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Abstract

Palm organizers are widely used in a multi-tasking
fashion. Users switch from one application to an-
other without losing the context established in ei-
ther of them. Despite its obvious usefulness there is
no automatic support for this convenience in the or-
ganizer’s operating system, PalmOS. Programmers
must implement event callbacks that use the Pal-
mOS database API to save and reload specific ap-
plication state. In this report we describe how this
burden can be eliminated.

We enhanced the Spotless JavaTM virtual machine
for the Palm organizer with transparent multi-
tasking support that automates persistence.

As a consequence, running Java programs can be
transfered between two Palm organizers using the
infra-red link. A transfered program will resume on
the receiving organizer in the exact same state as it
had on the sender. In addition, a HotSync operation
can effectively be used to establish a checkpoint for
each Java program involved.

Originally, the address range available for running
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programs was restricted to a few tens of KB in the
dynamic RAM area. By directly addressing the
much larger static RAM area our modified VM sup-
ports address ranges of several MB.

We provide an easy-to-use protocol that leverages
persistent threads for automatic life cycle control
of external resources (e.g. windows, forms and
databases). When applied at the library level,
this protocol maintains complete persistence trans-
parency for the application programmer.

1 Introduction

The Spotless VM is a JavaTM Virtual Machine for
the Palm connected organizer that has been devel-
oped at Sun Microsystems Laboratories with the
goals of small size, portability and readability of its
source code [Taivalsaari et al., 1999]. A version of
Spotless was then further developed to become the
KVM [Sun, 1999], an extremely lean implementa-
tion of the Java Virtual Machine for use in devices
that have very restricted physical memories (tens of
kilobytes). The KVM is one of the core elements
of the JavaTM 2 Micro Edition (J2ME), which is
targeted at consumer electronics and embedded de-
vices. It has been ported to and is supported on a
variety of platforms.

The Spotless VM runs only on PalmOS, the operat-
ing system of Palm connected organizers. It is a re-
search vehicle at Sun Microsystems Laboratories for
exploring new ideas and technologies for program-



ming on small devices. In this report we describe
how we enhanced the Spotless VM with memory
management capabilities that automate persistence,
that is, saving and restoring of code, objects and
threads.

The Palm users’ experience is that an application’s
state is saved when another application is invoked
and that said state is restored when the former ap-
plication is resumed. Given that the device’s RAM
is battery-backed, this behavior seems only natural
to users. However, this advantage over desktop sys-
tems is only apparent to users – not to developers.

Application switches can happen at any point dur-
ing program execution. Hence, a Palm application
must be able to handle persistence at any point. The
operating system, PalmOS, offers support by invok-
ing specific event callbacks before every application
suspension and resumption. Application program-
mers must implement these callbacks to provide the
illusion of multi-tasking.

When writing suspension and resumption code, ap-
plication programmers have to deal with the tra-
ditional dichotomy between primary and secondary
memory. Only 64 to 256 K bytes of the Palm’s RAM
are freely accessible and available to represent dy-
namic application program state. The OS, using
hardware memory protection, guards all write ac-
cesses to the larger part of the RAM and imposes a
simple database API.

Unfortunately, a single write access through the
database API can take 100ms or longer – the more
items stored in the database, the slower the access.
This leaves programmers with no choice but to care-
fully write significant amounts of code for the pur-
pose of storing and recovering long-lived data – an
error-prone task that repeats as new applications
are developed and existing ones are modified and
extended. This process very much resembles the
work done by a multitasking OS or a thread library
when performing a context switch, namely to save
volatile processor state to memory.

In order to gain efficient write access, we bypass
the database API by calling a undocumented Pal-
mOS function that disables the memory protection.
Thereupon all RAM on the device has the same
access performance. By representing application
stacks and heaps directly in the newly unprotected
RAM area, we manage to eliminate the distinc-
tion between primary and secondary memory and

to make all program state persistent.

In the next section, we describe relevant features of
the Palm device and operating system. In section 3
we then present our implementation of persistence
automation. We cover memory management, pro-
gram life cycles, and a protocol to integrate external
state that is not under direct control of the runtime
system. Section 4 discusses the safety issues that are
introduced with our solution. Section 5 presents the
previous work most closely related to this research,
and Section 6 prevents our conclusions.

2 The Palm Connected Organizer

Due to their relatively restricted requirements,
handheld devices generally have quite different ar-
chitectures than desktop systems. In this section,
we give a brief overview of the Palm platform and
the PalmOS operating system for readers who are
not familiar with either.

2.1 The Device

The Palm Organizer is equipped with a Motorola
68000 compatible processor (the 16 MHz Dragonball
MC68EZ328 in the case of the Palm V) and from 2
to 8 MB of RAM backed by the battery such that
its state is preserved even if the device is switched
off. The display has 160 by 160 pixels.

2.2 The Operating System

PalmOS is a simple, single-tasking operating system
with a GUI widget set that enables the application
developer to build event driven, graphical applica-
tions.

The 2 to 8 MB of physical RAM is divided into two
parts:

• 64 KBytes of “dynamic memory” in older ver-
sion of PalmOS, and up to 256 KBytes in more
recent versions. This is the amount of RAM in
which a PalmOS application executes. Memory
in this area can be acquired from the operating



system through the MemPtrNew system call and
then be freely written and read.

• The remaining memory – called “static mem-
ory” – is battery-backed. This area is main-
tained by the OS as secondary memory. It is or-
ganized as a list of “databases” with mostly un-
typed records of variable size to which the user
can obtain a handle using the DmGetRecord
call. By locking such a handle using the
MemHandleLock call, a pointer to a record’s lo-
cation can be obtained. As long as a handle
is locked the operating system guarantees not
to move the associated record in memory. The
pointer returned by MemHandleLock only allows
read access to the record’s memory area. Writ-
ing has to be performed using the DmWrite call
– direct write access will result in a fatal excep-
tion and will eventually reset the device.

This partitioning of the device’s phys-
ical memory can be avoided by us-
ing the undocumented system calls
MemSemaphoreReserve/MemSemaphoreRelease.
These will switch the memory protection of the
“static” memory area off and on. When these
calls are used, great care has to be taken when
issuing other system calls as some may need the
semaphore. This forces the programmer to release
the memory semaphore before entering certain
system calls.

As mentioned in the introduction, PalmOS has
no automatic multi-tasking capabilities. If a user
changes from one application to another, the first
one will be asked to stop by an AppStop event.
Once it has stopped, all dynamic memory will be
reclaimed by the operating system. The second ap-
plication will then be started using the same dy-
namic memory as the first. The operating system
does not provide any implicit support for saving the
context of an executing application. Instead, the
application programmer is forced to save the state
explicitly, in a database residing in static memory.

3 Automation of Persistence

Most computing environments distinguish tran-
sient primary memory (RAM) and stable secondary
memory, typically on hard disks. Because the lat-
ter normally has much slower access characteristics,

programs operate in primary memory and persis-
tence is achieved by copying to secondary memory
and restoring from there.

PalmOS treats dynamic RAM as primary memory
and static RAM as secondary memory. But on the
Palm device the physical access speed of dynamic
and static RAM are exactly the same! Only because
PalmOS controls accesses to static RAM by certain
exclusive access functions does it appear to behave
like “typical” secondary memory.

By circumventing this control, though, and making
more direct use of static RAM, we can eliminate the
distinction between primary and secondary memory.
Hence, no data has to be copied between the two
areas when a program is suspended.

The Spotless VM was first modified to have a “per-
sistent heap,” which is directly allocated in stable
memory. The bytecode interpreter still uses dy-
namic memory, but all of the Java data (including
bytecodes and threads) is allocated on the Java heap
and thus in static memory. In order to be able to
freely write to the heap, the VM uses the system
call MemSemaphoreReserve, holding the semaphore
during the normal interpretation of bytecodes and
only releasing it when entering certain system calls
that require it.

However, allocating the heap in “static” memory
does not unburden the VM from having to shut
down and resume as a Palm program, as discussed in
section 3.2. Also, this “in place execution” inhibits
the possibility of making a snapshot of a heap and
then continuing execution without overwriting the
snapshot data. We still chose this implementation
because it greatly speeds up the shut down process
as almost no data has to be copied to stable storage.
Snapshots can still be achieved by stopping an ap-
plication and then transferring the persistent store
to a desktop system using the Palm device’s serial
port.

3.1 Store Structure

Although we eliminate the distinction between pri-
mary and secondary memory for objects, we bor-
row the notion of a “store” from persistent object
caching systems to describe the entire durable mem-
ory image of an application. A Spotless store cap-
tures the execution state of a running program, its



Wrapper

Store Header

Heap Segment #1

Heap Segment #2

..

..

..

Figure 1: Store Structure

heap, and additional boot information necessary to
resume the virtual machine at the point where it
was interrupted.

Such a persistent store is represented by a PalmOS
resource database of the type ’appl’. This type tag
causes the application manager to display the store
like any other application installed on the Palm.
Figure 1 illustrates the basic structural components
of a store:

1. The wrapper, which contains a minimal boot
program (less than 1 KB in size) that simply
locates the Spotless VM program on the device
and then starts it, passing the user-indicated
store as a parameter.

2. The store header, which contains all global C
variables that cannot be re-established from the
context. These are mostly the various roots
of the system, that is, references to objects lo-
cated in the segmented heap. It also contains
pointers to the first and the last of the resource
database records that represent the store con-
tents. The store header itself is stored in a re-
source record of type ’STOR’.

Figure 2 shows the definition of the associated
C structure. The field externalManager will
be explained in more detail in 3.4.

3. The segmented persistent heap. This is the
area where objects are placed by the allocator
and moved or deleted by the garbage collector.
Each segment is stored in a resource database
record of type ’VMem’ and is 64KB in size (the
largest contiguous area that can be allocated in
any Palm database).

Each record has its own header block contain-
ing status information for the segment. Figure
3 shows the definition of the C structure that
contains the header data.

struct storeStruct {
  int       lastRecordId;            // ID of the last record
  RECORD    first;                   // First record of this store
  RECORD    last;                    // Last record of this store
  RECORD    nextAllocation;          // Record in which the next 
                                     // object allocation should take place
  cell *    bitmap;                  // Image of the Palm screen 
                                     // when the store was suspended
  INSTANCE  externalManager;         // Singleton manager of external data  

  // These are VM roots and globals:
  THREAD    UP;                      // List of all threads in the VM
  int       nActiveThreads;          // Number of active threads
  BYTE *    tagStack;                // Marks pointers on the current stack
  ...
  int       elapsedTime;             // The time the store was up 
};

Figure 2: C Data Structure Representing the Store
Header

struct recordStruct {
  int       id;                // The database ID of this record
  RECORD    next;              // The next record in the list or NULL
  int       size;              // The number of cells in this record
  cell *    bottom;            // Bottom of this record
  cell *    top;               // Top of this record
  CHUNK     firstFreeChunk;    // Allocate the next object at this location
  int       bumped;            // TRUE when the underlying MemBlock
                               // starts 2 bytes before this record
  cell *    breakTable;        // Break Table used
  cell      breakTableSize;    // by the garbage collector
  int       address;           // The address where this record was located
                               // when the store was suspended
};

Figure 3: C Data Structure Representing a Heap
Record

The segmented heap is represented by a linked
list of records using the next pointer to locate
the following one.

The VM requires all heap objects to be located
at a 32-bit aligned address, whereas the operat-
ing system may return addresses that are only
16-bit aligned. This problem is solved by ac-
tually requesting 16 bits more than needed to
hold the record, which leads to one of the fol-
lowing situations.

If the memory area returned by the OS is not
32-bit aligned, the record is “bumped” up to
the next 32-bit aligned address. When an ap-
plication is suspended, the fact that the record
was bumped is indicated by setting its header’s
bumped field to TRUE and the two bytes before
the record to 0xFFFF (Figure 4). This will be
recognized by the VM when it resumes the ap-
plication, and then it can properly align the
contents of the record as described further in
section 3.2.

If the memory area returned by the OS is 32-
bit aligned, the record is simply placed at the
beginning of that memory area leaving 16 bits
at the end of it unused.

3.2 Lifecycle of a Persistent Program

Program execution comprises the following stages:
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Figure 4: Bumping of Unaligned Addresses

Creation: A program is first started and a new
store is created.

Execution: The program runs.

Suspension: The user switches to another appli-
cation. The current application is interrupted
and made persistent.

Resumption: The user resumes a previously sus-
pended application. Execution will continue
from the exact same state where it was left off.

Destruction: The computation terminates. This
can be caused either by calling System.exit,
terminating the last non-daemon thread or by
not catching an exception. The store is then
deleted.

The next sections will describe these four stages and
associated actions taken by the VM in more detail.

3.2.1 Creation

When a new computation is started the user must
supply a name for the store that will be created.
The VM will then create a new PalmOS resource
database of type ’appl’ and will first copy the con-
tents of the wrapper database (Wrapper.prc) to the
beginning of the newly created store.

Then the VM creates a store header record and a
first heap record and initializes all fields. These
records remain locked allowing the VM to access
them directly.

3.2.2 Execution

The limited size of Palm database records dictates a
two-level allocation scheme. When in the course of
program execution the amount of available memory
in the current heap segments becomes insufficient
despite garbage collection efforts, another record
is allocated and locked in memory. New records
are appended to the end of the linked list of heap
records.

Failure of record allocation is signaled by an excep-
tion.

3.2.3 Suspension

When the user changes to another Palm applica-
tion, the VM automatically saves the current state
of the computation by closing the persistent store
in a controlled manner:

1. All objects whose state is partly transient (i.e.,
not located on the persistent heap) are re-
quested to internalize their current external
state. This process is further explained in 3.4.

2. Individual modules of the VM, such as the
event handling system, are requested to memo-
rize their state. This is implemented by copying
C variables either to the heap or to appropriate
fields in the store header.

3. All heap records and the store header are un-
locked and can then be freely moved by the
operating system.

4. The store database is closed. It will now ap-
pear as a normal PalmOS application in the
application manager.

3.2.4 Resumption

In order to continue a computation from a persistent
store, the user simply selects it in the application
manager. The operating system will then invoke the
wrapper code at the beginning of the store which
will in turn locate the SpotlessVM and invoke it,
passing the store as a parameter. The VM will then
perform the following steps in order to resume the
suspended computation.



First, it will open the store database and map the
store header to the appropriate C struct (see Sec-
tion 1). The store header is the only record of type
’STOR’ in the database and can thus be uniquely
located by the VM.

Next, the VM will start opening the individual heap
records – these can be identified by their record
ID (ranging from 1 to lastRecordId) and type
(’VMem’). After opening and locking a record, the
header information has to be updated in case the
record has been moved since it was suspended. This
operation involves three major changes to the record
header.

1. Adjust the “bump” state. If the record has
been moved from an aligned to an unaligned ad-
dress or visa versa, its bump state has changed.
The new bump state can be obtained from the
record’s new memory address. The old bump
state can be detected by reading the first two
bytes of the record’s new memory area. If these
contain 0xFFFF the record was bumped when
the store was suspended. If the old and the
new state differ, the record has to be moved
by 16 bits to a 32-bit aligned memory address.
Note that the required space is always available
as the initial allocation requested 16 bits more
memory than necessary to hold the heap record
(Figure 4).

2. Adjust header fields. If the record has been
moved, all pointers from the header into the
heap segment need to be adjusted. The old lo-
cation of the record can be read from the header
field address and be compared to the record’s
new location.

3. Append an entry to the break table. We
build on an improved version of the SpotlessVM
with a compacting garbage collector that uses
a break table [Haddon and Waite, 1967] to up-
date pointers to relocated objects. We reuse
the garbage collector code to adjust pointers
to objects located in heap records that have
moved (see 3.3 for more detailed information
on the garbage collection algorithm). At this
point the VM simply has to append an entry to
the global breaktable to reflect the movement
of the current record.

After all records have been opened and the appro-
priate break table entries have been appended, the

VM runs a (slightly modified) pointer update phase
of the garbage collector in order to adjust the point-
ers within the heap and from global C variables (still
being stored in the store header) into the heap.

After all pointers have been updated, individual
modules of the VM are asked to restore their state
from the contents of their associated store header
field.

Then callbacks that have been registered to recreate
external state are executed (see 3.4).

Finally, the virtual machine resumes the execution
of the application from the point where it was sus-
pended earlier.

3.2.5 Destruction

When a program terminates – either by calling
System.exit, terminating the last thread or by not
catching an exception, the VM simply deletes its
entire store. In case of abnormal termination this
may seem a bit harsh, but considering that the store
would be useless as it cannot be restarted and –
without a tool like a store browser – cannot be ana-
lyzed for errors, it seems the right choice. As men-
tioned earlier, checkpoints of a store can and should
be achieved by hotsyncing a store to a desktop sys-
tem. This behavior could be changed when tools
exist to do a post-mortem on programs that exit
abnormally.

3.3 Memory Management

Store records can be moved in memory by the op-
erating system, when the store is inactive. To com-
pensate for this, as mentioned in the previous sec-
tion, pointers need to be updated. This requires
the VM to be able to tell the difference between a
pointer and scalar data at any point where a pointer
adjustment may take place. Otherwise, say, an int
could be misinterpreted as a pointer and would thus
be modified after an object (or a record) was moved
in memory – leading at best to an erroneous com-
putation.

Being able to tell exactly which values are pointers
and which are scalars is referred to as exactness or
type accuracy. It can be achieved by:



• keeping separate reference maps indicating
pointer locations,

• directly tagging each individual value with at
least one bit of type information.

The Spotless VM’s memory management identifies
a heap cell’s type by analyzing the class of the ob-
ject that the cell belongs to. Thus an object’s class
stores which fields contain pointer data and which
scaler data. To identify a stack cell’s type, the VM
keeps a parallel stack containing the required type
information. The secondary stack is called a tag
stack, as it keeps a tag corresponding to each stack
value and whither its a pointer or not. Each time
the execution stack is modified, the tag stack is up-
dated accordingly.

The garbage collector consists of a mark-sweep
algorithm with sliding compaction that uses a
break table to update pointers to moved objects
[Jones and Lins, 1996]. Although this algorithm is
relatively slow, it has two crucial advantages:

1. It does not need any extra space during the
compaction/update phase. The break table is
built in space that moved objects leave. This
is important, as on a very memory limited de-
vice, there may not be enough additional mem-
ory available for many other garbage collection
algorithms.

2. It can adjust pointers “into” any part of ob-
jects, not only pointers to the beginning of ob-
jects. We inherited this requirement from the
original design of the Spotless VM, which fea-
tures some pointers “into” objects for perfor-
mance reasons (e.g., a method is directly refer-
enced from a stack frame when executed, but
it is not represented by its own heap object; in-
stead, it is part of a method table heap object).

The current garbage collection algorithm does not
move objects between heap segments. Although it
is a compacting collector, this means there is still
some fragmentation. Furthermore, when a compu-
tation is suspended, the VM will almost never find
an empty segment that could be returned to the
operating system. We have considered alterations
to the algorithm to make it “multi-segmented”, but
would suggest that later implementations should in-
stead take advantage of the segmentation and im-
plement a generational collector.

3.4 External Data

When a program communicates with its environ-
ment, this often involves the creation of some exter-
nal state that is not under the control of the pro-
gram’s runtime system. In case of the Spotless VM
this typically concerns PalmOS structures such as
windows, forms or databases. In this section, we in-
troduce a protocol that provides automatic control
over the life cycle of external state.

In order for external state to use our protocol,
it has to be encapsulated in an instance of a
developer-defined class that implements the inter-
face External as shown in figure 5. We then regard
an External as consisting of two sub-states:

External state: data external to the persistent
store and references thereof. This also includes
attributes representing operating system struc-
tures, such as a file descriptor or a form handle
that will usually be invalid after the store has
been suspended.

Internal state: a representation of the external
state that is not dependent on any data struc-
tures outside the control of the persistent store.
The External must be able to reconstruct its
exact external state from the internal state in-
cluding, for example, the read/write position of
a file handle.

An External has to synchronize its internal state
with its external state when the store is sus-
pended and vice versa when it is resumed. In
order for this to be performed in a thread-safe
manner Spotless was adapted to use a protocol
adopted from the Tycoon-2 system [Weikard, 1998,
Gawecki and Wienberg, 1998] and implemented in
the ExternalManager singleton class.1

All state transitions of Externals are controlled by
a global ExternalManager. By adhering to this con-
trol center’s protocol, the external state of a com-
putation can be internalized on suspension and re-
established on resumption in a manner that prevents
inconsistencies. Figures 5 and 6 show the pertinent
interfaces.

1Tycoon-2’s protocol for external resources builds on the
basic protocol of Tycoon-1, which was first sketched in
[Mathiske et al., 1995, Mathiske et al., 1997] and described
in detail in [Kornacker, 1995]. The latter also influenced the
API and protocol presented in [Jordan and Atkinson, 1999].



public interface External {

  public void createExternal() throws ExternalException;

  public void internalizeExternal() throws ExternalException;

  public void recreateExternal() throws ExternalException;

  public void destroyExternal() throws ExternalException;

}

Figure 5: The Interface for External Resources

public class ExternalManager {

  // "Freezes" the execution state of the VM:
  private native void stabilizeStore();

  public synchronized void stabilize();

  public synchronized void createAndRegisterExternal(External x)
      throws ExternalException;

  public synchronized void unregisterAndDestroyExternal(External x) 
      throws ExternalException;

}

Figure 6: Major Methods of the ExternalManager
Class

All four methods shown in Figure 5 must be
implemented by an External to participate in
the External protocol. By calling the method
createExternal, the ExternalManager asks the
External to create its external state. An External
representing a database would, for instance, is-
sue the appropriate OS call to open the database.
The call internalizeExternal tells the External
to internalize all external state, e.g., read the
position in a database into an slot so the cur-
rent state can be reestablished later. By calling
recreateExternal, the External is asked to recre-
ate its external state from its current internal; and
by calling destroyState, the External is asked to
destroy its external state, e.g., close the associated
database.

The above four methods are invoked exclusively
by the ExternalManager during different state
changes of the persistent store. This means that
in order to create external state, the External

instantiation

has
external

state

has NO 
external

state

createExternal internalizeExternal

recreateExternal

destroyExternal
has NO 
external

state

has NO 
external

state

called by ExternalManager.createAndRegisterExternal

called by ExternalManager.deregisterAndDestroyExternal

called by ExternalManager.stabilize

called by ExternalManager’s resume routine

Figure 7: Life cycle of an External

has to register with the ExternalManager us-
ing the call createAndRegisterExternal. The
ExternalManager will in turn call back to the
External method createExternal. Unregistration
is regulated in a similar manner.

object’s
monitor is 

free

object’s
monitor is 

locked

aDatabase ExternalManager

new

_open

registerExternal

createExternal

createAndRegisterExternal

Figure 8: Registering with the ExternalManager

Figure 7 shows the major state transitions from the
perspective of an External. Figures 8 and 9 show
examples of a database class registering and unreg-
istering with the ExternalManager.

aDatabase ExternalManager

close

_close

deregisterExternal

destroyExternal

degisterAndDestroyExternal

Figure 9: Unregistering from the ExternalManager

To avoid deadlocks at stabilization, the order in
which the monitors (object locks engaged by the
synchronized keyword) of the External and the
ExternalManager are acquired is crucial. In the
examples, a thick lifeline denotes a locked monitor,
a thin one a free monitor.

The rationale for the stabilization protocol is as fol-
lows:



1. While a mutator thread is performing work on
an External, its could potentially be in an in-
consistent state. This prevents us from simply
stopping all mutator threads before stabiliza-
tion, i.e. stabilization must be performed in
the running system.

2. After external state has been internalized, no
mutator thread must be allowed to manipulate
the External. Consequently, the stabilizing
thread must hold on the External’s monitor
after internalization.

3. No External may be registered or unregistered
during stabilization. 2

This leads to the following protocol: when the
Spotless store is stabilized (which is triggered by
the user changing to another application), the
ExternalManager is first locked. After that, it
gives all registered Externals the chance to in-
ternalize their external state in the reverse or-
der to that in which they registered with the
ExternalManager. This is performed by (i) ac-
quiring the External’s monitor and (ii) sending the
External the internalizeExternal message. At
stabilization time, all Externals’ monitors are held.

On application resumption the process proceeds in
the reverse order. The ExternalManager will (iii)
send the External the recreateExternal message
and will then (iv) release the object’s monitor. The
recreation messages are sent in the same order in
which the createExternal methods were once in-
voked.

To avoid deadlocks involving a stabilizing thread
it is necessary that the ExternalManager object
is always locked before the External. Note that
the new, open and close methods in the ex-
amples are not synchronized. In general, no
method that calls createAndRegisterExternal or
unregisterAndDestroyExternal may synchronize
on the External or else a deadlock is possible.

Figure 10 illustrates the stabilization process with
two registered Externals. Note that the thick
line representing the lock on the External is ac-
tually starting before the subsequent invocation
of the stabilizeStore method and is held until
the ExternalManager sends the recreateExternal

2This is for simplification. A more complicated scheme
interleaving internalization and (un-)registration could pos-
sibly be thought of.

aFormExternalManager

stabilize

internalizeExternal

internalizeExternal

aButton

stabilizeStore

recreate

recreate

point of 
persistence

internalize

internalize

Figure 10: Performing the
ExternalManager.stabilize Operation

call. Also note the use of persistent threads:
the stabilizing thread is simply frozen by calling
stabilizeStore; it holds on to its locks until it
is resumed and then continues execution.

Recapping this section we observe that the
External protocol offers a thread-safe way to man-
age a persistent application’s external data. It pro-
vides an atomic registration/unregistration mecha-
nism and is instrumental in preventing deadlocks
and the persistence of inconsistent state.

4 Remaining Safety Issues

By disabling PalmOS’ write protection as described
in section 3, we create a new safety problem: it is
possible for a VM to overwrite the memory of dor-
mant applications and cause damage to them. This
would need to be addressed in case our contributions
were made into a product.

One could argue that a correctly implemented VM
would never attempt any access outside its own
store. Hence, debugging the VM and all added
native code would “asymptotically” eliminate the
problem. However, if one wants to be on the safe
side, some form of hardware write protection is re-
quired.

If we accepted the limited amount of primary mem-
ory in the original Spotless VM, there would be a
simple solution. We might then have implemented
the persistence of execution state in dynamic RAM
by copying all of it into a database record on shut-
down and read it back into dynamic RAM on re-
sumption. However, we do not have any intention



to claim: “64 K should be enough for everybody.”

It should be possible to protect only part of the
static RAM, not all of it. One could then ar-
range during each switch between applications that
all passive programs are protected and that only
records of the designated active application are ex-
posed to unprotected write access. For example,
if the hardware protection is governed by an ad-
dress limitation register, then it would be straight-
forward to relocate each application so that only the
running one resides in dynamic RAM.

The remaining problem is that memory outside
records could be altered inadvertently, which would
compromise the integrity of meta data (e.g., han-
dle collections, database indices) managed by the
OS. Ideally, the OS would place meta data in the
protected memory range. In case it does not, a
promising approach would be to save all of the meta
data occurring in the unprotected memory area to
a database before they can be altered and to restore
them before yielding control to another program or
the OS.

5 Related Work

Pocket Smalltalk [Arsenau and Brault, 1999] is a
Smalltalk-80 implementation for the Palm Con-
nected Organizer. Like our system, Pocket
Smalltalk circumvents PalmOS’s database API and
implements an in-store execution model by directly
modifying its segmented heap in the static RAM
area. The system does not offer an elaborate proto-
col to manage the persistent state of external data.

Merpati [Suezawa, 2000] extended the JDK 1.1
VM through a checkpointing mechanism for pur-
poses of error recovery and migration of compu-
tations. After suspension of all computation, the
whole program state is transferred to disk. Con-
trary to our work, Merpati does not offer a check-
pointing protocol to internalize partially external
state. Also, the system does not persist class file
contents but requires them to be installed at every
migration target. Merpati employs a conservative
garbage collector, so type accurate descriptions of
stack contents are only needed for checkpoints. Con-
sequently, the system computes reference maps on
demand, instead of updating them with every byte-
code instruction, as our system does.

The PJama research prototype
[Atkinson and Jordan, 2000] features a modi-
fied high-performance Java 2 VM and runs on top
of a recoverable, scalable persistent object store.
Through incremental faulting and eviction on a
per-object basis, the system can operate on stores
much larger than physical memory. PJama does
not persist threads — this allows for a simpler
checkpointing procedure, as synchronization issues
between the checkpointing thread and other muta-
tors do not need to be addressed. However, in order
to achieve a consistent checkpoint, all executing
threads have to agree that they have currently
reached a consistent state by using synchronization
on the application level.

The GemStone/JTM Persistent Cache
ArchitectureTM [GemStone, 2000] uses modi-
fied Java 2 VMs to provide access to a multi-user,
transactional store. Its multi-user architecture
provides a logical separation between the store
and the execution engines operating on it. Hence,
persistence of execution state (threads) is not
within the scope of this system.

6 Conclusion

We extended the functionality of the Spotless VM
with automatic memory management that provides
orthogonal persistence, including thread state. Java
programs running on the Spotless VM are continu-
ous processes: they can be suspended and then later
resumed at exactly the same point of execution as
where they left off. They may even be resumed on a
different device, since suspended programs can sim-
ply be beamed between Palm organizers.

Given the described enhancements to the Spotless
VM, it is no longer necessary for the programmer
to use a Palm database for making data persis-
tent. Palm databases are only needed to share data
among applications.

There is one exceptional situation in which pro-
grammers do need to write persistence-related code:
to maintain external resources that are not un-
der the control of the Spotless runtime system.
For such cases, we provide a callback API to in-
clude these resources in the suspension/resumption
phases. Leveraging the automatic persistence of
threads and synchronization primitive, such call-



backs can be scheduled and executed without com-
promising data consistency.

Generally, external resources should be dealt with
at the library level, such that the application pro-
grammer is completely unburdened from the task of
achieving persistence.

Our main approach is to represent program images
directly in stable memory (battery-backed RAM).
Because the OS can move memory blocks represent-
ing dormant programs around, we build on top of
a compacting GC to relocate pointers on program
resumption.

Compared with the previous Spotless VM, there is
no loss in execution speed, no increase in application
footprint and only a small increase in VM footprint
(about 4KB or 5%).
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