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Abstract

With the anticipated dramatic growth of com-
puting devices for mobile and embedded envi-
ronments, energy conscious hardware and soft-
ware design has taken center-stage together with
performance. At the same time, there is an in-
creasing need to provide a portable and seam-
less software environment for application devel-
opment and interoperability. This paper takes
an important step in the con
uence of these two
emerging trends, by examining the energy behav-
ior of the memory system in the execution of Java
applications. It is crucial to understand and op-
timize the energy behavior of the memory sys-
tem since instructions referencing memory can
contribute to a large fraction of the energy con-
sumption when executing Java applications.

Using an o�-the-shelf JVM, a validated mem-

ory energy model, and a detailed simulator, this

paper presents a characterization of the energy

consumption by the cache and main memory

when executing the SPEC JVM98 benchmarks

in the JIT and interpreter modes. The energy

consumption is pro�led for the di�erent hard-

ware components (instruction cache, data cache,

memory) and software components (class load-

ing, garbage collection, dynamic compilation).

The results from such a characterization are use-

ful to the hardware designer for cache organiza-

tions and architectural enhancements for reduc-

ing energy consumption. They are also useful to

the application and runtime system designer to

identify energy bottlenecks, and for code restruc-

turing or algorithm redesign to alleviate these

bottlenecks.

�This research is supported in part by grants from
NSF CCR-0073419, Pittsburgh Digital Greenhouse
and Sun Microsystems.

1 Introduction

Computing is becoming a pervasive and
ubiquitous part of everyday life. This has
led to important design considerations from
the software, the need to provide a seam-
less and portable software platform that fa-
cilitates easy inter-operability, and hardware,
the need to incorporate energy and form fac-
tor conscious designs and to reduce time-to-
market and cost, angles. This paper brings
these two design considerations together by
examining the energy consumption of JVM
implementations that form the cornerstone of
Java [1], which is one of the software plat-
forms for the seamless integration of diverse
ubiquitous/embedded devices. In particular,
this paper focuses on the energy consumed
by the memory system when executing the
SPEC JVM98 benchmarks [27].

Java provides portability across systems
by specifying only the format and seman-
tics of the bytecodes, without placing any re-
strictions on how they are executed. Conse-
quently, the choice of the JVM implementa-
tion style depends on the performance, avail-
ability of hardware resources, as well as en-
ergy criteria. Previous studies have mainly
looked at performance and hardware resource
issues between JVM implementation styles.
This is one of the �rst studies to examine
JVM implementation styles from the energy
viewpoint. Energy, measured in Joules, is the
power consumed over time and is an impor-
tant metric to optimize for prolonging bat-
tery life. The importance of optimizing for
this metric has been further accentuated by
the slow improvements in the energy capacity
of batteries.

The focus of this paper is in studying



the energy consumption behavior of the Java
codes from both software and hardware per-
spectives. While energy consumption is an
important issue in mobile systems of vary-
ing degree of resource constraints, the ex-
perimental setup and evaluation benchmarks
used in this work are representative of high-
end mobile devices such as laptops. The JVM
used in our experiments is the Sun Labs Vir-
tual Machine for Research, formerly known
as ExactVM (EVM) [31]. While current low-
end mobile devices use small footprint JVMs
that use simple interpretation, more sophis-
ticated JVMs such as the one used in this
work are attractive, due to their performance,
for high-end mobile devices such as laptops
and emerging low-end mobile devices such as
palmtops with large memory modules.
We utilize the SPEC JVM98 benchmarks

in this work and, speci�cally, focus on charac-
terizing the memory system energy consump-
tion for the following reasons:

� It has been observed [37, 4] that the
memory system can consume a large
fraction of the overall system energy,
making this a ripe candidate for software
and hardware optimizations.

� Among the di�erent instructions exe-
cuted by the SPARC architecture while
executing the SPEC JVM98 bench-
marks, the load/store instructions are
the primary instructions that access the
memory for their operands. On the
average, we �nd the energy consumed
by load/store instructions accounts for
58.7% and 52.2% of the total energy in
the interpreted and JIT-compiled modes,
respectively, when executing the SPEC
JVM98 benchmarks (see left side of
Figure 1). The energy consumed by
load/store instructions is signi�cant con-
sidering that on an average, these in-
structions are observed to constitute
only 22.7% and 19.4% of the total in-
structions for the interpreted and JIT
modes, respectively (see right side of Fig-
ure 1).

� Finally, Java executions are expected to
stress the memory system more than
traditional programs [17, 3, 9]. Byte-
codes are treated as data, and need to
be fetched from memory for interpre-
tation or JIT-compilation and installed.
Further, JVM features such as garbage

collection make Java executions much
more memory-intensive than normal pro-
grams.

We examine the energy consumption of the
memory system when executing Java pro-
grams, with di�erent JVM implementation
styles, to understand the hardware and soft-
ware bottlenecks. From the hardware view-
point, such information can be used to sug-
gest cache organizations and strategies for op-
timizing energy-delay criteria. Identifying en-
ergy bottlenecks for di�erent software com-
ponents of the execution, such as class load-
ing, garbage collection or dynamic compila-
tion, can lead to the design of better algo-
rithms and mechanisms to reduce the energy
demands. For instance, if garbage collection
turns out to be energy hungry, one could ei-
ther opt to invoke the collector less frequently
or design more energy-conscious garbage col-
lection algorithms. The information can also
be used to decide when to interpret and when
to compile, rather than base this decision
purely on performance considerations.
To our knowledge, there has been only

one prior study that has attempted to pro-
�le the energy consumption of Java programs
[10]. However, their use of an actual pocket-
computer to measure the current for calcu-
lating energy has limited their extent of pro-
�ling. It does not provide adequate infor-
mation as to what hardware components are
consuming the energy during the di�erent
phases of execution. On the other hand, the
use of a detailed simulator helps us pro�le
the energy consumption from both the hard-
ware and software angles to isolate the frac-
tion consumed by the memory system. Us-
ing the SPEC JVM98 benchmarks on o�-the-
shelf JVM implementations in the interpreted
and JIT-compiled modes, this paper sets out
to answer the following questions:

� How much energy is consumed by the
memory system in the execution of Java
programs? What fraction is consumed
by the cache and what fraction by the
main memory? What is the energy
breakdown between instruction and data
references?

� How do di�erent cache con�gurations af-
fect the energy consumption? In par-
ticular, what is the e�ect of the cache
size and associativity? While cache con-
�gurations that traditionally favor lo-



Figure 1: Energy consumption distribution between load/store and other instructions (left). Dis-
tribution of dynamic instructions categorized as load/store and other instructions when executing on
a SPARC architecture (right). The energy consumption for memory references are assumed to hit in
the cache. Energy consumption numbers for each group of instructions are applied from [34]. Energy
consumed in both datapath and memory is included.

cality would reduce the references to
main memory and reduce memory en-
ergy consumption, those con�gurations
would also increase the energy cost per
access of the cache. Studying these
trade-o�s would help decide on a good
operating point.

� How do these results di�er between the
two JVM implementation styles | in-
terpretation and JIT compilation? How
much energy is consumed by di�erent
components of the JVM such as class
loader, garbage collector? How do the
cache parameters a�ect these compo-
nents? What is the impact of application
parameters, problem size in particular,
on the energy consumption pro�le? For
instance, a larger problem can result in
the garbage collector being invoked more
often.

2 Experimental Framework

In this section, we �rst give details on the
speci�c JVM used in our simulations. We
then describe the characteristics of the bench-
marks used in our experiments, and the simu-
lator used to gather memory access informa-
tion. The energy model used for the memory
system is also described.

2.1 Java Virtual Machine (JVM)

The JVM used in our experiments is the
Sun Labs Virtual Machine for Research,
EVM [31]. This is a high performance VM
that has been designed to facilitate experi-
ments in memory management. It is designed

to provide a fast memory system, fast syn-
chronization, and a fast Just-in-Time (JIT)
compiler. It is also an adaptive VM, i.e., it de-
tects and accelerates performance-critical or
often-used code. Rather than compiling the
entire program when it starts, as is done in
virtual machines with pure JIT compilers, the
EVM starts o� running the application using
an interpreter. At the same time, it gathers
pro�ling information regarding the runtime
characteristics of the application and uses this
information to dynamically compile certain
methods. In all our experiments, methods
with loops are compiled at the �rst invocation
itself, and methods without loops are com-
piled when the invocation count reaches 15, a
value determined after extensive experimen-
tation [22].

We identify three parts within the EVM,
apart from the actual application execution,
where the principal events of interest that
stress the memory subsystem occur. The �rst
is class loading, when the binary form of a
class is brought into the virtual machine on
the �rst invocation, incurring many compul-
sory cache misses. The second is dynamic

method compilation, when a method is con-
verted into native code, and the native code is
installed in memory for subsequent execution.
This event occurs only in the EVM execut-
ing as an adaptive compiler. Finally, there is
garbage collection, which runs periodically as
a separate thread and reclaims memory from
non-referenced objects. A default heap size of
24 megabytes was used in the experiments.
The remaining parts have been grouped to-
gether with the execution of native code and



includes object accesses, thread creation, syn-
chronization, etc.

2.2 SPEC JVM98 Benchmarks

We use all seven applications from the
SPEC JVM98 benchmark suite [27] for our
experiments that are brie
y described in Fig-
ure 2. The benchmark programs can be run
using three di�erent problem sizes, which are
named as s100, s10 and s1. While the prob-
lem sizes are larger for the s100 dataset size,
the sizes do not scale as designated by the
labels 100, 10 and 1. In interest of simula-
tion time, especially, the interpreted mode in
s100 mode, we use the smaller problem size
(s1). We believe that the s1 data set is rep-
resentative of shorter running applications or
applets. While some of the results from the s1
observations would be applicable to the larger
data sets, it must be noted that the impact of
garbage collection and dynamic compilation
impacts tend to change for the larger data
sets. Thus, we provide s10 and s100 energy
breakdowns in Figure 12 to emphasize this
di�erence.

2.3 Memory System Energy
Model

For obtaining detailed pro�les, we have
customized an energy memory simulator and
analyzer using the Shade [6] tool-set. Our
memory simulator models on-chip instruction
cache (Icache), on-chip data cache (Dcache),
and o�-chip memory, and allows the user to
modulate the various parameters for these
components. We characterize the overall en-
ergy of the memory system by the energy con-
sumed by �ve components: the instruction
cache, the data cache, the buses, the I/O pads
and the main memory.
Note that we focus only on the dynamic

energy consumption, since in current tech-
nology, the dynamic energy accounts for 80%
of the total energy whereas the rest, short
circuit and leakage, takes only 20% [14].
The energy consumed by the Icache and by
the Dcache are evaluated using an analytical
model that has been validated to be highly
accurate, within 2.4% error, for conventional
cache systems [16, 25]. The energy consumed
by the caches are based on technology related
parameters for 0.8 micron technology. The
energy consumption depends on the number
of cache bit lines, word lines, and the number

of accesses due to both hits and misses. The
details of the model are quite involved and
can be found in [22]. The address and data
buses between the Icache/Dcache and the
datapath account for the energy consumed by
the on-chip buses. The bus energy consump-
tion is evaluated by monitoring the switching
activity on each of the bus lines using a capac-
itive load of 0.5pF per line [39]. The energy
consumed by the I/O pads and the external
buses to the main memory from the caches
is evaluated similarly for a capacitive load of
20pF per line. The main memory energy is
based on the model in [25] and uses a per

main memory access energy, referred as Em

in the rest of the paper of 4:95�10�9 Joules.
A 32 megabyte main memory recommended
as smallest memory size for running SPEC
JVM98 benchmarks [27] is used in this work.
The energy consumed by main memory ac-
cesses is further broken down into that con-
sumed due to instruction accesses (Imemory)
and data accesses (Dmemory).

3 Energy Behavior

In this section, we present a detailed en-
ergy analysis of the SPEC JVM98 bench-
marks. We �rst present the overall energy
picture. Then, we zoom in on two codes,
javac and db, and investigate their energy
behavior by modifying di�erent cache param-
eters such as cache size and associativity.
These experiments give us the hardware view

of energy consumption; i.e., they help us an-
swer the question of which parts of the mem-
ory system consume the most energy. Subse-
quently, we present an energy breakdown for
the benchmarks from the software viewpoint.
This helps us understand which software com-
ponents consume the most energy. Exper-
iments are conducted for both JVM imple-
mentation styles: interpreter mode and adap-

tive dynamic compilation mode (JIT mode).

3.1 Overall Energy Picture

Figure 3 shows the percentage energy
breakdown for the interpreter and the JIT
modes assuming 32 KB two-way set associa-
tive instruction and data caches. We see from
the �gure on the left that most of the en-
ergy in the JIT mode is due to memory ac-
cesses for data (Dmemory). In contrast, the
memory energy due to native SPARC instruc-
tion accesses is lower. This is because the in-



Benchmark Brief Description

compress A high-performance application to compress/uncompress large �les; based on the Lempel-Ziv method (LZW)
jess A Java expert shell system based on NASA's CLIPS expert shell system
db A small database management program that performs several database functions on a memory-resident database
javac JDK 1.0.2 Java compiler
mpeg MPEG-3 audio �le compression application
mtrt Dual-threaded ray tracer; the only multi-threaded application in the suite
jack A Java parser generator with lexical analyzers; an early version of what is now called JavaCC

Figure 2: SPEC JVM98 benchmark codes used in the experiments.

struction accesses exhibit much better data
locality and cause less number of o�-chip ac-
cesses. The same trend is also observed with
the interpreter mode of operation as shown
in the graph on the right. The instruction
accesses in the interpreter mode have better
locality than the JIT mode [23], and as a re-
sult, the percentage of the instruction cache
energy is higher in the former, especially for
compress. As an example, in the interpreter
mode, instruction cache energy consumption
for the javac benchmark is 12.3% of the over-
all memory system energy, whereas the cor-
responding �gure in the JIT mode is 8.7%.
The energy consumption for a given unit

is directly related to the number of accesses
and per access energy cost [37]. It can be
observed from Figure 4 that the interpreter
consumes signi�cantly more energy than in
the JIT mode. A detailed breakdown of en-
ergy is shown in Figure 5. This is due to
the fact that both the number of instructions
and number of data accesses in the interpreter
mode are higher than the JIT mode. For ex-
ample, javac consumes 2.15 times more en-
ergy in the interpreter mode as compared to
the JIT mode. Thus, the use of JIT compil-
ers will be more bene�cial not only in terms of
performance (as is well-known [23]) but also
from the energy viewpoint.

3.2 Hardware View { Impact of
Cache Con�guration

To investigate the in
uence of cache con�g-
urations on the energy consumption, we con-
ducted experiments with di�erent cache sizes
and associativities. It is important to note
that the energy consumption in the memory
system is highly dependent on the number of
cache misses as the o�-chip memory energy
cost is an order of magnitude larger than on-
chip cache energy cost [37]. However, reduc-
ing the number of cache misses is normally
achieved using caches of larger sizes or asso-
ciativities that in turn add to the per access
energy cost for the cache. Thus, it is essential

Figure 4: A comparison of energy consumption
when executing in JIT compile mode and inter-
preter mode. The Icache and Dcache are 32 KB
two-way set associative and have 32 byte block
size. s1 dataset was used.

to understand the energy trade-o� between
better cache locality and increased per access
cost.

Figure 6 presents the energy spent in
caches and memory for di�erent cache con-
�gurations for javac and db. From these
graphs, we can make the following observa-
tions. First, when the cache size is increased,
we observe a decrease in the overall energy
consumption up to a certain cache size. How-
ever, beyond a point the working set for in-
struction or data are contained in the cache,
and a size larger than this does not help in
improving the locality but does increase the
per access cost due to the larger address de-
coder and larger capacitive load on the cache
bit lines. A similar trend is also observed
when we change the associativity for a �xed
cache size, where increasing the associativ-
ity aggressively brings diminishing returns in
energy saving. This e�ect is due to more
complicated tag-matching hardware required
to support higher associativities. Second, we
observe that the instruction accesses seem to
take advantage of larger caches better than
data accesses. For example, in javac with
the interpreter mode, when we move from a
4K direct-mapped cache to a 128K direct-



Figure 3: Energy distribution for the JIT mode (left) and interpreter mode (right). The Icache and
Dcache are 32 KB two-way set associative and have 32 byte block size. s1 dataset was used.

Interpreter Mode
Benchmark Icache Dcache Imemory Dmemory Total

Acc. Eng. Acc. Eng. Acc. Eng. Acc. Eng. Eng.

compress 21,340.00 98.17 7211.6 33.17 0.6 0.77 42.4 53.71 185.82
db 450.5 1.82 118.6 0.48 1.8 2.34 6.9 8.74 13.38

jack 9,834.9 39.82 2,814.4 11.39 15.6 19.81 173.0 220.05 291.07
javac 1,076.3 4.36 301.1 1.22 3.4 4.34 20.0 25.44 35.36
jess 1,698.3 6.88 477.4 1.93 4.6 5.89 33.1 42.16 56.86
mpeg 4,730.6 19.15 1,432.3 5.80 4.0 5.06 58.1 73.87 108.88
mtrt 12,935.4 52.37 3,657.7 14.81 16.7 21.21 248.3 315.90 404.29

JIT Mode

Benchmark Icache Dcache Imemory Dmemory Total
Acc. Eng. Acc. Eng. Acc. Eng. Acc. Eng. Eng.

compress 922.4 4.24 330.9 1.52 1.8 2.22 22.2 28.11 36.09
db 238.2 0.97 59.5 0.24 2.9 3.70 3.9 5.00 9.91

jack 657.1 2.66 168.4 0.68 5.8 7.4 15.5 19.7 30.44
javac 353.1 1.43 88.4 0.36 4.7 5.95 6.8 8.68 16.42
jess 352.7 1.43 89.6 0.36 5.4 6.88 7.1 8.95 17.62
mpeg 456.0 1.85 129.0 0.52 3.9 4.94 7.9 10.02 17.33
mtrt 2,535.6 10.27 698.7 2.83 11.1 14.05 50.8 64.43 91.58

Figure 5: Number of cache and memory accesses (denoted Acc.) in millions and absolute energy
values (denoted Eng.) in Joules in interpreter and JIT mode.

mapped cache, the instruction memory en-
ergy drops from 132.8J to 17.0J. On the other
hand, except for the move from 4K to 8K,
the data memory energy does not vary signif-
icantly across di�erent cache con�gurations
for the dataset size that is used in these ex-
periments (s1). Finally, as far as the general
energy trend is concerned, the JIT mode be-
haves similar to the interpreter mode except
for the fact that the actual energy values are
much smaller, less than half typically, and in
some cases the cache con�guration that re-
sults in the minimum energy consumption is
di�erent in the JIT mode from that of the
interpreter mode.

It should be noted that although the num-
ber of memory accesses in the interpreter
mode is higher than the JIT mode, the mem-
ory footprint of the former is smaller [23].
The increase in memory footprint for JIT
compiler can be due to the additional li-
braries required for the JIT optimizations

and dynamic code installation. For exam-
ple, the SPARC and Intel versions of the JIT
compiler proposed in [7] themselves require
176Kbytes and 120Kbytes. The in
uence of
extra space required for compiled code in JIT
mode is found to require 24% more memory
space as compared to interpreter mode for
the SPEC JVM98 benchmarks, on the av-
erage [23]. Consequently, in embedded en-
vironments where we have the 
exibility of
designing custom memory for a given appli-
cation code [5, 2], we can potentially use a
smaller memory for the interpreter mode of
operation. In order to capture the e�ects of
lower memory overheads due to the absence
of dynamic compilation overheads, we scale
the memory size of the interpreter relative to
that of the JIT compilation mode. It must
be noted that a smaller physical memory will
incur less energy due to smaller decoders and
less capacitive loading on the bitlines. We
will assume that the energy cost of a memory



Figure 6: Energy consumption (memory system) of javac and db for di�erent cache con�gurations.
The cache sizes and associativities on the x-axis are for both the instruction and data caches. s1 dataset
was used.

access decreases linearly with memory size for
the purposes of this comparison.

Figure 7 gives the total energy consump-
tions for db for di�erent ratios of memory
footprint between the interpreter and JIT
compiler. For the purposes of this approxima-
tion, we have neglected the e�ect of increased
garbage collection overhead which would re-
sult when reducing the memory size. The
way to interpret the graph is as follows. In
db, the memory overhead of the JIT mode
needs to be at least 1.67 (1/.6) times, (cor-
responding to 0:6 scaling factor) more than
that of the interpreter mode before the in-
terpreter becomes preferable from the energy
viewpoint. Until then, JIT is preferable. The
observed expansion in data segment for the
JIT compilation mode is limited to 24% on
an average [23] and the overhead of current
JIT compilers is much smaller than the heap
size (24 megabytes) needed for both modes.
Hence, while one might think that reducing
the memory size makes interpretation more
attractive, the above observations show that
the size expansion in JIT compilation mode
is not signi�cant enough to in
uence opti-

mal energy consumption choice, even neglect-
ing the increased GC overhead. However, if
this footprint expansion becomes too large
due to some JIT optimizations [38, 28, 21]
that increase code size (e.g., in-lining), or the
compiler becomes much larger compared to
other resources such as heap space required
in both modes one may need to re-evaluate
this trade-o� and select the suitable execu-
tion mode during memory system construc-
tion for an embedded device where physical
memory space is limited.

Main memory has long been a major per-
formance bottleneck and has attracted a lot
of attention (e.g., [26]). Changes in process
technology have made it possible to embed
a DRAM on the same chip as the processor
core. Initial results using embedded DRAM
(eDRAM) show an order of magnitude reduc-
tion in energy cost per access [26]. Also, there
have been signi�cant changes in the DRAM
interfaces that can potentially reduce the en-
ergy cost of external DRAMs. For exam-
ple, unlike conventional DRAM memory sub-
systems that have multiple memory modules
that are active for servicing data requests, the



Figure 7: Relative energy consumption of inter-
preters as compared to JIT Compiler. The mem-
ory size for the interpreter is varied relative to
that of the JIT Compiler to capture the di�er-
ences in the overheads associated with the stor-
age associated with di�erent compilers and the
code expansion that can occur during native code
generation and installation. An instruction cache
and a data cache, both 32 KB, two-way associa-
tive with 32 byte block size, are used.

direct RDRAM memory sub-system delivers
the full bandwidth with only one RDRAM
module active. Similarly, new technologies
such as magnetic RAMs consume less than
one hundredth the energy of conventional
DRAMs [33]. Also, based on the particu-
lar low power operating modes that are sup-
ported by memory chips and based on how
e�ectively they are utilized, the average en-
ergy cost per access for external DRAMs can
be reduced by up to two orders of magni-
tude [8]. In order to study the in
uence of
these trends, we performed another set of
experiments using four di�erent Em values:
4:95�10�9J (our default value), 2:45�10�9J,
2:45�10�10J, and 4:95�10�11J. Each of these
value might represent the per-access cost for
a given memory technology. Figure 8 shows
the normalized energy consumptions (with re-
spect to the interpreter mode with the default
Em value). We observe that the ratio of the
total memory energy consumed by the inter-
preter mode to that of the JIT mode varies
between 1.05 (2.07) and 1.80 (2.85) for db

(javac) depending on the Em value used. We
also observe that the relative di�erence be-
tween energy consumed in interpreter mode
and JIT mode increases as Em reduces due
to better technologies. For example, the en-
ergy consumed in JIT compilation mode is
half of that consumed in the interpreter mode
for most energy-e�cient memory while it is
around 70% of interpreter energy for most en-
ergy consuming con�guration when executing

db. This indicates that the even when the
process technology signi�cantly improves in
the future, the JIT will remain the choice of
implementors from an energy perspective.

3.3 Software View { Energy Dis-
tribution across Software
Components

In this part, we pro�le the energy consump-
tion between di�erent software components
such as class loading (load), dynamic com-
pilation (compile), garbage collection (GC),
and the rest of the execution (exec). An
understanding of this breakdown can provide
the Java Virtual Machine (JVM) implemen-
tors and application designers with an indi-
cation of which components of their software
consume the most energy and help them con-
centrate on optimizations to those particular
components. For instance, if the energy cost
due to object accesses is high, one could mod-
ify the object allocation strategies used by the
JVM or apply object reuse strategies at the
software level. Similarly, if the garbage col-
lector [15, 29, 9] component is signi�cant, one
could opt for an improved algorithm or mod-
ulate the frequency of its invocation.

Figure 9 gives the energy distribution for
the software components in both the inter-
preter and JIT modes. For example, jack ex-
ecuting the interpreter mode, the instruction
accesses consume 60J and data accesses con-
sume 232J. The corresponding energy num-
bers for the JIT mode are much lower at 10J
and 20J respectively. These results are in con-
sonance with the better locality of instruc-
tion accesses in the interpreter mode as dis-
cussed earlier. In the interpreter mode almost
all the energy is spent in the interpretation
and GC and class loading were found to be
less than 2% of the overall energy consump-
tion. Although execution takes the largest
amount of energy in the JIT mode, the dy-
namic compilation also consumes a signi�-
cant amount of energy. This is due to two
main reasons [23]. First, there are abrupt
changes in the working set during dynamic
compilation as the code and data structures
used by the compiler are di�erent from that
for the rest of the JVM. Thus, when we move
to the code generation phase, we experience
poor locality in the cache (data and instruc-
tion) accesses, and this in turn causes more
references to the memory (both Imemory and
Dmemory). Second, when code is installed af-



Figure 8: Overall memory system energy consumption with di�erent values of Em for the interpreter
and the JIT mode.

ter dynamic compilation, it causes references
to main memory. We observe that (in the
JIT mode), on an average, the dynamic com-
pilation consumes 24% of the overall energy
across the benchmarks. Figure 11(d) breaks
down the energy consumption by the hard-
ware components during dynamic compila-
tion and shows that Imemory and Dmemory
are responsible for the bulk of the overhead.

In the rest of this discussion, we focus only
on the JIT mode since the energy consump-
tion for the interpreter is dominated entirely
by the interpretation. Figure 10 gives the en-
ergy breakdown of javac into di�erent soft-
ware components with di�erent cache con�g-
urations. We observe that (as opposed to
class loading and garbage collection) the dy-
namic compilation and execution can take ad-
vantage of larger cache sizes. Data from other
experiments [22] show that the energy con-
sumption during loading is mainly dominated
by compulsory misses. Hence, the number of
total misses during loading is fairly constant
across di�erent cache con�gurations. How-
ever, there are small variations in energy con-
sumption with changes in cache con�guration
as the per-access energy cost is a�ected not
only by number of accesses but also by the en-
ergy cost of the tag-matching hardware and
the capacitive load of bit lines. As can be ob-
served in class loading pro�le in Figure 11(a),
most of the energy is consumed by the data
memory. It should be noted that some Java
environments may be running multiple ap-
plications concurrently, in which some of the
class loading costs can be amortized over the
di�erent applications [10].

We see from Figure 9 that the garbage col-
lector consumes a very small fraction of the
energy. Its energy consumption due to data

accesses is higher than that due to instruc-
tion accesses as the garbage collector code it-
self is very small (i.e., good Icache locality)
but the data accessed by the GC has a rel-
atively poor locality. In fact, our detailed
analysis shows that most of the energy ex-
pended in data memory is a result of the the
cache misses. More innovation in improving
the data locality of garbage collection will be
valuable from energy perspective. While the
absolute energy consumed by the garbage col-
lector is small compared to overall execution
in these experiments, we believe that the need
for more aggressive garbage collection for lim-
ited memory embedded systems will make
this component more important. It must
be noted that the energy consumed in the
garbage collection portion is also in
uenced
by the choice of the algorithm and the size of
the heap. The size of the heap can in
uence
the number of times the garbage collector is
invoked. For example, when we varied the
heap size from 24M to 8M, the energy con-
sumed by garbage collection increases eight
fold when executing mtrt (s100 dataset and
JIT compilation mode). The dataset of the
application can also in
uence the energy con-
sumed by the garbage collector. As an exam-
ple, we found that the GC is responsible for
nearly 14% of total data misses for s100 data
set (compared to 7% with s10) in the JIT
mode, for javac, contributing to the over-
all energy more signi�cantly. More detailed
analysis of these tradeo�s in garbage collec-
tion energy consumption is beyond the scope
of this work and is an interesting area of re-
search in itself.

The execution of compiled code consumes
the major chunk of the energy and Figure 11
shows the energy distribution for the di�erent



Figure 9: Energy distribution based on software components. Instruction access energy involves
Icache energy and Imemory energy, and data access energy involves Dcache energy and Dmemory
energy. In the interpreter mode, the class loading and GC portions were small as compared to the actual
interpretation of the code and hence are not shown separately in this breakdown. In the JIT mode, this
component is mainly comprised of the energy spent in executing the native code after compilation.

hardware and software components of the JIT
mode. Overall, observing the trends shown in
Figure 11, it is interesting to note that di�er-
ent applications in SPEC JVM98 exhibit dif-
ferent energy behaviors. For instance, while
mtrt consumes the maximum energy during
the execution phase, its energy consumption
is smaller than that of compress during load-
ing, garbage collection, and dynamic compi-
lation. The energy consumption in di�erent
software components is a function of the num-
ber of classes loaded, the size of the classes,
the number of methods compiled, the number
of times a method is invoked after compila-
tion, the heap size determining the frequency
of GC invocation, the size of data set and the
heap allocation, and memory access behavior
during execution. Since the actual execution
of the compiled code is the dominant com-
ponent, we need to focus on developing tech-
niques to reduce the energy consumed by this
component. Optimizations during the JIT
compilation phase (e.g., [28, 38]) can also po-
tentially improve the energy e�ciency of the

execution phase, sometimes at the cost of in-
creasing energy consumption due to dynamic
compilation itself.
Finally, we would like to emphasize that

the energy behavior in the di�erent portions
of the JVM is also dependent on the dataset
size. We observe from Figure 12 that the
share of class loading and dynamic compila-
tion are comparatively smaller for the s100
dataset as compared to s10 dataset.

4 Concluding Remarks and Fu-

ture Work

This paper has taken an important step
towards the con
uence of two emerging de-
sign considerations for ubiquitous and em-
bedded computing: the need for a seam-
less and portable software platform for easy
application design and interoperability, and
the need for energy conscious system design.
By focusing speci�cally on the Java runtime
system and the SPEC JVM98 benchmarks,
this paper has analyzed the energy consump-
tion in the memory system for these appli-



Figure 10: Energy distribution (based on software components) for javac with di�erent cache con-
�gurations (JIT mode).

cations. The motivation for this study stems
from the observation that instructions access-
ing the memory system account for over 50%
of the energy consumption for these bench-
marks. As applications get larger and become
more data centric, they are likely to stress the
memory system even more.

Using an o�-the-shelf JVM, a validated en-
ergy model for the memory system, and a de-
tailed simulator, this paper has presented a
characterization of the energy consumption in
the cache and main memory due to instruc-
tion and data references of the SPEC JVM98
benchmarks. The e�ect of the JVM imple-
mentation style (interpretation or JIT compi-
lation) has also been studied, in addition to
breaking down the energy consumption be-
tween di�erent software components of the
JVM| class loading, garbage collection, and
dynamic compilation. The detailed pro�les
from this study can help towards hardware
enhancements, in terms of cache and memory
organization, and even algorithmic and soft-
ware designs for energy conscious application
and JVM designs.

This study has helped us make the follow-
ing general observations:

� Main memory energy consumption is
more dominant than that of the caches,
with the main contributor being data ref-
erences. Interpretation tends to stress
the instruction cache more than JIT
compilation, mainly because of the bet-
ter locality. Overall, from the energy
viewpoint, the JIT approach is a better
alternative than interpretation.

� Interpretation has been a popular alter-
native for limited memory systems, since

it requires less space than a JIT com-
piler. Lesser space, smaller memory, also
implies a reduction in energy cost per
access, which can be another argument
one could use in favor of interpretation.
However, our study reveals that the sav-
ing in energy per access due to smaller
memory is not su�cient to compensate
for the energy consumed by the larger
number of accesses and longer execution
time of interpretation compared to JIT.

� Cache organizations that favor locality
can decrease the main memory energy
consumption, while increasing the cost
per cache access. These two contrasting
in
uences make it necessary to decide on
a good operating point for cache design
that takes both locality and energy into
account.

� In the interpreted mode, the energy for
the actual interpretation of byte codes
clearly dominates any other portion of
the JVM. The energy consumed by the
dynamic compilation in the JIT mode
is quite signi�cant, mainly due to the
code installation and subsequent execu-
tion misses.

We believe the characterization study in
this paper will be helpful for JVM imple-
mentors to understand the impact of their
decisions on the energy consumption of the
system. As this paper is one of the �rst at-
tempts to characterize energy-behavior of the
Java codes, we believe there is lot of scope for
enhancements. First, we need to experiment
more thoroughly on the e�ect of data set sizes
and with di�erent types of Java applications
executing on mobile environments. Second,



Figure 11: Energy breakdown for di�erent components. Note that the Y-axis scales for the di�erent
graphs are di�erent. The Icache and Dcache are 32 KB two-way set associative and have 32 byte block
size.

we plan to study the impact of technology
changes such as increased wire capacitances
and leakage power on our study. We plan to
address these in our future work.
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