USENIX Association

Proceedings of the
2" Java™ Virtual Machine
Research and Technology Symposium
(JVM '02)

San Francisco, California, USA
August 1-2, 2002

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2002 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.




A Lightweight Java Virtual Machine
for a Stack-Based Microprocessor

Mirko Raner
PTSC
(formerly “Patriot Scientific Corporation”)
10989 Via Frontera
San Diego, CA 92127
raner @ acm.org

Abstract

The large majority of modern JVM implemen-
tations are either pure software VMs on top of
standard general purpose microprocessors (e.g., In-
signia’s Jeode or IBM’s Jalapeiio VM) or Java-
specific microprocessors with supportive software
layers (e.g., Fujitsu’s MB 86799 or alJile’s aJ-100).
In this paper a somewhat different approach is pre-
sented: a lightweight software VM on top of a gen-
eral purpose stack-based microprocessor. Said mi-
croprocessor is not a “hardware JVM”, but its ar-
chitecture is very similar to the JVM. Being truly
a general purpose processor, it is not entirely dedi-
cated to execute Java bytecode but can at the same
time run C or FORTH applications.

This paper describes the implementation of a
lightweight Java Virtual Machine for the IGNITE
family of stack-based microprocessors. To achieve
an optimal Java performance this JVM uses a com-
bination of standard techniques, such as ahead-
of-time (AOT) compilation, class hierarchy analy-
sis (CHA), lazy class loading and binary rewriting,
complemented by new optimizations like executable
method access structures (XMAS) and lazy argu-
ment passing.

The unusual architecture of the target processor
also often posed unusual problems that had to be
solved.

1 Introduction and Project
Background

Originally, the IGNITE microprocessor (formerly
named PSC 1000A [PTS00]) was designed as an em-
bedded computing platform for efficient execution

of C and FORTH. It has a 32-bit dual-stack ar-
chitecture (see figure 1) with an 18-word operand
stack and a separate 16-word stack for the call stack
frames (containing the local variables). Both stacks
act as on-chip stack caches and are automatically
spilled to and refilled from memory.

The processor uses byte-sized instructions, fitting
up to four instructions into one 32-bit machine
word. Thus, the IGNITE processor can be consid-
ered a real “bytecode” processor (though not a Java
bytecode processor). Special instruction formats are
used for encoding branches and 8-bit or 32-bit con-
stants.

Simplicity was the main design goal of the proces-
sor. To save space on the silicon die, it does not
have conventional data or instruction caches, and
instead of a multi-stage pipeline architecture it uses
a simple instruction pre-fetch.

When Java became a popular programming envi-
ronment, the obvious similarities between the IG-
NITE microprocessor and the JVM inspired a port of
a PersonalJava Application Environment (PJAE).
This port was based on Wind River Systems’ Vx-
Works 5.4 as underlying real-time operating system
and the Personal JWorks 3.0.2 PJTAE (“PJWorks”)
[Win99]. To take advantage of the IGNTTE’s archi-
tectural similarities to the JVM, a JIT compiler was
added to PJWorks and the interpreter loop was re-
coded in assembly language.

Surprisingly at first, the actual performance of this
JVM port fell far behind the calculated estimates.
The scores of the CaffeineMark test reached on av-
erage only about 40% of the expected scores — even
with JIT compilation and a hand-coded interpreter
loop! Though the JIT compiler yielded performance
gains of up to 10 times over the original interpreter
loop, the system was still about 2.5 times slower
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Figure 1: The register set of the IGNITE I

than predicted. A closer examination revealed that
the PJWorks design (based on Sun’s 1998 version of
the JVM) caused a number of severe overheads for
the IGNITE processor. Those problems could hardly
be overcome without changing the overall architec-
ture completely.

Eventually, the insufficiencies of the PJAE port led
to the idea of a new optimized JVM for the IGNITE
platform.

Section 2 gives an overview of the new Java archi-
tecture for the IGNITE processor; it presents an ana-
lysis of the problems of the earlier PJAE port (2.1)
and summarizes the design goals of the new system
(2.2). Section 3 introduces the low-level OS API
used for the new JVM and section 4 covers the im-
plementation details of the new lightweight virtual
machine itself. The optimized method invocation
scheme of the VM is covered separately in section
5. Finally, section 6 provides preliminary bench-
mark results and concludes the paper.

2 Overview of the
New Architecture

The outcome of the redesign effort, after the disap-
pointing results with the initial PJAE port, was the

Lightweight Virtual Machine (LVM) with its low-
level APT named “JELLO”.

For reasons of simplicity and rapid prototype devel-
opment, the first version of the LVM is based on the
reduced instruction set of the CLDC specification —
even though the IGNITE processor in fact does have
floating point instructions.

2.1 Problem Analysis for the Initial
PJAE Port

It turned out that the reasons for the low perfor-
mance of the initial PJAE port were distributed
across all layers of the system: the VM implemen-
tation, the underlying OS and the microprocessor
itself.

The deficiencies were not only located within the
components themselves: a lot of the problems were
actually caused by the interaction between the indi-
vidual components.

One of the main reasons for the performance limita-
tions was found in the predefined architecture and
data structures. Sun’s PJAE reference implementa-
tion, which is also the core of Wind River’s Personal
JWorks 3.0.2, was designed for high portability and
not necessarily for high performance. It contains a
number of abstraction layers which facilitate port-
ing to new platforms but often impede an efficient
implementation on a particular processor.

Though a lot of the crucial JVM code was recoded in
assembly language there were still large overheads
imposed by the interaction with Sun’s and Wind
River’s parts of the VM. Especially jumping be-
tween different types of methods (interpreted, JIT-
translated, JNI-native, NMI-native, etc.) turned
out to be very expensive in some cases (see section
5.4 for more information about “invokers”). In fact,
the classical JIT compiler approach is completely in-
adequate for a target architecture that is so similar
to the JVM.

Being originally targeted for the C and FORTH pro-
gramming languages, the IGNITE processor also uses
a different “procedure call standard” than the JVM.
That is, it uses a different way of passing argu-
ments to a called procedure (or method). Further-
more, the IGNITE processor uses a different notion
of the concept of “stack frames”: the call stack (the
“local register stack” in IGNITE nomenclature) and
the operand stack are separate structures, and the
procedure call logic has to establish links between
the call stack and the corresponding entries in the
operand stack.

Those problems are processor-specific problems.



However, not being limited to the predefined mech-
anisms and data structures of the reference imple-
mentation makes it much easier to find optimized
solutions for these problems.

The original PersonalJava VM was mainly written
in C and naturally made frequent use of C structs
to group and handle data. The C language allows
structures to be passed as arguments, but the IG-
NITE architecture is not quite made for that, be-
cause the on-chip stack caches have a very limited
size and procedure calls get very inefficient when the
arguments do not fit into the cache. Therefore it is
necessary to use an auxiliary stack, which solves the
problem but introduces another considerable over-
head.

Finally, VxWorks was also not the best choice for
the base operating system. The thread models of
Java and VxWorks are fundamentally different and
it takes considerable efforts to make one run on the
other. In addition to that, the real-time require-
ments of VxWorks and the non-real-time nature of
Java are hard to reconcile, since real-time behav-
ior is hard to guarantee in an environment that
depends on automatic garbage collection (though
there are approaches that enable real-time garbage
collection).

Personal JWorks is also very closely tied to Vx-
Works, which was another problem, since it made
it very hard to change to a different operating sys-
tem.

Besides the problems of lacking performance and
flexibility, the port of Personal JWorks also had an
excessively large memory footprint. After JVM-
startup about 5 MB of memory had already been
consumed, which is a very large amount for a Java
solution that is intended to be used in embedded
applications.

2.2 Design Goals for the
New Java Architecture

After the detailed problem analysis of the earlier
JVM port, the following design goals were estab-
lished for the optimized IGNITE JVM architecture:

1. Increase the Java performance

2. Decrease the memory footprint size of
the overall OS/VM combination

3. Take advantage of the unique processor
features of the IGNTTE

4. Provide the flexibility to use different
underlying operating systems

5. Avoid the problems that were caused by
choosing C as implementation language

The footprint goal was to have a combined static/-
dynamic footprint of about 2 MB for the JVM, in-
cluding low-level OS functionality required by the
JVM.

2.3 Feature Overview

Various different measures were taken in order to
meet all the goals stated in section 2.2.

In comparison to the previous Virtual Machine port,
the new architecture has four major optimizations:

Proper separation from the underlying OS

Lazy class resolution

Pure Ahead-of-Time compilation without JIT
or interpreter

Optimized method invocation

Probably the most interesting is the optimized
method invocation, which is discussed separately in
section 5. The optimization features were especially
aimed at design goals 1, 2 and 3.

In order to gain more flexibility towards the choice
of the underlying operating system (design goal 4),
an OS abstraction layer — called “JELLO” — was
introduced. JELLO is covered in more detail in sec-
tion 3.

Finally, in order overcome the implementation prob-
lems with C (auxiliary stack for structs, different
procedure call standards), the LVM was entirely im-
plemented in Java and assembly language. The Java
parts (such as the AOT compiler) are converted to
IGNITE code via bootstrapping. Using Java as main
implementation language has already proven to be
a successful idea in other JVM projects, such as the
Jalapefio VM [A100]. The current implementation
of the low-level APT is still written in C and is based
on PTSC’s “monitor”, which is a minimal operating
system for the IGNITE processor.

All JELLO interface functions were specified on ma-
chine level (by specifying the operand stack contents
before and after a low-level system call).

3 The Low-Level API (JELLO)

The JELLO API (Java Environment Low-Level Op-
erations API) is an API that facilitates the imple-
mentation of the Java Virtual Machine on top of an
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underlying operating system that is running on the
IGNITE processor architecture.

JELLO is designed for the IGNITE processor but it
can also be used in addition to other OS/JVM ab-
straction layers, if the design of the particular API
does make sense in conjunction with JELLO.

3.1 API Design

The design of the JELLO API is based on an ana-
lysis of the interaction between the JVM and the
OS in the classic JVM model [Ran99]. Whereas ex-
ecution engine, class loader and security manager
can be independently implemented in the JVM, the
remaining components — thread scheduler, memory
manager and native interface — are directly depen-
dent on OS functionality for their implementation.
Of course, indirectly all components depend on OS
functionality. However, the functionality can be ac-
cessed through lower-level components of the JVM
itself. For instance, the class loader will need to
allocate memory for new classes and perform file
I/0, but in order to do so, it can use the memory
manager and native interface of the JVM (through
JELLO) — no direct access of OS functions is neces-
sary (see figure 2).

Especially when it comes to memory management
and thread scheduling, the JVM has very specific
demands. Thread prioritizing and context switch-
ing has to be handled in a certain way, and mem-
ory management has to support automatic garbage
collection. However, most operating systems do
not support garbage collection and their multi-

threading API significantly differs from the Java
thread model.

The JELLO API encapsulates all the OS function-
ality that is needed by a JVM and wraps all func-
tions in a way so that they can be directly used
for the JVM implementation. For example, the
/setPriority function of JELLO uses the same
priority levels as the setPriority method of Java’s
java/lang/Thread class and the memory allocation
functions allow passing of additional type informa-
tion for the garbage collector.

This orientation towards the JVM - as opposed
to an orientation towards the OS — distinguishes
JELLO from other low-level implementation APIs
(such as Sun’s Java HPI (Host Programming Inter-
face); [LY97]). In order to change to a different
operating system, only the JELLO API layer has
to be ported, the JVM on top of JELLO does not
require any modifications.

JELLO does not only separate the JVM from the
OS but it also isolates the JVM as far as possible
from language-, processor- or OS-related idiosyn-
crasies (such as the auxiliary C stack or a Java-
incompatible OS thread model).

However, the JELLO API is specifically for the Ia-
NITE processor and will not make much sense for
other processor architectures.

3.2 JELLO Object Layout

JELLO does not know anything about the internal
data structures of the JVM. The JELLO API speci-
fies only a small number of data structures that are
necessary for the communication between JELLO
and the JVM. The most essential data structure
specified by JELLO is the layout of JELLO objects
in memory (see figure 3; the diagram uses the OVAL
[Ran00] notation).

Because JELLO is responsible for memory alloca-
tion and automatic garbage collection, the JVM
at least needs to convey the size of an object and
pointer map information for the garbage collector.

JELLO object JVM class structure
OIL word @+—> OASIS word
object lock word
object class data
instance data (opaque to JELLO)
(opaque to JELLO)

Figure 3: JELLO Object Layout



31 6 10
| pointer map size. [ 00 |
| pointer to structure | 10 |
| size of primitive array |01 ]
| size of object array | 11 |

Table 1: OASIS words for small objects, large ob-
jects, primitive arrays and object arrays

This is done by the “OASIS” word — containing the
Object Allocation and Storage Information Struc-
ture.

Every JELLO object has a 2-word header: the first
word is always a pointer (!) to the OASIS word;
this pointer is also called the Object Identification
Link (OIL). The second word is reserved for the
object lock. Currently the second word is just a
plain pointer to a monitor structure but more clever
mechanisms like inflatable locks or relaxed locks
[Dic01] will be used in future versions of the LVM.
From the third word of the object onwards, all data
is private data, which is opaque to JELLO. The
garbage collector knows how big the object is in
memory and which of the words after the 2-word
header are pointers. All other details of the object
layout are entirely up to the JVM implementation.

The OASIS word will usually be the first word of
a larger object identification structure. This struc-
ture can be the class_info or class block — but that
does not necessarily have to be so. In fact, the LVM
uses this space for the virtual method table (VMT).
Slot, 0 is reserved for the OASIS word, slot 1 is al-
ways used for the getClass() method, which gives
access to the full class data.

Two objects that have the same OIL pointer value
(that is, they point to the same OASIS word in
memory) always belong to the same class.

Depending on the class or array that it describes,
the OASIS word can have different forms (table 1).
For small objects, all required information is stored
in the OASIS word itself, for larger and more com-
plex objects the OASIS word turns itself into a
pointer. The nonpointer form can be used for all
objects that do not have more than 128 bytes of in-
stance data and contain references only in the first
25 words (100 bytes) of the object. These restric-
tions apply because the OASIS word for small ob-
jects uses 5 bit for storing the object size (4 x 2° =
128) and 25 bit for the pointer map.

Objects that do not qualify as “small”, use the
pointer form of the OASIS word, which points to
one word that contains the object size, followed by

one or more pointer map words (one of the 32 bits
is used as an “end” marker).

JELLO offers an API for allocating memory (for
use by new, newarray etc.) and explicit GC. It
also guarantees that automatic GC is performed in a
JVM-compliant manner. However, it does not pro-
vide an APT specifically for the implementation of
GC algorithms (like, e.g., that of the EVM [WG98]).
A GC implementation for the LVM must adhere to
the JELLO memory layout and provide adequate
implementations for the GC-related JELLO func-
tions. It can use any functionality supplied by the
OS or by other JELLO components.

4 LVM — The Lightweight
Virtual Machine

The main improvements of the LVM itself were al-
ready listed in section 2.3: AOT compilation, “lazy”
class loading and an optimized method invocation
scheme. AOT compilation and lazy class loading are
discussed in sections 4.1 and 4.2. Method invocation
is comprehensively covered in section 5. Sections 4.3
and 4.4 deal with issues of garbage collection and the
native interface of the LVM.

4.1 Ahead-of-Time Compilation

The goal of traditional “just in time” compilation is
to find a reasonable compromise between the perfor-
mance gained by executing compiled methods and
the performance lost during the compilation process
itself. Usually, only selected methods will be com-
piled, while others remain interpreted in order to
avoid the time penalty for their translation.

This is a sensible approach for most microproces-
sor architectures, since often very complicated reg-
ister mapping problems have to be solved in order
to compile Java bytecode for a non-stack-based mi-
CTrOProcessor.

One disadvantage of JIT compilation is that Java
class files have to be kept in memory. Freeing mem-
ory used for the bytecode of individual methods
within a class file is possible, but is very compli-
cated and can lead to memory fragmentation so that
a lot of JIT compilers don’t actually do it. Another
problem of the JIT approach is the potentially very
costly interaction between JIT-compiled and inter-
preted code (see also sections 2.1, 5.4).

The LVM completely translates a class file immedi-
ately after it has been loaded. All information from
the class file is retained in the translated version of



the class and the original class file is discarded. All
class files are loaded into a single designated tem-
porary buffer.

Translation delays are not an issue for the LVM
because most Java bytecode instructions can be
mapped one-to-one to corresponding IGNITE in-
structions or short instruction sequences; the trans-
lation process is basically a simple table lookup.

The ahead-of-time (AOT) approach was primarily
chosen to avoid the previously mentioned disadvan-
tages of JIT compilation. Also, the compromise be-
tween translation time penalties and performance
gains is not necessary on the IGNITE platform, as
the translation time is negligible in comparison to
the loading time for a class file.

4.2 Lazy Class Loading

Class loading and resolution can be performed in
a “static” or in a “lazy” manner [LY99, §2.17.3].
With a few limitations, a JVM implementation can
freely decide when a particular class is loaded and
resolved.

For example, a simple test can be used to reveal the
class loading policy of Sun’s Java 2 VM. On a UNIX
system, using the command line

java -verbose:class HelloWorld|grep Loaded|wc -1

one can determine how many classes are loaded for
a simple HelloWorld program.*) A surprising class
count between 160 and 210 can be observed for most
Sun Java 2 VMs — for a simple HelloWorld.

In some JVM implementations loading of one par-
ticular class can spawn a whole tree of other classes
that are loaded.

The LVM defers the resolution of classes and load-
ing of additional classes as much as possible. The
minimum requirement is that the superclass of every
newly loaded class must be loaded and resolved be-
fore that class. This is necessary in order to properly
construct the virtual method tables and the mem-
ory layout of objects. Besides that, the LVM always
leaves external references unresolved until the mo-
ment they are actually used for the first time. So, for
example, instead of loading an exception class just
because some method declares that it might throw
that type of exception at some point in time, the
loading of the exception class is delayed until that
particular exception is actually thrown (or, more
precise, until an exception object is created).

The method invocation scheme of the LVM allows

*) an additional 2>&1 might be necessary for some JVMs
that print verbose messages on stderr instead of stdout.

that references to classes, methods and fields can
stay unresolved until they are accessed; for details
see section 5.

4.3 Garbage Collection
Algorithms

Currently, the LVM uses a simple, merely conser-
vative mark & sweep garbage collector. The JELLO
object memory contains accurate pointer maps for
all objects, however, the stack frames on the call
stack do not have pointer maps yet. Later versions
of the LVM might provide pointer maps for the stack
frames as well.

With the exception of hybrid garbage collectors that
also do reference counting, most common garbage
collection algorithms can be used with the LVM.
Reference counting is problematic because addi-
tional reference adjusting code would need to be
added and the one-to-one translation between Java
bytecode and IGNITE code would be lost. For ex-
ample, dup can be translated to the [GNITE instruc-
tion push sO; if reference counters are involved, this
simple translation will no longer work, because the
reference count of the top-of-stack object needs to
be adjusted as well.

Section 3.2 contains further details on memory lay-
out and garbage collection in the LVM.

4.4 Native Methods

The LVM is modeled after the CLDC specification
and therefore it does not need to implement the Java,
Native Interface (JNT).

Still the LVM has to provide a way to implement
methods that cannot be written in Java because
they need to access low-level OS functionality.

In addition to this basic native method problem,
there is also the question how the LVM classes
themselves can access low-level functionality such
as reading and writing memory. The Jalapeno VM,
for example, solves the latter problem by its MAGIC
class [AT00, appendix A].

In the LVM both problems are solved with the same
technique. Similar to the asm directive of many C
and C++ compilers, the LVM offers an IGNITE in-
line assembly directive. Table 2 shows an example
of IGNITE native programming.”) Java source code

) In fact, the listing does not show the actual implemen-
tation of the hashcode function; the shown implementation
was chosen to demonstrate the use of labels and branches in
inlined native code; the real implementation simply uses 3
SHR_1 instructions instead of a complicated loop.



package com.ptsc.lvm.java.lang;

import com.ptsc.lvm.java.Native;

public class System implements Native

{
/** Returns object address >> 3. *x/
public static int
identityHashCode (Object object)

{
int[] $native =
{
PUSH_SO, // clear carry
AND,
PUSHN_3, // do 3 shifts
POP_CT, // set loop ct
“1, SHR_1, // shift
DBR, "1, // loop back
RET
};
return $INT;
}

/** Explicitly trigger a GC. **/
public static void gc()

{
int[] $native =
{
BR, $._("/gc")// call JELLO
};
return;
}

Table 2: An example for LVM native programming

that contains inlined assembly code can still be com-
piled with any standard Java compiler (though it
looks very unusual at first). When the class files for
such native classes are executed on a standard JVM,
they will produce an error — or simply do nothing
in the best case. However, the AOT compiler of
the LVM will recognize the special content of those
classes and produce the equivalent IGNITE machine
code. In fact this technique is pretty common and
is used in Jalapeno as well as in Jbed [TMH99].

The Native interface contains integer constants for
all IGNITE instructions. The spelling of the instruc-
tion mnemonics has been slightly adapted, so that
the constant identifiers conform to the Java syntax
and the Java naming conventions [GJSB00, §6.8.5].
For instance, push sO turns into PUSH_S0 and br []
becomes BR_$$.

Besides the instruction mnemonics, the Native in-
terface also provides constants that indicate the re-
turn type of a method (e.g., $INT or $BYTE), a gen-
eral label symbol (LABEL- or ~) and a symbolic ref-

erence operator ($).

Labels are defined and referred as ~0, ~1, etc. or
LABEL-1, LABEL-2 etc. JELLO API functions or
symbolic method references can be located with
$._("(method name)").

The class names of the JDK library classes for the
LVM are prepended with com.ptsc.lvm so that
they can be compiled with standard Java compil-
ers. Again, the LVM AOT compiler will convert
the package specifications back to the original JDK
package names.

5 Optimized Method
Invocation

Method invocation is one of the most crucial op-
erations in an object-oriented system. If method
invocation is slow or subject to unnecessary over-
heads, this will also degrade the overall system per-
formance.

For this reason, method invocation in the LVM was
optimized with the following techniques:

e Devirtualization based on Class Hierarchy Ana-
lysis (CHA)

e Executable Method Access Structures (XMAS)
e Binary rewriting

e Lazy argument passing

Those optimizations, and how they apply for the
LVM, are described in more detail in sections 5.3
to 5.8. Section 5.1 describes in general how Java-
style method invocation can be implemented on the
IaNITE platform and section 5.2 deals with IGNITE-
specific stack frame problems.

5.1 Phases of Method Invocation

Procedure calls on the IGNITE dual-stack architec-
ture and method invocations in the JVM are sub-
stantially different.

The Java Virtual Machine passes arguments on the
operand stack, but for the called method the ar-
guments appear in the local variables (which corre-
spond to the IGNITE’s local register stack). On the
IGNITE the arguments stay on the operand stack
and need to be moved to the right place so that the
computation model is not violated.

The invoke... instructions of the JVM also perform
a lot of additional functions, besides merely trans-
ferring execution to another place. They take care



Comments

needs only be done
once for previously
unresolved methods
not necessary for
static methods; can
be omitted if object
is “this”

only necessary for
true virtual methods;
can be optimized in
many cases

Operation
1 | Resolve method

2 | Check whether the
object is null

3 | Find correct
method code

operand stack is part
of each individual stack
frame; frames overlap

local variables and operands
are held on separate stacks;
"link" connects both stacks

4 | Transfer
arguments to local
register stack

5 | Transfer execution
to target method
6 | Create register
stack space for
variables

7 | Establish operand
stack link for stack
frame

can be optimized
with lazy argument
passing

Table 3: Phases of method invocation

of method resolution, check whether the caller is
using a null reference, automatically dispatch vir-
tual methods and allocate a new stack frame for
the called method. All these things have to be done
“manually” on the IGNITE processor.

Table 3 summarizes the phases of method invoca-
tion.

5.2 Linking the Call Stack to the
Operand Stack

In the computation model of the JVM every stack
frame on the caller stack actually contains the
operand stack for the method. Since the required
size of the operand stack is a known constant [LY99,
§4.7.3] this does not cause any problem. Stack
frames can be implemented such that the operand
stack part of one stack frame overlaps with the lo-
cal variables of the next frame. Overlapping stack
frames completely eliminate the need for copying
arguments to the local variables of the receiving
method and can be implemented very efficiently on
a large number of architectures (including SPARC).
Unfortunately, this is not true for the dual-stack ar-
chitecture of the IGNITE processor.

Operand stack (s0 — s17) and call stack (r0 — r15)

s0-s17 r0-rl5
argl argl t@ sdepth

object object '® sa

s arg2 19 Soo
var #3 argl var #3
arg2 var #2 object var #2
argl var #1 ... var #1
object var #0 ... var #0
+@sdepth

operand stack ® sa
var 1 local variables var #1
var #0 var #0

JVM call stack frame IGNITE call stack frame

Figure 4: JVM stack frames versus IGNITE stack
frames (simplified)

are separate structures in the IGNITE architecture.
The operand stack is used for all computations, the
call stack only stores variables and the return ad-
dress.

There are two potential ways to simulate a JVM-
style stack structure on the IGNITE:

e Save the whole contents of the operand stack
into the local register stack (not only the argu-
ments but also the data that might be on the
stack below the arguments)

e Leave the residual contents of the operand stack
where they are and establish a link between the
stack frame on the local register stack and the
“operand stack frame” on the operand stack; in
case of an exception the link allows a rollback
to the correct operand stack state

Clearly, the latter solution is the favorable one, be-
cause it involves less data shifting between the two
stacks.

Unfortunately, it is not possible to find out the pro-
jected memory address of an operand stack element
directly. The processor only offers the current base
stack pointer for the operand stack (sa) and the
number of elements currently in the on-chip cache
(sdepth). The projected address of a stack element
in memory can be calculated from those two values.
To save time, both sa and sdepth are stored in the
local register stack to form the operand stack link.
Only in case of a rollback (that is, an exception) the
effective address is actually calculated.

Figure 4 visualizes how overlapping Java stack
frames are simulated on a dual-stack architecture.



5.3 Devirtualization based on CHA

Virtual method invocations can often be replaced by
faster nonvirtual invocations, which do not require
a VMT lookup [DGC95].

Except for constructor calls and invocations of
private or super methods, Java treats all non-
static method invocations as virtual. With static
and dynamic class hierarchy analysis (CHA) virtual
invocations can be converted (“devirtualized”) to
nonvirtual ones in many cases. This technique is
already used by several JVM implementations (e.g.,
the Harissa VM [MMBC97]).

Java bytecode represents a method reference as a
pair of a class reference and a method signature
(e.g., java/lang/Math/round(D)L or A/one()V)
[LY99, §4.4.2]. During a virtual method invocation
the reference resolves to a particular method im-
plementation, which either belongs to the referred
class itself or to a subclass of that class. The re-
ferred class might have inherited the method im-
plementation from a direct or indirect superclass,
but generally an invokevirtual instruction can-
not access method implementations of superclasses
(invokespecial needs to be used in those cases).
Together with the loading order of classes used by
lazy class loading, this fact can be used for imple-
menting a very simple devirtualization scheme.

The lazy class loader always processes superclasses
first, because otherwise it could not set up the vir-
tual method table (VMT) for a class.

Therefore, when a loading request for a particular
class is issued, it can be safely assumed that no sub-
classes of that particular class are present in the sys-
tem yet (otherwise the requested class would already
have been loaded as a superclass, and the loading re-
quest would not have been issued in the first place).
The LVM takes advantage of this and initially marks
all methods of a newly loaded class as devirtualized.
Only, when that class is subclassed and methods
are overridden later (or even during the same load-
ing request to the class loader) those methods are
reverted to their regular virtual state.

Figure 5 shows a simple class hierarchy (C extends

one()V
two()V
three()V three()V

one()V
two()V

Figure 5: Example class hierarchy (OVAL notation)

class A loaded | class B loaded | class C loaded
®A/one()V ®A/0one()V OA/one()V
®A/two()V OA/two ()V OA/two )V
#B/one()V OB/one()V
#B/two )V 4#B/two()V

#B/three()V | OB/three()V
9C/one()V
#C/two OV

4C/three()V

4= devirtualized, ¢= revirtualized
Table 4: Devirtualization of methods

B extends A): class A defines two methods one )V
and two()V, class B overrides two()V and adds
three()V, class C again overrides one()V and
three()V.

Table 4 shows how the devirtualization status of the
methods changes when classes B and C are added
later. It is noteworthy, that, even though some
methods are basically the same (e.g., B/one()V in-
herits the code from A/one()V), it is necessary to
distinguish whether a method invocation refers to
A/one()V or B/one()V.

Sections 5.4 and 5.6 explain in more details how the
devirtualization and revirtualization is handled in
the LVM.

5.4 Executable Method Access
Structures (XMAS)

Every JVM implementation requires data structures
that store information about each loaded method.
Amongst the stored pieces of information are the
address of the method code, the method flags and
possibly also the slot offset in the VMT (Vir-
tual Method Table), if such a structure is used.
In Sun’s JVM terminology those structures are
called method_info [LY99, §4.6] or “method blocks”
[Yel96].

In his document “The JIT Compiler API” Frank
Yellin also introduced the concept of “invokers”
[Yel96, §6.5]. An invoker is a piece of code that acts
as a kind of adapter when execution is transferred
between methods of different types. Each method
type has a particular invoker associated with it.
There are different invokers for interpreted, synchro-
nized interpreted, native, JIT-compiled and other
types of methods. Thus, the JVM does not need
to know how to call code that has been produced
by a particular JIT compiler plug-in; it only has to
call the appropriate invoker, which will handle the



Unresolved Devirtualized Revirtualized
0x00 | br 0x08 call makeshortcut VMT dispatcher code
0x04 address of method code (see table 6)
0x08 | push.l/push.1l VMT offset of method
0x0C | pointer to class name pointer to class structure pointer to class structure
0x10 | pointer to signature pair pointer to signature pair pointer to signature pair
0x14 | br resolve access flags access flags
Table 5: XMAS layout for unresolved, devirtualized and revirtualized methods
interaction. variations of XMAS blocks for unresolved, devirtu-

On the back side, invokers are an additional level
of indirection and impose a certain overhead. This
overhead adds to any already existing overhead, for
example, that of a VMT lookup.

In the LVM the concepts of “method block” and
“invoker” are combined into a new data structure
which has been given the name “executable method
access structure” (nicely abbreviated XMAS).

As the name already suggests, the XMAS contains
executable code. Normally, the method dispatching
code has to extract the data from the method block
in order to transfer execution to the appropriate ad-
dress.

The LVM uses a slightly different technique: instead
of extracting various pieces of information from the
data structure and acting accordingly, a method is
invoked by simply calling the XMAS like an exe-
cutable routine. The code in the XMAS is already
the dispatcher and will transfer execution to the cor-
rect address.

Whereas the pointer to the XMAS of a method will
always remain the same, the layout and contents of
the XMAS will change as the method goes through
different stages of its lifecycle. There are different

push sp 1d []

br []

| push.n #; | add

(#i, repeated)
(a) Dispatcher code for slot offsets 4 and 8.

push sp 1d []
add br []

(#i, repeated)
(b) Dispatcher code for slot offsets 12 to 252.

push.b#i |  (#i)

push sp | 14 [] | push.l #3 | add

(#i)
br [1 |
(c) Dispatcher code for slot offsets 256 and higher.

Table 6: (a) — (c) Dispatcher code sequences.

alized and revirtualized methods. Table 5 shows
the different XMAS layouts for methods called by

invokevirtual.

An unresolved method is a method whose class has
not been loaded yet. Since the LVM uses lazy
class loading, this situation may appear very fre-
quently. The XMAS for unresolved methods con-
tains a pointer to the class name and a pointer to
the signature pair. When the XMAS is executed
those two values are pushed onto the stack and the
resolution routine (resolve) is called. To fully un-
derstand the XMAS layout for unresolved methods,
one must know that the IGNITE processor allocates
a separate word for each push.1 constant within an
instruction group; the constants follow immediately
after the instruction group and are automatically
skipped by the decoding logic.

Whenever an unresolved method is actually invoked
for the first time, the resolver will load the appro-
priate classes and will change the XMAS to the “de-
virtualized” state (see also section 5.3).

If a method gets overridden by another method that
got newly loaded, the devirtualization will get un-
done (“revirtualization”), so as to avoid that falsely
optimized methods are called.

For revirtualized methods, which consequently re-
quire a VMT lookup, the three first words of the
XMAS contain the method dispatcher code. De-
pending on the VMT slot number of the method
there are three different formats how those three
words are used (see table 6).

As the LVM uses the JELLO Object Identification
Link already as the VMT pointer, slot offset 0 will
never be used, because slot 0 contains the OASIS
word for the class. Slot offset 4 always branches to
the getClass() method, which gives access to all
other details of a loaded class (see also section 3.2).
As a further optimization, slot offset 8 is reserved
for the hashCode () I method.

The LVM uses the VMT data structure in a slightly
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Figure 6: Relations between XMAS and VMT.

different manner compared to other object oriented
systems.

Instead of reading the VMT slot contents (instruc-
tion 1d [1) and then branching (br [1), the dis-
patcher code directly uses br []. This is possible
because the VMT does not contain the address of
the method code but a direct branch to the code
(see figure 6). This eliminates one instruction from
the dispatcher code and saves space in the XMAS;
however from a memory access point of view there
is no difference (instead of the 1d [] in the XMAS
the br in the VMT requires an additional memory
access for fetching the branch target).

The 4-byte version of the br instruction can per-
form relative branches between -268435456 and
+268435452, which effectively limits the LVM to a
256 MB contiguous address space. Since the LVM
is mainly targeted for small embedded devices, this
does not pose a real limitation. Another side effect
of the unusual VMT usage is that the VMT of a class
can no longer be created by copying the VMT of
its superclass and changing and adding some slots.
Since the br instructions are relative branches, the
VMT contents also need to be relocated.

There is one important difference between XMAS
blocks and the classic JVM method block: for
one and the same method implementation multi-
ple XMAS blocks might exist, because an inherited
method implementation is referred to as a mem-
ber of different classes (see example in section 5.3:
method B/one()V can be invoked as B/one()V but
it can also be invoked as A/one()V when an ob-
ject of class B is manipulated through a reference of
type A).

All information that is not stored in the XMAS
block is, in fact, appended to the method code.
A “magic” number marks the end of the actual
code and the beginning of the method’s stack frame
descriptor, exception table, line number table and

other attributes.

Similar to the JTOC data structure of Jalapefo
[AT00], the LVM has one hashtable that contains
pointers to the class structures of all loaded classes,
using the fully-qualified class names as keys.

Each of the class structures has another hashtable
containing XMAS pointers for all methods of that
class. The name-and-type pairs [LY99, §2.10.2,
4.4.2] of the methods serve as keys for those sub-
tables.

The hashtables are only accessed when classes are
loaded or methods are resolved, for example, to
change a particular XMAS from unresolved to de-
virtualized state. For regular method invocations of
any type the hashtables do not need to be accessed.

5.5 XMAS for Fields and Static, Special
or Interface Invocations

Not only virtual method invocations are trans-
lated into a call to an XMAS, but also special,
static and interface invocations. Even the ac-
cess to static and nonstatic fields is handled through
an XMAS.

Static and special invocations (JVM instructions
invokestatic and invokespecial) use the same
XMAS layout as virtual invocations for the “unre-
solved” and “devirtualized” stages. The difference
is that they remain in that state and never get revir-
tualized. Also, they use different entry points into
the method body (figure 6), so that they are not
affected by revirtualization that happens through
binary rewriting (see section 5.6).

The invokespecial opcode is used for calling con-
structors, private methods and methods of the di-
rect superclass [LY99, §6].

When referring to private or super methods, or
constructors of the superclass or the class itself,
invokespecial does not use an XMAS. As the su-
perclass of a class always has to be loaded and re-
solved first (see 4.2), those invocations can be trans-
lated into direct calls because their target address
is already known at that time. Only invocations of
constructors whose classes have not been loaded yet
are indirected through an XMAS.

Interface method invocations (invokeinterface)
use the same format as all other invocation types
in their unresolved state. When they get resolved,
the XMAS contains code that branches to a special
interface method dispatcher. This dispatcher looks
at the actual type of the object on which the method
is being invoked. The dispatcher then uses a lookup
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Figure 7: Turning an indirect call (through the
XMAS) into a direct call with binary rewriting.

table to retrieve the interface method table (IMT)
for that particular object type. After that, the IMT
is used similarly to a VMT.

The JVM instructions getfield/putfield and
getstatic/putstatic are also translated with the
help of an XMAS. In the unresolved state the XMAS
forces loading and resolution of the affected class.
After resolution, the XMAS leaves the absolute ad-
dress of the field on top of the operand stack. Read
access is simply done with an 1d [] instruction,
write access with st [] and pop.

5.6 Binary Rewriting

Binary rewriting is a form of self-modifying code
and is known as an optimization technique for a
long time. Even so, it is no longer used very often.
The reason for this is that most modern micropro-
cessor architectures have large instruction caches,
which are very problematic in conjunction with bi-
nary rewriting. For example, if self-modifying code
is used on a StrongARM SA-1110 processor, a cache
synchronization is required after the modification
took place. The penalty for such a cache synchro-
nization operation can be in the order of 10000 in-
struction cycles.

Being a very cheap and simple microprocessor,
the IGNITE’s only instruction cache is the 4-byte
“cache” of its instruction pre-fetch. There is no
other instruction cache and therefore there is no
synchronization problem when binary rewriting is
used.

One of the ideas behind the design of the LVM was
that, if a Java method can theoretically be invoked
with one single direct branch, the LVM should be

able to perform the method invocation with a single
branch.

In other words, if the detour through the XMAS
turns out to be unnecessary the LVM should use a
direct branch.

The XMAS for devirtualized methods calls a rou-
tine named makeshortcut. This routine transfers
execution to the address that is stored in the sec-
ond word of the XMAS.?) Before actually jumping
there, it modifies the original call instruction in
the calling method, so that it now calls the revirtu-
alized (“revirt”) entry of the target method directly.
Figure 7 visualizes this process.

When the runtime system detects that a devirtual-
ized method must be revirtualized, two things will
happen: first, the XMAS of that method will be
changed into the “revirtualized” form and, second,
the first word of the method code (which originally
just contained a skip instruction) gets rewritten
with a call to a revirtualizer routine (“revirt code”).
Any call sites that enter through that first entry
point will also get rewritten to the indirect form
which branches to the XMAS instead of directly go-
ing to the method body. Figure 8 visualizes these
steps.

5.7 Lazy Argument Passing

The differences between the argument passing
mechanisms of the JVM and the IGNITE make it
necessary to move method arguments from the IG-
NITE operand stack to the IGNITE local variable
stack.

However, it can be observed that a lot of Java
methods start with the instruction aload 0 or a
sequence like aload 0, iload_1 (or even aload_0,
iload_1, iload_2).

Especially, the aload 0 at the beginning of a
method is very common, since this instruction is
the bytecode equivalent of a “this” reference.

When a method begins with an instruction sequence
that fits into this scheme, it effectively just moves
data back to where it was before. Thus, during ar-
gument passing, the arguments do not need to be
moved to the local register stack in the first place
and the instructions at the beginning of the method
can be optimized away.

One important prerequisite for this optimization is,

P because the routine is called with call instead of br,
the address of the subsequent word is stored in r0 as actual
return address; makeshortcut removes that address from the
stack afterwards
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Figure 8: Revirtualization process for methods that were using a “shortcut” created with binary rewriting

Vars optimizable: 0 1 2 3
static

PJava 3.0.2 classes | 66.74 | 24.43 | 6.45 | 2.38
KVM Ref. Impl. 69.03 | 24.73 | 5.41 | 0.83
Kaffe klasses.jar | 58.58 | 30.20 | 9.04 | 2.19
SPECjvm98 71.54 | 23.07 | 3.74 | 1.66
dynamic

SPEC 200check 60.81 | 38.53 | 0.53 | 0.14
SPEC 201lcompress | 60.16 | 39.64 | 0.15 | 0.05
SPEC 202jess 61.39 | 37.89 | 0.58 | 0.15
SPEC 227mtrt 31.09 | 65.82 | 0.74 | 2.36

Table 7: Optimizable Methods (static and dynamic)

that the local variables which are optimized are not
used elsewhere in the method. So, in summary, the
criterium is:

e The method starts with zload 0 [,zload-1
[,2load 2]] (in that order)

e There is no other read access of the local vari-
able(s) 0 [,1 [,2]] except at the beginning of
the method

e Instruction 0 [,1 [,2]] is not the branch target
of a goto, if cond etc.

Already in the static analysis of the classes.zip file
for PJava and the KVM reference implementation
(table 7, line 1 and 2), it becomes obvious that opti-
mizations of three variables can only be done in very
rare cases. However, for about 9% of the methods
found in the klasses.jar of the KaffeVM an optimiza-
tion of 2 variables is possible.

Unfortunately, the dynamic view (table 7, lower
part) looks different. The dynamic results for var-
ious SPEC jvm98 benchmarks were weighted with

the number of invocations that actually happened
at runtime. The tests yielded that only optimiza-
tions of one variable will make a significant differ-
ence. However, depending on the benchmark, be-
tween 38 and 65 (1) % of the method invocations
benefit from an optimization. However, the actual
degree of optimization varies greatly between differ-
ent types of applications.

The LVM uses a special argument passing scheme
(called “lazy argument passing”) to apply the above
optimizations. For methods that have 3 or less ar-
guments (this counts as an argument, too) all ar-
guments are left on the IGNITE operand stack. It
is the responsibility of the target method to move
the arguments to the local registers — or leave some
of them on the operand stack, if the optimization
can safely be applied. The LVM AOT compiler can
statically decide how many variables can be opti-
mized, if any at all. If possible, it will produce code
that applies the optimizations.

If a method has more than 3 arguments, the calling
method moves arguments 4 to n to the local register
stack. The first 3 arguments are left on the operand
stack.

The above scheme has another inherent advantage:
The IGNITE microprocessor can only access the top
three operand stack registers (s0, s1, s2). In the
original JVM method invocation scheme, the ob-
ject reference, which determines which method is
the correct receiver of an invokevirtual, is at the
bottom of the operand stack — buried deep below
all the additional arguments. With the LVM lazy
argument passing scheme, the object reference can
easily be copied to the top of stack by issueing a
push sp (where p is 0, 1, 2; see also table 6).



5.8 Translation Example

A simple example can illustrate how the AOT com-
piler of the LVM translates method invocations.
The example shows the translation of the
write([CII)V method in class java/io/Buf-
feredWriter. The method has 4 arguments (the
implicit this argument and 3 additional argu-
ments). An invokevirtual of this method is trans-
lated as follows:

pop lstack ; move 4th argument to LR stack
push s2 ; get object reference

skipnz ; check object against nu an
kip heck obj gai 11 and

call /throw_s2 ;
call xmas... H

trigger exception if necessary
execute XMAS of method

It is the responsibility of the called method to estab-
lish the stack link, move the first three arguments
to the local register stack (if necessary) and allocate
space for additional local variables (if necessary).

6 Conclusion

Currently, the LVM is still lacking most of the stan-
dard CLDC class libraries, which is the reason why
only a limited number of benchmark results for the
outdated Embedded CaffeineMark suite is available.
In comparison to the earlier PJAE port, the score in
the ECM3 “Method” test was increased from 50 to
138. The “Logic” score was 187 instead of 96, and
the “Sieve” score went up from 128 to 205 (all results
were measured on a 100 MHz IGNITE NC1 reference
board). Even though the LVM is still far away from
a complete JVM/KVM product, it proved that es-
pecially the optimized method invocation scheme is
advantageous to the IGNITE architecture.

The IGNITE I processor is a “softcore” described
in VHDL, which means that new instructions can
be added and tested easily. A netlist for Xilinx
Virtex FPGAs and other common FPGA devices
can be freely downloaded from the PTSC website
(http://www.ptsc.com) for evaluation.

Possible near future developments of the processor
are additional instructions for null pointer testing,
stack frame linking and additional loop instructions
(for ifle, ifgt etc.).
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