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Abstract

Proof of work schemes use client puzzles to manage lim-
ited resources on a server and provide resilience to denial
of service attacks. Attacks utilizing GPUs to inflate compu-
tational capacity, known as resource inflation, are a novel
and powerful threat that dramatically increase the compu-
tational disparity between clients. This disparity renders
proof of work schemes based on hash reversal ineffective
and potentially destructive. This paper examines various
such schemes in view of GPU-based attacks and identifies
characteristics that allow defense mechanisms to withstand
attacks. In particular, we demonstrate that, hash-reversal
schemes which adapt solely on server load are ineffective
under attack by GPU utilizing adversaries; whereas, hash-
reversal schemes which adapt based on client behavior are
effective even under GPU based attacks.

1 Introduction

Denial of Service (DoS) attacks are a serious threat to the
availability and reliability of Internet services [5, 7, 6].
Numerous DoS defense mechanisms have been proposed
in the literature. One common form of defense is to use
CAPTCHA mechanisms [22]. These mechanisms depend
on human presence to solve the puzzles and are not ap-
propriate for protecting automated protocols [12]. Recent
work [21] suggests that, even given human presence, proof
of work schemes may be a better fit for regulating requests
in some settings.

We focus on Proof of Work (PoW) mechanisms, in
which a server demands that clients prove they have done
work before it commits resources to their requests [30, 8,
13, 27, 23]. Most PoW mechanisms are puzzle-based tech-
niques in which clients solve processing intensive puzzles.
Puzzle-based schemes have been proposed for defense in a
broad range of contexts. For instance, Hash Cashes [10]
are puzzle-based mechanisms that aim to prevent an at-
tacker from sending too much spam. Other classes of PoW
schemes are discussed in detail in [29].

One challenge with such schemes is that valid clients
may have differing computational capabilities. As attacks
use more resources, and consequently the puzzle difficul-
ties increase, weaker valid clients may experience unac-
ceptable requirements to obtain service. While disparity
is inevitable, it has been argued that these schemes can be
effective if they adapt to attackers dynamically. Parno et
al. [27] observe that a while there is a computational dispar-
ity of approximately 40x between high and low-end com-

puting systems; this disparity is low enough for CPU cycles
to be useful as a DoS countermeasure. While computation-
ally weaker clients would experience longer latencies dur-
ing an attack, it would be significantly more functional than
a protocol without the PoW based defense. In this paper,
we reconsider these claims in view of adversaries that uti-
lize resource inflation techniques to significantly increase
their computational capacity. If powerful enough, the argu-
ments that disparity is acceptable fail, as valid clients are
unable to obtain service.

Using Graphical Processing Units (GPUs) offers a pow-
erful technique for launching resource inflation attacks. We
show that attackers can use cheap and widely available
GPUs to inflate their ability to solve typical hash reversal
based puzzles by a factor of more than 600. This and other
resource inflation techniques are discussed in more detail
in our technical report [29]. While the previously proposed
adaptive puzzle schemes [30, 26] may be able to tolerate a
disparity of 40x, we show that they fail when faced with a
600x disparity. In view of recent interest in using PoW for
purposes as diverse as improving concert ticket sales [21]
and peer-to-peer currency [1], it is useful to consider the
impact of GPU based resource inflation on these systems.

A contribution of this paper is the evaluation of Hash-
Reversal PoW schemes in the presence of resource-inflated
attackers. We show that client-based adaptation is neces-
sary for providing adequate service to legitimate clients in
this situation. Additionally, we show that an adaptive hash-
reversal PoW scheme based only on server load will fail to
provide service, and can create a novel DoS attack against
legitimate clients. Thus, we propose the use of protocols
which adapt based upon client behavior. These are shown
to be effective. Given these results, hash reversal PoW
schemes proposed for DoS protection mechanisms should
keep track of client behavior given the emerging threat of
GPGPU based attacks.

2 Background
2.1 Proof of Work

PoW schemes such as [30, 8, 13, 27, 20] are designed to
limit the load attackers can impose. In these schemes, a
server demands that the clients submit a “proof” of the
“work” they have performed, before servicing their re-
quests. The exchange in a typical PoW scheme is illus-
trated in Figure 1. PoW schemes are based around multiple
types of puzzles, but by far the most widely used are hash
reversal puzzles.
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Figure 1: PoW Client-Server Interaction

PoW schemes have something of a “checkered past.”
Very promising [19] when initially introduced, PoW
schemes were largely written off after a paper in 2004 ti-
tled “Proof-of-Work’ Proves Not to Work™ [24]. However,
the paper contained a miscalculation and did not consider
adapative puzzle schemes. There have been good cases for
the efficacy of these schemes [25, 17] as well as promising
new schemes [16, 14, 1, 21] in the years following.

Notably, recent PoW schemes rely on tracking individual
client behavior, and require binding a client to an ID. Usu-
ally, merely including the client’s IP in construction of puz-
zles, and requiring that a client be able to receive messages
at the IP it claims to send from is considered sufficient.

2.1.1 Hash Reversal Puzzles

For a hash-reversal puzzle, the server presents a puzzle s to
the client. The client finds the solution, x, by computing the
hash p = H(z||s||r), where r is a set of parameters whose
exact contents are dependent on the puzzle scheme in ques-
tion. The server verifies that the last [ bits of p are zeros and
that the client has used a valid seed. The value [ determines
the difficulty level of the puzzle. The work required to solve
a puzzle of difficulty level [ is of the order 2!. There are a
few variations of the general scheme above, which allow
the server to enforce a more fine-grained amount of work
on the client. One such is using multiple sub-puzzles [15].

A useful characteristic of a hash-reversal-based puzzle
is that the cost paid by the server is low (generally a single
hash computation and some verification) compared to the
cost paid by the client. Also, generating harder puzzles
does not require additional work. One major concern with
these puzzles is that they can be parallelized.

2.2 Adaptation

It is desirable for PoW schemes to adaptively require pay-
ment from clients. Most often this adaptation pertains to
the demand for server’s resources. The puzzle cost should
scale high enough to make it infeasible for the attacker, yet
not scale to greater difficulty than is necessary for legit-
imate clients. Adaptation mechanisms proposed generally
fall into one of the following categories: (1) auctions by the
server (2) probabilistic selective processing at the server
and (3) ramp-up at the client.

One sophisticated adaptation technique for varying diffi-
culty based on server load is presented by Wang et al. [30].
This auction-based framework provides a server with a
buffer of task request, solution difficulty pairs. The buffer
is sorted by solution difficulty. When the buffer fills, lower
difficulty requests are discarded. Clients failing to receive
service increment the difficulty of solution they provide
with their request. The authors show that this mechanism
is efficient in the sense that the client can raise its bid just
above the attacker’s bid to win an auction.

2.3 Interval-based Proof of Work

The vast majority of PoW schemes, as mentioned pre-
viosly, require one puzzle to be solved per task requested.
Schemes proposed by Waters et al [31], and more recently
kaPoW, and mod_kaPoW [14] are fundamentally different.
A server running kaPoW will provide one puzzle to each
client per time interval. Once a client has solved that puz-
zle, the client has access to the server until the time inter-
val expires. Additionally, unlike most PoW schemes, indi-
vidual client behavior is tracked, and each client’s puzzle
difficulty is adjusted based on that client’s past behavior.
Client behavior is tracked through the use of a client side
nonce which contains randomly generated numbers along
with the client’s IP address [14, 17].

3 Resource Inflation using GPUs

Modern GPUs are very efficient at processing large
amounts of data in parallel. Unlike modern CPUs, which
are designed to efficiently optimize the execution of single
threaded programs using complex out-of-order execution
strategies, a modern GPU’s efficiency comes from execut-
ing massively data-parallel programs. This is often referred
to as Single Instruction Multiple Data (SIMD) program-
ming.

Recently, there has been significant interest in using
GPUs for non graphical computation. This paradigm is
known as General Purpose GPU (GPGPU) computing or
Stream Computing. GPGPUs have been used to improve
the speed of various programs such as Folding@Home [3],
and computational chemistry [4]. Recently, GPUs were
also used for finding MDS5 chosen-prefix collisions [11].

GPU-based architectures consist of a large number of
SIMD engines. Each engine contains a number of thread-
processors. Each thread processor unit has access to its
own general purpose registers as well as access the GPU’s
memory. The thread dispatcher manages various threads
and is invoked by the client on the CPU.

Threads in GPUs are not analogous to processor threads
on a general purpose computer. A GPU-based thread is a
very lightweight thread that can be started with minimum
overhead. All GPU-based threads (within a single SIMD
engine block) need to execute the same instruction (pos-
sibly on different input data) for maximum efficiency. In
effect, we cannot use different threads to perform com-
pletely distinct computations on different pieces of data.



When two (or more) threads running on a thread processor
in an SIMD engine need to execute different instructions,
the GPU will ensure that only one of the threads executes
at any given time. Although GPUs only support this lim-
ited notion of parallelism, for the right kinds of processing
algorithms GPUs offer large advantages in efficiency.

3.1 GPGPU Programming Model

A GPU-based program is usually written in a way that takes
advantage of the inherently data parallel programs (such as
matrix multiplication, simulations, efc.). The GPU-based
platform can run a program such that each thread of the
program operates on a distinct block of data. All of such
threads can run simultaneously on the stream processors as
long as there are enough stream processors on the GPU. In
case the data elements are larger than the number of stream
processors, the Thread Dispatcher manages the available
processors for the threads. For instance, consider the fol-
lowing snippet of code written in AMD’s stream computing
language:

kernel void

sum(float a<>, float b<>,
out float c<>)

{ ¢c=a + b; }

The inputs are the streams a and b and the output is the
stream c. When this program, along with the stream read-
ing and writing operations (not shown) is run, the GPGPU
infrastructure reads the input streams from the CPU’s main
memory into the GPU’s memory. Once loaded, each stream
processor will run simultaneously and independently on a
slice of the input, corresponding to the two input vectors
and produces the result in the output. This program com-
putes the sum of two vectors a, b and stores it in the output
vector c.

Although each of the threads is working on a different
piece of data, they are each effectively performing the same
operation. This results in maximum efficiency in a data-
parallel algorithm on a GPU.

3.2 Solving Hash Reversal Puzzles using
GPUs

We take advantage of the inherently data-parallel nature
of hash-reversal puzzles when solving them on the GPU
and investigate the previously unconsidered impact of these
techniques on PoW schemes . Solving these puzzles can
be accelerated using GPUs in the following two ways. In
the first approach, we can run each potential solution z to
the hash puzzle as an independent thread on the GPU. In
the second approach, given n puzzles with puzzle difficulty
level [, we run each puzzle in a single thread that can be run
simultaneously in the GPU (i.e., ideally on as many individ-
ual processors as on a given GPU). Each thread effectively
searches a 2! search space for the puzzle solution. Since
all threads are running the same code, the GPU can run
all threads simultaneously. If the hash computation were
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Figure 2: Resource-Inflation achieved by GPUs (Nvidia
9800 GX2 graphics card) over CPUs (Intel Core 2 Q9300)

somehow data-divergent, the GPU threads would not be as
efficient. The only data-divergence between various puz-
zle solving threads occurs when we verify if the last [ bits
of the hash (for a given guess x) are all 0. When this oc-
curs, the successful thread stalls the other threads for a few
instructions (while storing the solution). Since this occurs
only once per puzzle, blocking has minimal effect on the
efficiency.

In order to simulate the effects of an attacker utilizing a
GPU for Hashcash calculation, the Hashcash algorithm was
implemented on modern GPU hardware from NVIDIA.
Figure 2 shows the speedup in using an NVIDIA GeForce
9800 GX2 graphics card using NVIDIA’s CUDA program-
ming API over a powerful desktop CPU. The 9800 GX2
provides access to 256 stream processors. For comparison,
the SHA hashing algorithm was also run on an Intel core 2
Q9300 processor. Both tests were conducted on a Ubuntu
machine using the standard C implementation of SHA-1
from RFC 3174[28]. The CPU hashcash solver’s time in-
creases throughout the experiment. Realistically, puzzle
difficulty levels beyond twenty with over twenty seconds
of solving time would be infeasible due to the decrease
in performance for the end user; however, even the non-
optimized GPU hashcash algorithm easily defeats puzzles
up to a difficulty of twenty five in less than five seconds.
The optimized hashcash algorithm is able to defeat puzzles
up to a difficulty of twenty seven in less than five seconds.
Comparitively, it took the CPU an average of ten minutes to
solve a puzzle with difficulty of twenty seven. The exper-
iments demonstrated that the GPU can be used to substan-
tially decrease the solving time of hashcash puzzles with
reasonable difficulty levels.

4 Proof of Work Schemes

We consider two primary types of POW schemes. The first
and more popular type requires one puzzle to be solved for
each task requested [12][9]. For instance, if a client wishes
to send ten emails, the client will be asked to solve ten puz-
zles. The second type requires the client to solve a puzzle
in order to get service for an interval of time [14]. Each of
the two schemes is intended to limit the amount of service
a greedy or malicious client can obtain.



4.1 Task-Based

A brief summary of a task-based PoW exchange follows.
A client sends a request for service. The server responds
with a puzzle of some difficulty. Once the client solves the
puzzle, it sends an answer along with the original request to
the server. If the answer is valid and resources are available,
the server processes the request . If the answer is invalid or
all server resources are in use, the server drops the request.
This process is repeated for each client request.

One criteria for determining the effectiveness of a task-
based PoW is determining the puzzle difficulty. Puzzle dif-
ficulty can be determined in a number of ways, including
fixed difficulty for every request, adapting difficulty based
on server load, or adapting difficulty based on client be-
havior. Adaptation based on server load increases the dif-
ficulty of the puzzles as the server runs out of resources.
Notable examples of such schemes can be found in litera-
ture [30, 26].

The idea behind client based adaptation is to penalize
clients who request many resources by giving them harder
puzzles than clients with low request rates. In order to in-
vestigate the effectiveness of each type of adaptation, we
employ simple algorithms demonstrating scaling based on
server resources and client request behavior.

The algorithm used for scaling difficulty based on server
resources utilizes a linear calculation to assign a puzzle dif-
ficulty between some arbitrary maximum and minimum.
The easiest puzzles are provided when all server resources
are available, and the hardest when none are available.

The algorithm used to scale difficulty based on client be-
havior requires the server to maintain a table of current
clients along with a trailing average request rate for each
client and a current puzzle difficulty. We assume that client
behavior will be tracked through the use of a binding client
nonce which includes identifying information, including
the client’s IP address. The server will keep track of a hash
of the client’s binding nonce as well as the number of re-
quests in this time period and the trailing average. This
reduces the state to three integers per client, allowing the
server to track clients for a modest cost. Spoofing is dif-
ficult due to the client needing to receive requests at the
claimed address. For more information regarding client
tracking see [14] [17]. The state of client behavior is up-
dated by the server at set intervals. At the start of each
interval, the server updates the request rate for each client
and checks to see if the rate exceeds the threshold. If a
client’s request rate exceeds the threshold, its difficulty is
incremented, and its average request rate is reset to zero.
Alternately, if the client’s average request rate drops below
half of the threshold, that client’s difficulty is decremented.
In both cases the average is reset so only clients who con-
tinually request excessive traffic are penalized.

4.2 kaPoW

As previously mentioned, kaPoW schemes operate differ-
ently than task-based PoW schemes. Because of the man-

ner in which they work, tracking client behavior is intrinsic
to these schemes. The way in which difficulty is deter-
mined for each client is designed to punish truly greedy
clients (most often attackers) quite severely, and create
a stable situation where all well-behaved clients can at-
tain service. The scaling works by having difficulty for
greedy clients scale up exponentially, and difficulty for
well-behaved clients scale down linearly.

This adjustment occurs only at the end of each time inter-
val. The algorithm used for determining puzzle difficulty
uses a counting Bloom Filter [2]. This is used because it
offers a good trade off between storage space and the prob-
ability of assigning high difficulty to client incorrectly. The
algorithm for updating difficulty is below:

PD; ;j+ TR;; — Decay

if TR, ; < Decay
PDij1 =

PDz},j"‘ 1.01TR1,j—Decay

if TR; ; > Decay

PDeias puzzle difficulty for client i at 5" time interval

TR;,; number of tasks requested from client ¢ at j th time
interval

Decay is an application-specific constant that determines
the maximum rate of requests for a well-behaved client.
Clearly, more machinery is required on the server for this
than for a non client-tracking PoW scheme. However, this
may be worthwhile if it leads to improved performance un-
der an attack.

S Analysis of PoW schemes under attack

Four subtypes of PoW scheme were analyzed for resilience
to resource-scaling attack. These were fixed-difficulty task-
based schemes, two kinds of adaptive task-based schemes,
and an interval based scheme. All schemes functioned ef-
fectively under attack by non-scaling attackers. So, af-
ter the fixed-difficulty scheme, only resilience to resource-
scaling attack is discussed. This analysis was done in sim-
ulation.

5.1 Simulation Setup

In order to investigate the effectiveness of the various PoW
schemes, simulations were performed using the ns-2[18]
framework. The architectures above were implemented as
ns-2 applications which communicate through high band-
width UDP links. In order to model puzzle solving with-
out requiring actual CPU cycles, delays were added to the
client application to simulate the time required to solve the
puzzles. These delays were determined from the results of
the experiments in Section 3.

The simulations support various options for client con-
figuration. Legitimate clients have a fixed rate of delay be-
tween requests (0.1 seconds for results in this paper), and



request a new task after solving the previous puzzle. Legit-
imate clients use the CPU to solve all puzzles. Malicious
clients request multiple tasks at once in order to maximize
their throughput. Experiments were performed with mali-
cious clients using both the CPU (normal attacker) and the
GPU (resource scaling attacker) to solve puzzles. Simu-
lations were run with between 5 and 50 legitimate clients,
and between 1 and 5 malicious clients. Results are shown
for 15 legitimate clients, and 1-5 malicious clients.

The experiments were run with a simple topology using
high bandwidth (1 GB) and low latency (3 ms) to prevent
lost packets or delays due to slow links. A single server,
capable of performing some fairly small number of parallel
tasks (10 for all results shown, experiments were performed
with between 1 and 100) each lasting no more than 1/10th
of a second was connected to a primary router. Clients were
connected to secondary routers that were then connected
to the primary router as this configuration had no effect on
results and streamlined changing experiment configuration.
As only server resources and client computation time were
limiting factors, the alterations made to the topology had
no effect on the results of simulation.

5.2 Breaking

GPU based resource inflation rendered servers with both
static difficulty and server-load based adaptive PoW
schemes ineffective.

Fixed-Difficulty Server:

Attackers with, and without, resource-scaling capabili-
ties flooded a server with requests, maximizing their re-
source utilization. Puzzles that required 0.05 seconds and
.2 seconds to solve were used to examine the effects of at-
tacks on a permissive and a restrictive server. Puzzles less
time consuming than this provided no noticeable throttling.
More time-consuming puzzles were considered too severe
a penalty for legitimate clients when there was no attack.

Without resource-scaling, utilizing 0.05 second puzzles,
even with as many as 1/3 of clients malicious, server avail-
ability was not significantly impacted. This can be seen on
the left side of Figure 3. While a fraction of requests fail to
be served, legitimate clients consistently see between 75%
and 85% of their task requests granted. Additionally, while
clients do commit significant resources, 70% of processor
time is still unused, as would be entire additional cores.

This was markedly better than the service available to
legitimate clients when the server provided harder puzzles,
as can be seen on the right side of Figure 3. Here, the at-
tacker’s capabilities were so constrained that it barely ex-
ceeded the legitimate client’s throughput, and clients had
100% of their tasks granted. Yet the puzzles were so time
consuming that legitimate clients still received poorer per-
formance than with a more permissive server. Only 15
tasks per time interval were granted, versus 20-25 with the
easier puzzles. Also, legitimate clients are required to ded-
icate one full processor to solving the puzzles. The differ-
ence in throughput between legitimate clients and attackers

is due to the fact that legitimate clients wait some fixed time
period between task requests, while attackers request a new
task immediately upon solving a puzzle.

With both the easier and the harder puzzles, the best ef-
forts of a limited number of attackers failed to deny service
to legitimate clients. This is the intent of PoW schemes and
the results are not surprising.

One resource-scaling attacker, though, effectively denied
all service to an almost unbounded number of legitimate
clients. The computational disparity was so great that, un-
less the server is assumed to be unrealistically powerful,
legitimate clients simply cannot receive service. The legit-
imate clients continue to solve around 25 (15 respectively)
puzzles per time interval, but have 0, or very occasionally
1, task request granted in that same time. This is a clear il-
lustration of the power available to an attacker inflating his
resources by utilizing a GPU for hash-reversal.
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tacker.

In both the case of the easy and the difficult puzzle,
resource-scaling attackers solved more than 750 puzzles in
a 5 second period and presented more valid requests than
a server can process. Here, the attacker requested tasks
at a rate roughly 1.5x the server’s work capacity. Clients
received no service, as can be seen in Figure 4. Resource-
scaling rendered this type of POW scheme completely use-
less in the presence of even a tiny number of attackers in
our scenarios.

Load-Based Adaptive Server:

The most frequent response to the threat of a resource
scaling attack is to “use an adaptive server.” Most tech-
niques previously proposed for adaptation modify puzzle
difficulty based upon server load, so these were examined
first.

A server with load-based difficulty scaling is ineffective
when an attacker utilizes GPU scaling, as shown in figure 5.
A single resource-scaling attacker denied service to an ef-
fectively unbounded number of legitimate clients. With just
one attacker, and 14 legitimate clients, legitimate clients
are able to solve around 10 puzzles per time interval and
are granted roughly 15% of task requests. More sophisti-
cated load-based adaptation techniques end up being even
worse. As [30]’s scheme allowed more difficult solutions to
displace tasks previously accepted, an attacker can simply
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provide only puzzles known to be too difficult for a legit-
imate client, completely denying all service, and leaving
a well-behaved client solving extremely difficult and time
consuming puzzles.

These clients are also dedicating 100% of a processor’s
cycles to solving these puzzles. In a resource-scaling attack
against a fixed-difficulty server, legitimate clients received
near-to-no service, but at least performed minimal work.
In a resource-scaling attack against a load-based adaptive
server, a legitimate client received near-to-no service, and
dedicated all clock cycles for it. In short, in the presence
of resource-scaling attackers, a load-based adaptive server
such as those presented in [30, 26] provides no effective
guarantee of service, but create a new vector for DoS at-
tacks against their clients.

Having seen resource-scaling attackers render fixed-
difficulty servers useless, and turn load-based adaptive
servers into a new vector for DoS attacks, it is apparent
that alternate techniques are needed. Intuitively, the issue
with schemes seen so far has been a failure to differentiate
between greedy (or cheating) clients, and regular clients.
Techniques that adapt based on client behavior are consid-
ered next.

5.3 Rebuilding

Resource Inflation attacks were largely ineffective against
servers with any form of client-behavior tracking adaptive
server. Task-based servers of this type were relatively

effective, and kaPoW servers were very effective.

Client-Behavior Tracking Adaptive Server:

Tracking the behavior of each client provides a means
of identifying those clients responsible for disproportion-
ate load. Resource-scaling attackers are capable of solv-
ing stunning quantities of puzzles, and generating mas-
sive load. Tracking should correctly identify, and penalize,
these clients.

Fortunately, client tracking quite quickly rendered a sin-
gle attacker ineffectual, seen in Figure 6 (left). Even with
a third of all clients being resource-scaling attackers, this
server provided reasonable service to legitimate clients, as
seen in Figure 6 (right). At first attackers dominate the
server and deny service, but in a matter of seconds, the
server scaled puzzle difficulty adequately to constrain a
nearly arbitrarily powerful attacker to imposing a manage-
able load.

The graphs are a bit difficult to read due to the large os-
cillation in attacker behavior, but with one resource-scaling
attacker, while the attacker went through phases of being
able to request a large number of tasks, after an initial spike
it never requested more than around 135 tasks per time in-
terval, versus around 800 in earlier simulations with non
behavior-tracking servers. This was enough load to slightly
interfere with legitimate clients, but they received between
85% and 95% of service requests granted. Performance
was significantly worse with five resource-scaling attack-
ers, but was still better than without client behavior track-
ing. Legitimate clients receive between 50% and 80% of
service requests granted. In both of these cases, legitimate
clients dedicate very few processor cycles to puzzle solving
as puzzle difficulty is based only on past behavior.

As shown, a client tracking PoW server utilizing a far
from optimal algorithm for client tracking was sufficient
to effectively control resource-scaling attackers. Given
the ease of constructing hash-reversal puzzles, and the
computational asymmetry they permit, it is heartening to
see a framework that makes these puzzles viable. The
kaPoW system is a system designed, from the start, to
utilize client tracking.
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As with the client-tracking task-based PoW scheme
above, kaPoW maintained effective service to legitimate
clients even when a third of all clients were resource-
scaling attackers.

In simulation, initially the server resources were con-
sumed by the attacker and few tasks from normal clients
were completed. The puzzle difficulty for the attacker in-
creased dramatically. Within a few time intervals, attackers
take longer than one time interval to solve a puzzle. For
as many intervals as the attacker’s puzzle remained too dif-
ficult to solve, server resources were entirely allocated to
legitimate clients (see Figure 7).

When an attacker requested no tasks due to puzzle diffi-
culty, its puzzle difficulty was decreased, which eventually
allowed it to begin flooding the server with task requests
again. Since difficulty is scaled up exponentially, and down
linearly, this was not immediate, though it was regular.

This cycle repeated, with the attacker alternately locked
out of the system and able to lock down the server. On av-
erage, the mod_kaPoW simulation managed to control at-
tackers effectively and maintain a reasonable quality of ser-
vice for legitimate clients when there are resource-scaling
attackers. In fact, legitimate clients have an average of
80% of their requests granted, and solve one trivially easy
puzzle every ten seconds. In terms of quality of service,
this is a significant improvement from even the task-based
behavior-tracking server above. Additionally, the server
can create fewer puzzles and legitimate clients need to pro-
vide fewer solutions than in the situation above.

6 Results and Conclusions

Proof of Work schemes have been proposed, and exten-
sively examined, as countermeasures to denial of service
attacks. These methods generally assume there is an up-
per threshold to the computational disparity between an at-
tacker and a legitimate client. We determined the extent of
an attacker’s ability to utilize graphics processors in order
to gain an advantage far above that previously considered.

Knowing that an attacker can gain this advantage, we
used simulation to investigate the adversary’s impact on
Hash-Reversal PoW schemes. The results, displaying the
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Figure 8: Summary of Client Service.

clients’ level of service, are shown in Figure 8. An adver-
sary utilizing GPU scaling rendered fixed difficulty server
and load scaling server Hash Reversal PoW schemes use-
less by almost completely preventing service to legitimate
clients. We examined a novel behavior scaling scheme
which effectively limited an attacker’s capability, allowing
legitimate clients to receive roughly 60%of ideal service.
Finally, we examined the kaPoW architecture and found
that clients get an average of 75% of ideal service. With the
kaPoW architecture, legitimate clients were also required
to perform far less work than was required for the behavior-
tracking task based server. In short, schemes which track
client behavior and adapt puzzle difficulty proved useful at
defeating resource scaling attackers, even those using so-
phisticated GPGPU methods.

In conclusion, Hash-Reversal PoW schemes can effec-
tively restrict a resource scaling adversary’s capabilities by
adjusting puzzle difficulty based on past client behavior.
Given the harm caused to many existing schemes by the
emerging threat of GPGPU based attacks, it is comforting
to find a means of continuing to use the most widely ex-
amined PoW technique. Also, by tracking client behav-
ior, resilience to coordinated attacks on larger networks
is greatly improved. Interval-based PoW schemes such
as kaPoW [14] were more effective than any task-based
schemes, providing better quality of service and requiring
less work from both legitimate clients and servers.
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