provides a solution to the ac-
cess inefficiency problem of stack machines. Its
stack cache is actually a full random access reg-
ister file, so the pipeline is capable of the imme-
diate access of all 64 entries in the stack cache.

iload 1 add local1,local2,local3

iload 2

iadd

istore 3

(a) (b)

Figure 1: Instructions to Add Two Locals

+

local1

local2

OPTOP

OPTOP

OPTOP-1 OPTOP

local3

Figure 2: Execution without Instruction Folding

The execution technique calledinstruction fold-
ing takes advantage of this. When two values are
added in the stack machine, the instruction se-
quence depicted in Figure 1 (a) is used. This is
also visualized in Figure 2.

However, once the hardware detects the two en-
tries are in the stack register file, it can add the
values and store the result to the stack cache in
one sequence with the instruction folding tech-
nique as seen in Figure 1 (b) and Figure 3.

local1

local2

local3

+

Figure 3: Instruction Folding

1.2.4 Write Barrier Support

The picoJava-II core has the garbage collection
accelerating facility calledwrite-barrier register.
When the accessed object resides in the mem-

ory area beyond the write-barrier, the picoJava-
II core detects it and notifies the software of the
event bygc notify trap. The garbage collection
condition can be controlled byGCCONFIGreg-
ister. Utilizing this register is strongly related to
the garbage collection algorithm ([8] and [9]).

1.2.5 C Function Interface

While the Java method is invoked by the method
invoke instructions, such asinvokevirtualor in-
vokespecial, as Java Virtual Machine Specifica-
tion defines, C language functions invocations re-
lies on the platform dependent implementation.
The call instruction is added to the picoJava-
II core to support the Cnative function. This
also accelerates the Java Native Interface (JNI)
method invocation as well as the internal JVM
functions written in C.

1.3 Fujitsu MB86799

Fujitsu’s implementation of picoJava-II technol-
ogy, MB867993 , consists of picoJava-II core,
the external bus interface, and PCI bus inter-
face. This implementation has an 8KB instruc-
tion cache, an 8KB data cache, a 64-entry stack
cache, and a floating point unit as shown in Fig-
ure 4. The MB86799 can run at the external
maximum frequency rate 33MHz and internal
66MHz. The frequency ratio between the inter-
nal and the external can be varied from 2 to 5.
The chip consumes 360mW with the source 2.5V
at 66MHz.

2 Overview of the Software

We now present a high-level overview of the soft-
ware implementation on our picoJava-II chip.

We ported Sun’s PersonalJava 3.02 to picoJava-
II running Fujitsu’s real-time OS, REALOS4,
a variant of �-ITRON RTOS. Figure 5 is an
overview of our system software.

3MB86799 is based on�-version specification of the
picoJava-II core. There is a minor difference of the instruction
operation between the� version and the current FCS release.

4REALOS is a trademark of Fujitsu Limited.

External Bus I/F PCI Bus I/F

Bus Switch Unit

I-Cache D-Cache Stack-Cache

FPU

picoJava-II Core

Mode Control PMU PLL

Figure 4: MB86799 Block Diagram

We did not write our own software virtual ma-
chine for picoJava-II from scratch, instead we
ported PersonalJava because of the following rea-
sons.

� Porting was estimated to be finished in a
shorter time.

� Scratch-built virtual machine would be more
difficult to accomplish the compatibility
with reference software.

The source code of the latest PersonalJava,
namely PersonalJava 3.1, can be obtained
through SCSL[6].

Java Application

Java API JNI Function

picoJava-II Core

MB86799

JTRON

micro-ITRON

Device Driver Middleware

Java Virtual Machine

Hardware

Software

Figure 5: Overview of Software Structure

2.1 Operating System

We were motivated to use the REALOS operating
system in order to meet the strong demand for
real-time assurance support from the embedded
device community. REALOS is�-ITRON RTOS
specification compliant. All the operating facili-
ties are provided by REALOS and our JVM takes
advantage of them. The�-ITRON specifica-
tion and its Java interface variant, JTRON, spec-
ification are available at TRON Project Home
Page[7].

2.2 Java Virtual Machine

Now that we are able to execute the bytecode on
hardware directly, the termvirtual machinemay
be somewhat incorrect. However, since no ap-
propriate naming has been proposed so far, let us
continue to call itvirtual machineat the moment.
As mentioned above, our virtual machine is based
on PersonalJava 3.02. The five items we had to
consider while porting the virtual machine to the
picoJava-II chip are as follows.

1. Object data structures

2. Exception handling

3. JNI support

4. Lock register

5. JCC (JavaCodeCompact)

3 Porting Strategy

We show here our strategy to port PersonalJava
onto picoJava-II architecture, focusing on how to
adapt software virtual machine for direct byte-
code execution engine. We use C and assembler
language to implement the virtual machine.

3.1 Object Data Structure

The picoJava-II core directly executes the Java
method and handles the Java object. This implies

objects must be placed on memory in the exact
format as the core expects. Since PersonalJava is
derived from JDK, its object format is different
from the one that picoJava-II specifies. Figure 6
and 7 are the examples of the fixed object format
for PersonalJava and picoJava-II respectively. In
picoJava-II, the array reference always points to
the array header position, which is followed by
an array length. The actual array data follows af-
ter the length field. The array contents can be
accessed by a reference and indexing.

We modified the array structure definitions and
their access macro definitions of PersonalJava so
that picoJava-II hardware can manipulate the ar-
ray structure directly.

Array reference

index
Length Flag

Object pointer

Element0 Element1

Element2 Element3

Figure 6: An Example of PersonalJava Array -
short primitive

Array header

Length

Element0 Element1

Element2 Element3

Array reference

index

Figure 7: An Example of picoJava-II Array -
short primitive

3.2 Exception Handling

We now describe the following four topics on the
difficult handling of the exception for picoJava-
II.

1. Stack Usage

2. Stack Cache Coherency

3. Stack Growing Direction

4. Exception Origin

3.2.1 Stack Usage

We noticed the difference of stack usage between
the JDK/PersonalJava JVM implementation and
the picoJava-II handling. While the former uses
the two distinct stack, i.e., C stack and Java stack,
in its memory area, the latter uses only one stack
which is shared among JVM internal C functions,
the JNI method, and the Java method. In the for-
mer case, the JVM simply traces the frame struc-
ture in the Java stack to find an appropriate ex-
ception handling method when exception occurs.
However, in picoJava-II, it is not that straightfor-
ward. The picoJava-II core defines three kinds
of frame format, Java method frame, trap handler
frame and C function frame. When an exception
occurs, the exception handler search routine tries
to locate the Java method frame that catches it,
skipping trap handler frames and C frames. Both
frames are not a concern for Java exception.

In addition, in our approach, the JNI method
is implemented by the Java stub method as de-
scribed below. Therefore, we have to ignore the
Java stub method frame for the JNI call as well.

Figure 8 is an example of the exception tracing.
Here, the method with the frame (2) invokes an-
other method (1) via a trap frame. Each frame is
linked as (a) and (b). As explained above, the
trace method routine needs to behave as if the
method frames were linked as (c) in order to trace
them. JNI case can be explained by substituting
the trap frame by a JNI stub frame.

Method
Frame

Trap
Frame

Method
Frame

(a)

(b)

(c)

(1)

(2)

Figure 8: Exception Table Trace

3.2.2 Stack Cache Coherency

There is another difficulty for traversing method
frames on the picoJava-II stack. When we scan
the stack, we usually use a pointer addressing the
stack. To do that on picoJava-II core, we have to
flush the stack cache before accessing the stack
frame, since there is no coherency between its
stack cache and the data cache.

But flushing the stack cache is a time consuming
operation. By usingload/storeinstructions5 , one
can access the stack data correctly without a stack
cache flush. To traverse method frames, however,
we must set theVARSregister to an appropriate
address successively. This is also cumbersome,
as we can’t use local variables while changing the
VARSregister.

We used the stack cache flush scheme for Person-
alJava 3.02 port, as it was simpler.

3.2.3 Stack Growing Direction

The stack growing direction also prevents us from
manipulating frame data directly. The picoJava-II

5Local variables are accessed by the offset index from
VARSwith load/store instructions, such asiload 0 andas-
tore 1. VARSis a register that points to the first argument
address in its Java stack or C stack.

Java stack grows downward, i.e., from the higher
address to the lower. Figure 9 shows Java frame
format (a) and trap frame format (b) in picoJava-
II stack. Note thatFRAMEregister always points
to the previous or returnPCaddress and the posi-
tion is located at the highest offset or the middle
of the data.

return PC

previous VARS

previous FRAME

previous CP

current method

FRAME

Address high

Address low

(a) Java method frame

PSR

PC

return FRAME

return VARS
FRAME

Address high

Address low

(b) Trap frame

Figure 9: Stack Growing Direction

struct javaFrame {
METHOD *currentMethod;
CONSTPOOL *previousCONSTPOOL;
FRAME *previousFRAME;
VARS *previousVARS;
unsigned char *returnPC;

};

Figure 10: Java Frame in C Structure

On the other hand, when we refer the stack frame
by a data structure in C language, a pointer for
the structure always points at the lowest address.
Thus, when we trace the Java frame data in the
high level language such as C, we have to declare
the frame structure in the reverse order from the
picoJava-II core definition, as seen in Figure 10.
Then we have to recalculate the next frame’s start
address usingpreviousFRAME field value ev-
ery time we move the pointer.

3.2.4 Exception Origin

Some of the exceptions, e.g., NullPointerExcep-
tion, can be raised by both software and hardware
in picoJava-II. When the instructions detect the

null reference, the hardware automatically raises
the exception trap. This has initially been the re-
sponsibility of the virtual machine software, and
it still exists on picoJava-II. One has to take into
account both of the exception trap case and the
software originated exception to save the code
space.

3.3 JNI

Again the term JNI is not an exact term since the
native instruction set of picoJava-II is the byte-
code. But let us call the interface between a Java
method and a function written in C, JNI here.

As shown in Figure 11, the calling convention of
Java method is different from that of C function
on picoJava-II. Re-pushing the argument variable
to the stack is necessary when the C function is
invoked from a Java method. The method is in-
voked by invoke instructions, for example,in-
vokevirtualquick, on picoJava-II, whether it is
written in C or Java. In other words, the method
is invoked in a different manner depending on
its access flag as defined in Java Virtual Ma-
chine Specification when implemented by soft-
ware. However, the hardware picoJava-II does
not care about such a flag but always invokes the
method as if it were written in Java.

local2

local1

returnPC

prevVARS

.....

arg2

arg1 VARS

OPTOP

Method
Pointer

prev CP

prevFRAME

prevVARS

returnPC

.....

OPTOP

local2

local1

arg2

arg1

.....

VARS

(a)C Function Stack (b)Java Method Stack

FRAME

Figure 11: C and Java Stack Usage

There are two approaches to resolve this problem
as explained in picoJava-II Reference Manual .

� Create a stub method between the calling
Java method and the callee C function

� Invoke the C function from the trap software
code ofinvokeinstructions

We chose the former strategy since apparently
the latter sacrifices the performance without us-
ing the quick instruction of hardware.

3.4 Lock Register

Java virtual machine controls the shared object
data with a monitor by locking with mutex. The
picoJava-II core has two pairs ofLOCKCOUNT
andLOCKADDRregisters for this purpose. The
monitorenterinstruction has the following logic:

� Compare the object address with the value
of either one ofLOCKADDRregisters.

� If the address matches, increment the corre-
spondingLOCKCOUNTregister.

� Otherwise, the trap handler is invoked.

This indicates that when the object is not actually
shared, the mutex is accomplished merely by set-
ting the object address to theLOCKADDRregister
and incrementing or decrementing the contents of
LOCKCOUNTregister. As a result, the overhead
for the monitor creation is significantly reduced.

The virtual machine also needs to manipulate the
synchronizedmethod code in order to utilize the
hardwaremonitorenterand monitorexit instruc-
tions as follows.

1. Replace allreturn, areturn, ireturn, lreturn,
and dreturn instructions with the extended
exit syncmethodinstruction.6

2. Insert code set shown in Table 2 and 3, de-
pending on the attribute of the method.

6All the bytecodes in the method must be scanned in order
to locate and replace theXreturn instruction due to the vari-
able length of the bytecode instruction set. Analysis involving
lookupswitch, tableswitch, andwide is often complicated.

3. Change the exception table for the method
so that start pc , end pc , and han-
dler pc of the entries are each incre-
mented by 8 or 12 to map onto the relocated
code.

Table 2: Code Prepended to Synchronized Non-
static Methods

Address Instruction Action

0 aload 0 Get the object reference
1 monitorenter Synchronize on the object

reference
2 jsr+6 Push PC on top of the

stack, which is also
FRAME- 20, and jump to
the next instruction.

5 aload 0 Get the object reference
6 monitorexit Exit the monitor.
7 Xreturn Return to the caller of the

correct type.

Table 3: Code Prepended to Synchronized Static
Methods

Address Instruction Action

0 get currentclass Get the current class
pointer.

2 monitorenter Synchronize on the
class pointer.

3 jsr+9 Push PC on top of the
stack, which is also
FRAME- 20, and jump
to the original code.

6 get currentclass Get the current class
pointer.

8 monitorexit Exit the monitor.
9 Xreturn Return to the caller of

the current type.
10 nop
11 nop Ensure that the code is

a multiple of 4 bytes
to prevent changes in
padding for lookup-
switch and tableswitch.

In our implementation, the code is manipulated
in the class loader. However, if the system devel-
oper is aware that the synchronized methods are
rarely called, the manipulation can be done at the
time of the method invocation, such as in the trap
handler.

3.5 JavaCodeCompact (JCC)

PersonalJava has a tool called JavaCodeCom-
pact (JCC) to improve the class loading perfor-
mance and reduce the code size. The tool con-
verts the class file into the runtime memory im-
age and links it with the virtual machine. Since
the picoJava-II has the unalterable object format
which the hardware accepts, and the format dif-
fers from that of the software implementation, we
had to modify the internal data structure and code
generation part of the tool accordingly as well.

4 Benchmark Results

Table 4 shows the Embedded CaffeineMark
benchmark result of MB86799. The table con-
tains the actual results. PJEE is the emulation
environment of PersonalJava, which has an in-
terpreter loop written in C. We used JDK1.1.8 to
compare with a JIT compiler result. But please
note that the implementation, especially the data
structure, is different from PJEE. The number in-
dicates that the larger it is, the faster the platform
is.

Table 4: Embedded CaffeineMark Results

MB86799 Pentium-III Pentium-III
66MHz 700MHz 700MHz

/33MHz /100MHz /100MHz
PJ 3.02 PJEE 3.02 JDK 1.1.8

Sieve 395 367 11644
Loop 984 339 40248
Logic 667 336 168150
String 594 957 18867
Float 407 333 18981
Method 593 362 18116

the larger the faster

Table 5 is the results of the Java version of Tak
function[11]. The Tak is a heavy recursion test
program to evaluate function call performance.
Our experiment was undertaken with the function
call of the argument Tak(18,12,6) for 1000 times.

Table 6 shows the results of Java vesion of Lin-
pack [12] benchmark program.

Table 7 is the result comparison of SPECjvm98

Table 5: Tak Benchmark Results
MB86799 Pentium-III Pentium-III

66MHz 700MHz 700MHz
/33MHz /100MHz /100MHz
PJ 3.02 PJEE 3.02 JDK 1.1.8

24392msec 38670msec 1593msec

the smaller the faster

Table 6: Linpack Results
MB86799 Pentium-III Pentium-III

66MHz 700MHz 700MHz
/33MHz /100MHz /100MHz
PJ 3.02 PJEE 3.02 JDK 1.1.8

1.798Mflops/s 1.761Mflops/s 22.889Mflops/s
0.38sec 0.39sec 0.03sec

[13] benchmark programs. The number here in-
dicates that the smaller, the faster the platform is.
Note that some of the SPECjvm98 programs are
not listed here since they are too large to run on
our embedded system. Please note that Pentium-
III runs more than ten times faster than picoJava-
II for internal clock and three times faster for ex-
ternal bus clock.

Table 7: SPECjvm98 Results

MB86799 Pentium-III Pentium-III
66MHz 700MHz 700MHz
/33MHz /100MHz /100MHz
PJ 3.02 PJEE 3.02 JDK 1.1.8

jess 1109.189 164.597 51.674
mpegaudio 400.398 610.888 14.661
mtrt 786.019 174.260 30.564
jack 1534.797 204.043 31.295

the smaller the faster

Among the benchmark results here, the Java ver-
sion of Linpack runs almost as fast on picoJava-II
as on JDK JIT, if the number is normalized by in-
ternal clock. Figure 12 is the bytecode statistics
during its execution. The bytecode instructions
here are categorized as follows:

� Stack manipulation
iload,aload,istore,astore,push, pop,dup,inc,
iconst0, etc

� Arithmetic implemented in hardware
iadd, fmul, dmul, etc

� Array load/store
caload, bastore, etc

� Conditional branch
ifeq, if acmpeq, etc

� Unconditional branch
goto, ireturn, etc

� Field access
getstatic, putfield, etc

All of these categories are implemented in hard-
ware on picoJava-II, and consists of 96.7%
of the instructions executed. Obviously, this
is very advantageous in achieving good Java
application performance on picoJava-II. Fig-
ure 13 is the bytecode composition of Lin-
pack class file. 93.2% instructions of the
class file are implemented directly in hardware
on picoJava-II. The native methods, which of-
ten become the bottle neck for picoJava-II ex-
ecution performance, invoked by Linpack are
java.lang.System.currentTimeMillis() and some
string manipulation method to produce the result
message. The fact implies Java program perfor-
mance for picoJava-II can be evaluated statically
in advance by analizing the instruction category.

stack manipulation 56.8%

arithmetic(hardware) 18.1%

array load/store 15.4%

conditional branch 6.4%

Figure 12: Linpack bytecode execution statistics

stack manipulation 61.6%

arithmetic(hardware) 8.7%

array load/store 7.2%

conditional branch 7.7%

unconditional branch 5.3%

Figure 13: Linpack bytecode composition

The ratio of the stack manipulation instructions
of Embedded CaffeineMark is as much as that of
Linpack, as seen in Figure 14. However, when
the hardware implemented field access instruc-
tion, such asgetfieldquick, is operated, its cor-
responding emulated instruction,getfield, for ex-
ample, is executed beforehand. In addition to
this, a large amount of time is spent on the string
manipulation native methods written in C for this
benchmark test. This is fairly disadvantageous
for picoJava-II technology.

stack manipulation 57.0%

arithmetic(hardware) 6.5%

array load/store 9.2%

conditional branch 13.2%

field access 8.5%

Figure 14: Embedded CaffeineMark bytecode
execution statistics

Our benchmark results indicate that our approach
on the real hardware stack machine overwhelms
the performance of the corresponding C inter-
preter. In addition, the direct execution of byte-
code compares competitively with JIT enabled
virtual machine for the bytecode oriented Java
applications.

The Java microprocessor technology can be an
adequate solution to the strong demand from the
embedded Java community.

5 Future Work

As reported by Gu et al. [10], there are a num-
ber of JVM code tuning techniques. These can
be also applied to our virtual machine since ours
is derived from Sun’s JDK implementation. For
instance, the String result of Embedded Caffeine-
Mark benchmark was improved by about 10%
with a few function inlining within EE() func-
tion in our experiment. This is still experimen-
tal in our work and we continue the code tuning
focused on the specific implementation.

We have not used the power of the picoJava-II
technology to its full extent yet, especially in its
garbage collection support area. We will continue
to improve the performance of PersonalJava plat-
form. Besides this, the current PersonalJava is
based on JDK 1.1.x technology. However, the
present embedded Java community request varies
in wide range. Porting the J2ME platform will be
one of our main concerns in the near future.

6 Open Problems

There have still been open problems found in our
experience. In this section, we report them for the
future hardware design and its tool improvement.

6.1 Stack Cache

The current picoJava-II technology heavily de-
pends on the cache access for its performance im-
provement. However, because of the difficulty of
predicting the cache residency, the software per-
formance sometimes varies with a minor modi-
fication. This often makes system performance
tuning difficult. Besides, the lack of coherency
between the stack cache and the data cache often
complicates the software designing, especially
for those that access the local stack directly, such
as trap handlers for the bytecode instruction em-
ulation, for exampleinvokeinterfaceor getfield.

6.2 C Language Interface

At the time of writing of this paper, the
only C compiler which supports the picoJava-
II extended instruction set is MetaWare’s High
C/C++7. The compiler generates the picoJava-II
C function interface object code in a straightfor-
ward manner. In other words, while the compiler
generates the function code withcall/return by
register interface, the Java class method expects
the code withinvoke/returnby stack interface.

Figure 15 depicts an example of this problem.
Initially, Java method (3) invokes the C function
(1) as a native method. Although the object code

7High C/C++ is a trademark of MetaWare, Inc.

of the function (1) returns the value by setting it
to registerGLOBAL1, the caller method (3) ex-
pects the value in the Java stack. In our approach,
we insert the stub method (2) between them.

One would notice that there are a number of C
native methods in the Java system class. For
example, java.lang.Math.pow() function only re-
turns the native pow() function result. As we
explained earlier, we have two options to sup-
port JNI on picoJava-II, creating a stub method
or call the C function in the trap handler without
using the quick hardware instructions. If the C
compiler could compile a C function following
the Java method calling interface, the JNI perfor-
mance would be improved significantly.

C function

write_global1;

return0;

....

Stub method

....

call;

read_global1;

ireturn;

Java method

....

invokevirtual;

(1)

(2)

(3)

Figure 15: C-Java Language Interface Problem

6.3 Aggregate Stack Problem

The picoJava-II core provides a stack namedag-
gregate stack8 for the C language local variables
whose addresses are used like arguments passed
by reference. Aggregate stack is designed to
solve the stack cache incoherency problem. How-
ever, this is sometimes inclined to increase the
overhead in the JNI functions.

The stack often complicates the system program-
8The aggregate stack is a portion of memory area pointed

by GLOBAL0register.

mer’s work because it is difficult to handle the
aggregate stack both by the C compiler and the
hand-written assembler code. Also, system pro-
grammers are required to be careful that the
aggregate stack must be released appropriately
when an exception occurs in a Java method and
the exception is caught beyond a JNI function
that uses the aggregate stack.

7 Conclusion

In this paper, we have shown our porting strategy
of the software Java virtual machine onto the real
hardware stack machine using picoJava-II micro-
processor as an example.

The direct bytecode execution engine demon-
strates that it can be even competitive with JIT en-
abled software virtual machine, especially for the
bytecode oriented applications. Our benchmark
results also indicate that Java microprocessor can
be one of the effective solutions for the embedded
Java technology where low power consumption,
small memory footprint and quick start are pre-
ferred.

The picoJava-II core is a well defined CPU to run
not only Java but also C, although there still ex-
ists some room for improvement. Some will be
solved by hardware modification and others by
improving the C compiler.

References

[1] Gosling, J., Joy, B., Steele, G., The Java Lan-
guage Specification, Addison Wesley, 1996

[2] McGhan, H., O’Connor, M., PicoJava: A Di-
rect Execution Engine For Java Bytecode. In
IEEE Computer Vol 31, No 10, October 1998

[3] Sun Microsystems, Inc., picoJava-II Pro-
grammer’s Reference Manual, March 1999

[4] Sun Microelectronics, pico-
Java Microprocessor Cores,
http://www.sun.com/microelectronics/picoJava/

[5] Lindholm, T., Yellin, F., The Java Vir-
tual Machine Specification, Addison Wesley,
1997

[6] Sun Community Source Li-
censing, Source Code Catalog,
http://www.sun.com/software/communitysource/

[7] The ITRON Project, JTRON2.0
Specification, http://tron.is.s.u-
tokyo.ac.jp/TRON/ITRON/home-e.html

[8] Grarup, S., Seligmann, J., Incremental
Mature Garbage Collection, M.Sc. Thesis,
Aarhus University, Computer Science De-
partment, August 1993.

[9] Hudson, R., Moss, J.E.B., Incremental
Garbage Collection For Mature Objects, Pro-
ceedings of International Workshop on Mem-
ory Management, St. Malo, France, Septem-
ber 16-18, 1992

[10] Gu, W., Burns, N.A., Collins, M.T., Wong,
W.Y.P., The Evolution of a high-performing
Java virtual machine, IBM Systems Journal,
Vol. 39, No. 1, 2000, IBM Corporation

[11] Gabriel, R.D., Performance and Evaluation
of Lisp Systems, The MIT Press, 1985

[12] Linpack Benchmark - Java
Version, Netlib Repository,
http://www.netlib.org/benchmark/linpackjava/

[13] SPEC JVM98 Benchmarks,
http://www.spec.org/osg/jvm98/

