
RegColl: Centralized Registry Framework for
Infrastructure System Management

Brent ByungHoon Kang, Vikram Sharma, and Pratik Thanki
– University of North Carolina at Charlotte

ABSTRACT

System administrators are faced with the challenge of managing and compiling information
about deployed systems to ensure the maintenance, scalability, security, and overall availability of the
infrastructure systems. Recently, securing and monitoring the deployed enterprise infrastructure
systems has taken unprecedented importance due to the added accountability now being placed on
managing corporate data and private information. Compliance with new regulation has never been
stressed more than now – with SOX/Bill 198, GLB Act/PIPDEA, HIPPA to name a few regulations.

To w a r d this, we present RegColl: A practical framework for registry and system configuration
management for monitoring and maintaining the health of corporate infrastructure systems in Windows
environment. In RegColl, registry and configuration information are collected at a centralized location
so as to inspect and analyze the data for policy compliance, system configuration monitoring, and
incident response services.

Introduction

Managing hardware, operating systems, and
applications on workstations and desktops in corporate
and large networked environments is a big challenge,
one that System administrators deal with on a day to
day basis. To monitor the health of infrastructure sys-
tems, it is imperative to understand system behavior,
especially aspects that are related to the upkeep of the
system and eventually the whole network. Windows
registry provides system information to understand the
behavior of the deployed applications.

Monitoring the system’s registry and configura-
tion information offers important insights in deployed
software, patches, drivers, etc. – such entries can be
analyzed for vulnerabilities, troubleshooting, and com-
pliance with standards, along with providing docu-
mentation in an event that might have reporting impli-
cations. Further, by using the registry and administra-
tive tools in Windows, system administrators can pro-
vide local or remote support, query registry logs for
security analysis, and can apply compliance checks.
We extend this facility in centralizing system monitor-
ing services to run audits, apply compliance standard
checks, and enforce corporate & legislature policies.

The problem of maintaining healthy configurations
of a large installed base and other third party software
packages has been recognized as a daunting task [10].
The growing numbers of software and changing system
configuration makes it even more difficult to specify an
‘‘ i d e a l configuration,’’ which makes troubleshooting and
maintenance problems intractable [8]. Aside from com-
pliance and network monitoring issues, system trou-
bleshooting expenses drive the total cost of network
ownership, with maintenance and support costs. Largely,

troubleshooting cases are due to system misconfigura-
tion [8] and hence, it is one of the issues we propose to
tackle with RegColl’s centralized registry framework.

Non-compliance with legislature requirements
such as Sarbanes-Oxley [16], Gramm-Leach-Bailey
(GLB) Act [9], Health Insurance Portability and
Accountability Act (HIPAA) of 1996 [11], and others
that preserve private information is putting more and
more organizations under scrutiny. Such compliance
deviations are not only a breach of law but they also
affect client confidence. Further, legislatures like OCC
(Office of Comptroller of the Currency) [4] and
HIPAA require organizations to maintain an informa-
tion security program that includes ‘‘Detecting, Pre-
venting and Responding to Attacks, Intrusions, or
other Systems Failures.’’

Computer intrusions [5] leading to theft of intel-
lectual property or any system compromise in a corpo-
rate network can jeopardize users’ and employees’
data integrity. Furthermore, any incident leading to
misuse of confidential data can put a company’s repu-
tation at risk. Implication of such incidents may
include comprehensive incident response plans and
liability to notify the reporting agencies and the
affected customers.

Traditionally management plans are devised for
Network and IT Infrastructure which cover the secu-
rity policies, audits, asset inventory, and incident
response. Such plans ensure business continuity and
disaster recovery in the event of computer and net-
work intrusion or system compromise. Federal Trade
Commission (FTC) Safeguards rule [7], OCC and
Medical Privacy rules like HIPAA mandate an inci-
dent response plan which encompasses ways to con-
firm whether an incident occurred and provide accu-
rate, relevant, and timely information.

19th Large Installation System Administration Conference (LISA ’05) 73

RegColl: Centralized Registry Framework . . . Kang, Sharma, and Thanki

We present the benefits of a centralized registry
collection and monitoring approach in the next section.
Subsequently, we give the architecture details of Reg-
Coll framework and its components including the col-
lection mechanism and transfer mechanisms, and we
discuss the implementation of RegColl framework. The
related work section compares some of the existing
technologies and their goals with RegColl framework.
We then present the future work section, showing the
ongoing development efforts and the proposed
upgrades of RegColl framework. We then conclude,
revisiting the usage and presenting the practical solu-
tions that might be deployed to realize some of the key
benefits of RegColl.

Why Registry Monitoring

To address requirements of system monitoring,
configuration management, and incident response, we
take a proactive system management. In this approach,
we freeze configuration states that can stand compari-
son to a misconfigured system. In the event of an inci-
dent these frozen states provide a historic log of sys-
tem registries containing restore points that allow for
reconfiguration, System rebuild, and incident response.

The centralized registry offers key benefits like
Policy enforcement at a centralized location, Audits
and Analysis of configuration information, and the
overall System Configuration Management. The fol-
lowing sections elaborate these benefits.

Policy Enforcement
Corporate and legislature requirements mandate

formulation of a management plan and steps to control
access to infrastructure systems, and ensure the secu-
rity of financial data and non-public information. Cen-
tralized repository serves these purposes by providing
a single point of policy validation and enforcement.
Audits and compliance requirement checks are
achieved by deploying compliance and auditing stan-
dards on the stored configuration.

• Remediation – Centralized configuration offers
remediation capabilities to easily and effectively
automate and monitor policy consistency
requirements. The remediation technique allows
for automated and user controlled repair process,
for example, re-importing registries to enforce
corporate policy across thousands of machines.

• Restore Points and Time Travel – Centralized
configuration management allows for system
restore and time travel by maintaining restore-
histories. The causal relationship between the
change information ensures a mechanism identi-
fying the restore points and version changes.
Such a tracking mechanism would enable reinte-
gration of changes when a disconnected entity
rejoins the network. Restore points and configu-
ration change tracking features facilitate rollback
to a stable state system state in the event of soft-
ware misconfiguration.

• Change Management – Centralized configura-
tion management detects and responds to
planned and unplanned changes by setting stan-
dards and policies for change enforcement.
Registry and configuration information cap-
tures the changes in system’s configuration; any
planned changes can be verified by studying
the configuration change information.

Audit & Analysis

Risk management practices require audits and
analysis of configuration information to assess and
mitigate any risk arising from vulnerabilities in the
system. Analysis of system, registry, and configuration
logs is an important aspect of troubleshooting. Further-
more, such techniques take more prominence in rating
and certification of processes and organization, and
not ignoring that they are legislature requirements as
well. Towards this, a centralized repository will serve
as a common source for audit and analysis such as:

• Security Auditing – The RegColl framework
proposes to collect and compare thousands of
configuration elements from a networked sys-
tem to identify and enforce security configura-
tions standards. For example, security rele-
vancy check [18] is done by inspecting security
relevant registry keys.

• Dynamic Auditing – Centralizing registry and
system configurations for dynamic auditing
allows for systems to be audited seamlessly at a
central and secured location on a regular basis.
Auditing ensures consistent compliance and
provides detailed reporting to address regula-
tory compliance requirements.

• Security Analysis – Centralizing registries
give a single source of security and vulnerabil-
ity analysis for tools developed and discussed
by Wang [8] & Wenliang Du [18].

• Gap Analysis – These stores prove to be a sin-
gle source for running gap analysis along with
assessment of system configurations for known
configuration vulnerabilities including patch
inconsistencies.

System Configuration Management

Registries and configuration information is
shared and accessed by multiple applications, such as
drivers, software, and patches – it is imperative to
cache a snapshot of this information so as to establish
checkpoints at every change. Registry changes are
monitored and pushed to a centralized location as and
when new changes are recorded. The monitoring
process polls the registry and configuration files and
triggers the export of registry database as key entries
are changed in the registry. These system-state snap-
shots are stored into a centralized secure location to
analyze system vulnerabilities, run audits, enforce cor-
porate and compliance policy checks, and monitor for
any rogue software installations.

74 19th Large Installation System Administration Conference (LISA ’05)

Kang, Sharma, and Thanki RegColl: Centralized Registry Framework . . .

Incident Response
Incident response identifies ways to confirm

whether an incident occurred and then provide accu-
rate, relevant, and timely information. In such an
event, the incident information gives implementation
controls to secure the systems and crime scene to pro-
tect individual rights established by policy and law.
Towards such requirements, a centralized registry and
configuration repository provides a clean backup of all
registry and configuration changes as they happen.

Corporate Data Protection

Protecting corporate data such as customer infor-
mation is part of regulations, including the statewide
California Database Security Breach Act, the Gramm-
Leach-Bliley Act for financial services firms, and
HIPAA for health care providers. These regulations
are factors that drive corporations to beef up efforts to
prevent unauthorized disclosure of sensitive data. In
the recent past, several corporations, including large
banks (Bank of America and Wachovia), have
acknowledged substantial data leaks affecting tens of
thousands of customers. Evidently, such leaks origi-
nate from inside the corporate office itself, often with
data being transferred to or from a range of peripherals
such as zip drives, CD/DVD drives and portable print-
ers, to name a few. Furthermore, monitoring system
ports and other peripheral devices can be used to block
the entrance of viruses and mal-ware, and prevent cor-
porate data from being copied or saved except where
and when authorized. RegColl runs on all nodes on all
the network clients and interrogates the Registry of
every system attached to the corporate LAN. RegColl
analyzes the registry’s record of activity to identify
what interfaces are being used, what peripherals are
being attached to the system, and which of those
devices are currently active.

RegColl’s ability to examine peripheral devices
connected to system allows for enforcement of data
protection policies. For example, defining a corporate
data protection policy, which makes it illegal to copy
or move data to portable devices, can be tracked by
running the policy enforcement tools. RegColl is not
designed to monitor and capture use of peripheral
devices; however, it can extend the functionality to
incorporate the configuration changes from hardware
driver installations.

The next section delineates architectural compo-
nents of RegColl’s framework.

Architecture

The managed entities in this system are worksta-
tions, desktop computers, and laptop systems. A
process, called RegistryMonitor, runs on the managed
entities to collect the registry and configuration infor-
mation changes. The following sections give the
details of each of the components and their interac-
tions. We introduce the version and causal relationship

mechanism of the change sets, the collection points,
and the collection server components.

Architecture Overview

The RegColl framework introduces a registry and
configuration information dissemination mechanism
supported with a centralized repository. To ensure bet-
ter availability of this information and protect against a
single point of failure, RegColl introduces a secondary
fail over server, which is accessible to the monitor
process in the event of primary server failure.

RegColl takes into account the disconnected
operations. We assume that some managed entities
may enter disconnected mode when mobile. In such an
event the registry monitor process collates the infor-
mation locally with a causal version log. This local
storage ensures that no critical changes are disre-
garded or missed when disconnected. Since RegColl
works with causally related changes, the registry and
configuration changes are reintegrated with the previ-
ously collected versions.

Since RegColl’s framework collects and stores
system information in a chronological manner, this ar-
chive reflects restore points that can be retrieved based
on a version identifier. The causality allows for time
travel and undo capabilities. Maintaining such a ver-
sion relationship ensures that a disconnected entity
when joining the network can seamlessly integrate the
collated change information with the repository. The
following subsection provides a systemic view of the
RegColl’s components.

Collection Points

The registry and system configuration information
is collected by the re g i s t r y - m o n i t o r process deployed as
part of the registry collection framework. The registry-
monitor acts as a collection source on each of the infra-
structure systems’ managed entity to gather registry
and system configuration changes. These updates are
cached when the registry keys are modified or a new
sub-key is inserted or when a new node is created. The
centralized framework identifies the keys that are most
often updated and reflect critical modifications.

Registry and system configuration files tend to
grow with time and configuration changes, such as
updating new patches for operating system, security
updates and driver installation. These registry logs
might swell from a few kilobytes in size to multi
megabytes (between 20 KB and 600 MB) as time
elapses and configuration changes are made. To over-
come the problem of caching and transporting heavy
files, RegColl uses a differencer to identify changed
entries and transport these deltas [1] to a registry col-
lection server.

Often computer systems in a network, especially
those in corporate networks, may be disconnected for
mobility. Such a scenario mandates local caching of
registry change snapshots (referred to as change-sets

19th Large Installation System Administration Conference (LISA ’05) 75

RegColl: Centralized Registry Framework . . . Kang, Sharma, and Thanki

in RegColl framework). To prevent the collection
point of a disconnected system to make failed attempts
to contact the collection server, the cache is polled
before each connection attempt to the collection
server. After the system is reconnected, any pending
change-sets are pushed before a new snapshot is gen-
erated (Figure 1).

Figure 1: RegColl architecture.

In order to actively observe the registry changes,
monitors that have an operating system hook can pro-
vide most efficient cues on the registry changes. Reg-
Coll incorporates Microsoft’s FileSystemWatcher
component to notify (callback) Collection Server in
the event of any registry file changes. Since registry
information is critical, it is by default authenticated
and encrypted using symmetric key cipher and hosted
in the registry store.

Collection Server

The registry collector (primary server) acts as a
collection point for registry and system configuration
file entries. These entries are archived in the history
server with version information, and time stamped for
chronological ordering. As mentioned, the version and
ordering information gives undo and time travel capa-
bilities, since causally related entries can be queried
for a particular version. The Collection Server ar-
chives the restore point for each system and maintains
a mapping between the monitored system ID and the
collected configuration files. The fail-over server
architecture offers robustness and reliability to the
overall framework. Exported registry entries are
hosted on the primary registry server; in an event of
server outage, the secondary server acts as backup.

The primary and secondary servers synchronize main-
taining the consistency in registry updates. This data
consistency and synchronization is controlled using a
causal history based replication framework [3].

Configuration and Registry Repository
Configuration and Registry repository provides a

uniform monitoring infrastructure and is the single
source of information necessary to develop the best
practices for change, problem, and incident manage-
ment. This source of archived registry & configuration
log helps in configuration discovery & dependency
mapping, and change tracking serves as the trusted
information base for IT operations improvement.

The principal goal of configuration and registry
repository is to tag the change-set version and store
them in a multi-mapped manner while preserving their
chronological order. This repository provides an accu-
rate, always up-to-date configuration repository of the
servers, infrastructure software, and dependencies
between registries. Centralized registry enables system
monitoring services and is a definitive source of auto-
mated, application and infrastructure configuration
information.

Compliance and Analysis
A registry repository’s ultimate goal is to serve as

a single point of network monitoring service. The con-
structive contribution of a centralized registry and con-
figuration store would depend on what tools are
employed to query the repository and how frequently
the repository is checked for compliance. The fre-
quency of compliance check for policy compliance
determines the effectiveness of centralizing the registry.

76 19th Large Installation System Administration Conference (LISA ’05)

Kang, Sharma, and Thanki RegColl: Centralized Registry Framework . . .

Compliance checks at regular intervals would be
able to respond to compliance deviation more effec-
tively. However, a compliance check in the passive
mode may be constantly looking for a pattern of mali-
cious behavior. For example, if a policy deviation or
deficiency is found, the system may trigger a host of
alerts to isolate the host immediately until the host has
been remediated. A host of third party software [17]
can be employed to check the legislature requirements
and perform system analysis.

Security Consideration in RegColl
The centralized registry framework requires enti-

ties to establish their identities in the form of public
and private key pair. The creation of public-private
key pair for each machine is performed as a system
registration step. Registry logs that are collected as
change sets (at collection points) are signed by the
system/node’s private key, which are authenticated to
enable uploading to the collection server. Signing
change sets between the collection-point (Registry
Monitors) and the collection server (Registry Collec-
tor) establishes confidentiality and proper usage.

The framework enables trust in collection enti-
ties by certificate exchange. Entities are governed by
their identity keys (private keys); hence, registry infor-
mation shared is secured from external attacks and
malicious updates. Such a trust-framework enables
revoking a key in the event of a malicious change-set
being generated.

Another important security aspect is the user’s
system privacy and invasiveness of remote monitoring
tools. We contend that our framework is less invasive,
since the differencer tool compares and generates
deltas for each new registry change. Change set deltas
enables RegColl’s registry monitoring service to con-
sume orders of magnitude less bandwidth than any
other active monitoring process. Further, remote man-
agement and monitoring tools (like, Tivoli and Open-
View) allow for exclusive control of the system,
wherein RegColl framework’s registry snapshots
always has read access only. The system administrator
will never have access to any other file, hence preserv-
ing user’s privacy.

Registry and Configuration Change Monitoring
We explain the registry and configuration

change-set generation mechanism in this section. The
change capturing process requires a policy to deter-
mine the frequency of changes. We share our experi-
ence in determining these policies along with a discus-
sion on Operating System tools used for capturing reg-
istry and configuration changes.

Registry change generation synchronizes the
local registry changes of managed entities with the
remote collection server. These managed entities host
a registry monitoring tool called RegistryMonitor,
which publishes the change-data from the managed
entities based on an ‘‘auto-publish’’ policy.

The publish operation policy determines how
often the registry changes should be published or what
should trigger the synchronization. In RegColl’s
implementation we reviewed publish policies based on
‘‘elapsed time’’ and ‘‘transaction size’’ of the registry
updates. Elapsed time mechanism assumes changes to
be comparatively smaller if the time units are main-
tained small enough. This proved to work fine until
the user tries to install large software. For example,
installation of Oracle database induces numerous reg-
istry changes. We found that large installation gener-
ates so much traffic that it affects the efficiency of
change-set generation process. Hence, we recommend
fine-tuning the change-set generation and publish poli-
cies in the event of planned large installations.

In the implementation scenario, another chal-
lenge is determining the publish policy. The policy
should be set for smaller transaction size or smaller
time interval, which inversely affects the change-set
size. Too fine granular publishing affects the perfor-
mance and usage of the system. On the other hand too
coarse grained or too many updates are found to pro-
duce very large change-set, which are detrimental in
exchange operation and hence, proves to be an ineffi-
cient use of server resources.

Our experience in determining the publish policy
comes from monitoring native file system changes
using FileSystemWatcher component on Windows
[13] and Inotify file system event monitoring mecha-
nism [6] for Linux. FileSystemWatcher, of Microsoft
.NET framework’s System.IO namespace gives access
to system functionalities such as the FileWatcher util-
ity. The FileWatcher listens to the file system change
notifications and raises events when a directory or file
in a directory changes. This facility is utilized to mon-
itor registry-file changes.

Differentiating between users initiated change
and OS process changes are not discernible to the file
watcher. For example, interaction between Windows
Explorer (explorer.exe) and user workspace are
reported as file changes. Further, any file creation
leads to multiple file change notification.

On a Linux based system, a number of swap files
are created when user programs open a file. Our expe-
rience shows that these files are created and deleted
within a few milliseconds. Capturing these temporary
files as part of change-set description proves to be
unwanted overhead, both in terms of network traffic
and change set log size. To manage such copious
change notifications, we analyzed both FileWatcher
and Inotify change log pattern and developed a filter
routine that prunes junk and redundant entries.

RegColl follows a transactional semantics where
all changes take place atomically. A time based publish
policy will divide the transaction into multiple units
should the installation triggered change time is greater

19th Large Installation System Administration Conference (LISA ’05) 77

RegColl: Centralized Registry Framework . . . Kang, Sharma, and Thanki

than that of publish time. For example, software like
To m c a t web server has a longer installation and con-
figuration time than the default publish time. We ran
our experiments on University network configured to
trigger notification in the events of file creation, file
access and write, file name and directory name change.
The size and security attributes changes are also
reported. We found that the file system watcher com-
ponent has certain limitations, especially in reporting
what process initiated the registry-file changes.

We contend that monitoring only the registry-file
changes will improve the overall performance of syn-
chronizing the configuration files since only the registry
changes are propagated to the server reducing the over-
all network traffic. Even with snapshotting technique,
the snapshot size can be prohibitively expensive given
that changes happen in number of configuration files;
on the other hand, RegColl captures specific registry
and configuration changes in a given time window.

Figure 2: Registry Monitor interface options.

Figure 3: Registry Monitor with ‘‘-monitor ’’ command.

Based on our experience in analyzing change noti-
fications, we devised the staging policy where file
change notifications are collected for 30 seconds and
flushed in an event if no new change is detected in this
time window, i.e., the inactivity window. An alternative
scheme for pushing the change-set is if the queue reaches
a predetermined size (e.g., 100 numbers of changes in
our case). Nonetheless the publish policy is configurable.

RegColl Implementation

The Windows registry is a hierarchical structure
of key and name value pairs. This structure acts as a
central configuration database for users, applications,
and other system information. Each key in the registry
is a node in the hierarchical structure with one or more
sub keys associated with it. This structure binds
together configuration information in the name-value
pair container associated with each node.

A ‘‘registry key’’ is of importance if it can reflect
on configuration changes. If such keys and other sys-
tem configuration information are collected at one
location, it provides a centralized source of registry
and configuration information that can be used for
system auditing and analysis. To realize this single
source of system information repository the following
section gives the implementation details of the pro-
posed framework.

Registry Monitor

The centralized registry collection framework
requires network wide deployment. The current imple-
mentation bundles the collection point interface as
Registry monitor batch file, regmon.jar, and reg-
mon.properties files. RegistryMonitor batch file runs
the Registry Monitor on the user’s local workstation;
regmon.jar has the APIs to identify registry changes

78 19th Large Installation System Administration Conference (LISA ’05)

Kang, Sharma, and Thanki RegColl: Centralized Registry Framework . . .

and communication protocol implementation for col-
lection-point and collection server communication for
pushing changes. The regmon.properties file has col-
lection server information, i.e., collection server’s
fully qualified domain name (FQDN) and port on
which the server is listening.

Figure 4: Registry Monitor when invoked with a ‘‘-start’’ command.

Figure 5: Identified Registry Changes using Registry Monitor.

To fully understand the collection framework, we
deployed and tested the system on a local Windows
network. The following section gives a deployment
scenario of registry monitor and registry collector.

Figure 2 shows the screen shot of Registry Moni-
tor implementation. RegistryMonitor monitors the
default registry files; DEFAULT, SAM, SECURITY,
SOFTWARE, SYSTEM stored in the windows\sys-
tem32\config directory and NTUSER.DAT stored in the
user home directory. Files being monitored could be
seen by invoking the ‘‘monitor ’’ command, as shown
in Figure 3.

Installation of any new application on Windows
operating system essentially modifies four registry keys,
i.e., HKCR (Classes Root Handle Key), HKLM (Local
Machine Handle Key), and HKU (Users Handle key).

We tested Registry monitor by installing and
uninstalling a few software and drivers. For example,
as shown in Figure 5 and Figure 6, Registry monitor
when started with the ‘‘-start’’ command has success-
fully identified a change in NTUSER.DAT registry file.

Figure 6 shows the registry modification after the
user installed the ‘Mozilla FireFox’ application. In the
event of Registry monitor polling the registry, the
FireFox application installation will be identified as a
registry change. Registry monitor’s file differencer
logs the change in the change set as shown in Figure 6.
Registry Monitor Setup

Registry monitor setup entails setting up a moni-
tor code at each of the infrastructure system (what we
refer to as, collection point). Each deployment requires
setting up of public and private key pairs at the collec-
tion point. These keys secure the communication chan-
nel between collection points and collection servers, all
registry change sets are signed with collection point’s
private key. The registration process requires the sys-
tem administrator to authenticate themselves before
enabling deployment process. Users set up a secured
password for client log on process.

19th Large Installation System Administration Conference (LISA ’05) 79

RegColl: Centralized Registry Framework . . . Kang, Sharma, and Thanki

Registry monitor requires users to authenticate
with the collection server before initiating the registry
monitor process. The logon process is session bound
(Figure 4) and each login returns a session token from
the collection server, which is usually valid for a
period of 24 hours. The RegistryMonitor interface
manages the session ID locally by encrypting it using
a pre-established symmetric encryption key (set up
during the machine registration process). User can
logout of the system by calling ‘‘-logout’’ to invalidate
the session token. The session token and session IDs
are discarded once invalidated.

Figure 6: Changes identified by Registry Monitor.

Figure 7: Directory structure of registry collection.

Registry Collector
The registry collector server maintains a direc-

tory structure of registry logs for each collection point
(Figure 7). The registry collector captures the change-
set snapshots, which are incremental delta information
supplied by the collection point to reflect the registry
changes. This contains the size of exchanged data at a
given time since only the delta of change-sets are
moved and not the whole registry or system configura-
tion file. Moving an entire registry snapshot (taken at
the time of registry change) is a process and network
intensive operation. Hence, to avoid loading the net-
work or system resources, only the change set deltas
are generated and uploaded to the collection server.

These deltas give an incremental version change to
the registry collection. Since the information traveling on
the network is a delta of change set (or simply the changed
data blocks), the information exchange is lighter and faster.

The registry collector maintains the version order-
ing for each change-set supplied by the collection points.
These entries are multi mapped with MachineID, collec-
tion system’s ID and the timestamp they are associated
with. Figure-7 shows the collection servers format of
storing change-set deltas.

Related Work

Monitoring system configuration information has
been employed in many systems. The following are
some examples. While these tools share the same idea
of utilizing system configuration information as Reg-
Coll, they differ in the collection mechanism, such as
disconnected mode support and its usages. RegColl
collates the system configuration changes into a cen-
tral location so that the centralized system configura-
tion (e.g., registry) repository could incorporate the
useful infrastructure system monitoring services such
as compliance checks, incident response endorsement,
and corporate policy validation. Similarly, Windows
XP system restore [12] can collect registry data in its
state snapshots.

The STRIDER [20] project uses differencing of
periodic snapshots to reveal any configuration changes
in the Windows registry. The registry keys of a failing
program are monitored and recorded for analysis, this
helps examine and reflect on fault in the program.

UNIX-based tools like Chronus [2] detect con-
figuration error that might induce a faulty state in the
system. Chronus captures the failure, inducing state
changes to differentiate between working and non-
working states. By using binary search, it can diag-
nose a range of common configuration errors for both
client-side and server-side applications. It helps to
reveal the specific failure cause, enabling recovery
with minimal lost state. Another UNIX-based tool for
system change monitoring is discussed in Backtracker
[15]. Backtracker uses a change log mechanism and
maintains an operating system causal history log.
These logs are analyzed to determine the configuration
changes which might be caused by the installation of
an application or a computer intrusion.

80 19th Large Installation System Administration Conference (LISA ’05)

Kang, Sharma, and Thanki RegColl: Centralized Registry Framework . . .

Future Work

RegColl is evolving rapidly and the skeleton is in
place. We would like to invite users to try this tool,
which can be extended to collect other system info
files such as the .ini files on Windows and .rp resource
files on UNIX systems. The tool is ready for down-
load; please send an email to bbkang@uncc.edu for
registry monitor bundle and/or any further information.
This bundle, along with other resources can also be
downloaded from the following link: http://coitweb.
uncc.edu/˜bbkang/ISR/.

Conclusion

The RegColl framework is positioned as a back
end collection entity that seamlessly collates the reg-
istry and system configuration changes. A fail over
server adds reliability to the architecture and provides
a backup for change information. Deployment of such
a server would obviously be on the network but away
from the internet. Further, configuration servers are
patently isolated and kept secure. However, we
employ security considerations that mandate setting up
public & private key pair at each collection point. All
change sets are signed by the machines private key.

We delineate some of the useful contributions of
system monitoring services that utilize the RegColl
framework.

Corporate Policy Enforcement

The collection server can be deemed as a policy
enforcement point, where policies are monitored and
enforced by third party tools. This central location gives
a validation source for such tools; if there is a policy
deviation, a policy enforcer tool will generate an alert to
the system admin. Audit and configuration are just log-
ging tools, and a configuration management tool will
identify if the registry is in good shape based on which
rules the system administrator decides to apply. For
example, Wang, et al, proposed a tool for troubleshooting
misconfigured systems [8] using registry information.

Incident Response

Centralizing registry and configuration informa-
tion meets the preliminary incident response require-
ments of documenting and confirming an incident. If
an intrusion or system compromise is detected, it will
be useful to analyze the changes that happened in the
course of intrusion. The incremental change informa-
tion is constructive in pinpointing specific changes. A
compromised system’s registry and system configura-
tion information can be compared with a previously
identified valid state.

Non-Invasive Monitoring

Active scans of a system’s configuration and reg-
istry information can be considered more invasive
process than capturing registry snapshots. The CPU
and network usage of an active monitoring system
(e.g., IBM Tivoli) consume order of magnitude more

resources than a prescheduled maintenance task or
remote monitoring.

Capturing registry information on a timely basis
makes registry monitoring a lot less invasive than
remote management, since the ‘‘differencer ’’ produces
deltas for each new change in the registry. Registry
Monitor ’s monitoring service consumes orders of
magnitude lower bandwidth than an active monitoring
process. Remote management allows full control of
the system where system configuration changes are
accessible for read/write operations remotely. In com-
parison, the RegColl framework’s registry snapshots
are read-only. The collection server’s administrator
never has access to any other files, thereby preserving
the user’s privacy. The system configuration informa-
tion is stored in an encrypted form which adds to the
overall information protection.

The single source for auditing, analysis, and pol-
icy validations capabilities gives more control and
monitoring power to system administrators managing
large corporate networks and infrastructure systems.
Hence, we believe RegColl’s centralized registry and
configuration framework will be a useful tool in over-
all infrastructure systems management.

Acknowledgement

The authors would like to thank the following
people for their contributions to improve this paper:
Gautam Singaraju of Department of Software and
Information System, UNC Charlotte, and Vinod Eligeti
of Department of Computer Science, Virginia Tech.
We take this opportunity to especially acknowledge
our shepherd, Yi-Min Wang of Microsoft Research, for
his invaluable support in improving this paper.

References

[1] Tridgell, A. and P. Macherras, The Rsync Algo-
rithm, Technical report, TR-CS-96-05, Aus-
tralian National University, http://samba.anu.edu.
au/rsync/ , June, 1996.

[2] Whitaker, Andrew, Richard S. Cox, and Steven D.
Gribble, ‘‘Configuration Debugging as Search:
Finding the Needle in the Haystack,’’ Proceedings
of the USENIX Association OSDI ’04: 6th Sympo-
sium on Operating Systems Design and Imple-
mentation, 2004.

[3] Kang, B., Ph.D. Dissertation, S2D2: A Frame-
work for Scalable and Secure Optimistic Repli-
cation, UC Berkeley, also in TechReport
UCB//CSD-04-1351.

[4] Community Development Resource, Office of
the Comptroller of the Currency Administrator of
National Banks, http://citeseer.ist.psu.edu/377475.
html .

[5] Computer Crime and Intellectual Property Sec-
tion, http://www.usdoj.gov/criminal/cybercrime/
cccases.html .

19th Large Installation System Administration Conference (LISA ’05) 81

RegColl: Centralized Registry Framework . . . Kang, Sharma, and Thanki

[6] Dow, Eli M., Monitor Linux file system events
with inotify, IBM Linux Test and Integration
Center, http://www-28.ibm.com/developerworks/
linux/library/l-inotify.html?ca=dgr-lnxw07Inotify ,
2005.

[7] The Federal Trade Commission (FTC) Safe-
guards Rule, Financial Institutions and Cus-
tomer Data: Complying with the Safeguards
Rule, http://www.ftc.gov/bcp/conline/pubs/bus-
pubs/safeguards.htm , September, 2002.

[8] Wang, Helen J., John C. Platt, Yu Chen, Ruyun
Zhang, and Yi-MinWang, Automatic Misconfigu-
ration Troubleshooting with PeerPressure,
Microsoft Research.

[9] ‘‘In Brief: The Financial Privacy Requirements
of the Gramm-Leach-Bliley Act,’’ Federal Trade
Commission – Facts for Business, Available
http://www.ftc.gov /bcp/online/pubs .

[10] Larsson, Magnus and Ivica ‘‘Crnkovic, Configu-
ration Management for Component-based Sys-
tems,’’ Software Configuration Management –
SCM 10, 23rd ICSE, http://www.mrtc.mdh.se/
index.phtml?choice=publications&id=0295 ,
May, 2001.

[11] Mercuri, R. T., ‘‘The HIPAA-Potamus in health
care data security,’’ CACM, Vol. 47, Num. 7, pp.
25-28, http://doi.acm.org/10.1145/1005817.
1005840 , July, 2004.

[12] Microsoft, Inc., Wi n d o w s XP system restore, http://
msdn.microsoft.com/library/default.asp?URL=/
library/techart/windowsxpsystemrestore.htm,
April, 2001.

[13] Microsoft, http://msdn.microsoft.com/library/
default.asp?url=/library/enus/vbcon/html/vbcon
IntroductionToFileSystemComponents.asp,
2004.

[14] Policy Enforcement tools, McAfee System Protec-
tion – McAfee Policy Orchestrator, http://www.
networkassociates.com/us/products/mcafee/mgmt_
solutions/epo.htm .

[15] King, Samuel T. and Peter M. Chen, ‘‘Back
Tracking Intrusions,’’ Proceedings of the 19th
Symposium on Operating System Principles
(SOSP 2003), Bolton Landing, NY, October,
2003.

[16] Sarbanes-Oxley Act of 2002, HR 3763, PL
107-204, 116 Stat 745, United States Code,
2002, codified in sections 11, 15, 18, 28, and 29
USC.

[17] Sygate – Policy Enforcement, http://www.sygate.
com/solutions/policy-enforcement.htm .

[18] Du, Wenliang, Aditya P. Mathur, Praerit Garg,
‘‘Security Relevancy Analysis on the Registry of
Windows NT 4.0,’’ Proceedings of the 15th
Annual Computer Security Applications Confer-
ence, December, 1999.

[19] Windows NT Workstation Resource Kit – Win-
dows NT Registry, http://www.microsoft.com/

resources/documentation/windowsnt/4/workstation/
reskit/en-us/24_reged.mspx .

[20] Wang, Y., C. Verbowski, J. Dunagan, Y. Chen,
H.J. Wang, C. Yuan, and Z. Zhang, ‘‘STRIDER:
A black-box, state based approach to change and
configuration management and support,’’ Pro-
ceedings of the USENIX LISA Conference, Octo-
ber, 2003.

82 19th Large Installation System Administration Conference (LISA ’05)

