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ABSTRACT

Patching, upgrading, and maintaining operating system software is a growing management
complexity problem that can result in unacceptable system downtime. We introduce AutoPod, a
system that enables unscheduled operating system updates while preserving application service
availability. AutoPod provides a group of processes and associated users with an isolated machine-
independent virtualized environment that is decoupled from the underlying operating system
instance. This virtualized environment is integrated with a novel checkpoint-restart mechanism
which allows processes to be suspended, resumed, and migrated across operating system kernel
versions with different security and maintenance patches.

AutoPod incorporates a system status service to determine when operating system patches
need to be applied to the current host, then automatically migrates application services to another
host to preserve their availability while the current host is updated and rebooted. We have
implemented AutoPod on Linux without requiring any application or operating system kernel
changes. Our measurements on real world desktop and server applications demonstrate that
AutoPod imposes little overhead and provides sub-second suspend and resume times that can be
an order of magnitude faster than starting applications after a system reboot. AutoPod enables
systems to autonomically stay updated with relevant maintenance and security patches, while

ensuring no loss of data and minimizing service disruption.

Introduction

As computers become more ubiquitous in large
corporate, government, and academic organizations,
the total cost of owning and maintaining them is
becoming unmanageable. Computers are increasingly
networked, which only complicates the management
problem, given the myriad of viruses and other attacks
commonplace in today’s networks. Security problems
can wreak havoc on an organization’s computing in-
frastructure. To prevent this, software vendors fre-
quently release patches that can be applied to address
security and maintenance issues that have been dis-
covered. This creates a management nightmare for
administrators who take care of large sets of machines.
For these patches to be effective, they need to be
applied to the machines. It is not uncommon for sys-
tems to continue running unpatched software long
after a security exploit has become well-known [22].
This is especially true of the growing number of server
appliances intended for very low-maintenance opera-
tion by less skilled users. Furthermore, by reverse
engineering security patches, exploits are being
released as soon as a month after the fix is released,
whereas just a couple of years ago, such exploits took
closer to a year to create [12].

Even when software updates are applied to
address security and maintenance issues, they com-
monly result in system services being unavailable.
Patching an operating system can result in the entire
system having to be down for some period of time. If

a system administrator chooses to fix an operating sys-
tem security problem immediately, he risks upsetting
his users because of loss of data. Therefore, a system
administrator must schedule downtime in advance and
in cooperation with users, leaving the computer vul-
nerable until repaired. If the operating system is
patched successfully, the system downtime may be
limited to just a few minutes during the reboot. Even
then, users are forced to incur additional inconve-
nience and delays in starting applications again and
attempting to restore their sessions to the state they
were in before being shutdown. If the patch is not suc-
cessful, downtime can extend for many hours while
the problem is diagnosed and a solution is found.
Downtime due to security and maintenance problems
is not only inconvenient but costly as well.

We present AutoPod, a system that provides an
easy-to-use autonomic infrastructure [11] for operat-
ing system self-maintenance. AutoPod uniquely
enables unscheduled operating system updates of
commodity operating systems while preserving appli-
cation service availability during system maintenance.
AutoPod provides its functionality without modifying,
recompiling, or relinking applications or operating
system kernels. This is accomplished by combining
three key mechanisms: a lightweight virtual machine
isolation abstraction that can be used at the granularity
of individual applications, a checkpoint-restart mecha-
nism that operates across operating system versions
with different security and maintenance patches, and
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an autonomic system status service that monitors the
system for system faults as well as security updates.

AutoPod provides a lightweight virtual machine
abstraction called a POD (PrOcess Domain) that
encapsulates a group of processes and associated users
in an isolated machine-independent virtualized envi-
ronment that is decoupled from the underlying operat-
ing system instance. A pod mirrors the underlying
operating system environment but isolates processes
from the system by using host-independent virtual
identifiers for operating system resources. Pod isola-
tion not only protects the underlying system from
compromised applications, but is crucial for enabling
applications to migrate across operating system
instances. Unlike hardware virtualization approaches
that require running multiple operating system
instances [4, 29, 30], pods provide virtual application
execution environments within a single operating sys-
tem instance. By operating within a single operating
system instance, pods can support finer granularity
isolation and can be administered using standard oper-
ating system utilities without sacrificing system man-
ageability. Furthermore, since it does not run an oper-
ating system instance, a pod prevents potentially mali-
cious code from making use of an entire set of operat-
ing system resources.

AutoPod combines its pod virtualization with a
novel checkpoint-restart mechanism that uniquely
decouples processes from dependencies on the under-
lying system and maintains process state semantics to
enable processes to be migrated across different
machines. The checkpoint-restart mechanism intro-
duces a platform-independent intermediate format for
saving the state associated with processes and Auto-
Pod virtualization. AutoPod combines this format with
the use of higher-level functions for saving and restor-
ing process state to provide a high degree of portabil-
ity for process migration across different operating
system versions that was not possible with previous
approaches. In particular, the checkpoint-restart mech-
anism relies on the same kind of operating system
semantics that ensure that applications can function
correctly across operating system versions with differ-
ent security and maintenance patches.

AutoPod combines the pod virtual machine with
an autonomous system status service. The service
monitors the system for system faults as well as secu-
rity updates. When the service detects new security
updates, it is able to download and install them auto-
matically. If the update requires a reboot, the service
uses the pod’s checkpoint-restart capability to save the
pod’s state, reboot the machine into the newly fixed
environment, and restart the processes within the pod
without causing any data loss. This provides fast
recovery from system downtime even when other
machines are not available to run application services.
Alternatively, if another machine is available, the pod
can be migrated to the new machine while the original
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machine is maintained and rebooted, further minimiz-
ing application service downtime. This enables secu-
rity patches to be applied to operating systems in a
timely manner with minimal impact on the availability
of application services. Once the original machine has
been updated, applications can be returned and can
continue to execute even though the underlying oper-
ating system has changed. Similarly, if the service
detects an imminent system fault, AutoPod can check-
point the processes, migrate, and restart them on a new
machine before the fault can cause the processes’ exe-
cution to fail.

We have implemented AutoPod in a prototype
system as a loadable Linux kernel module. We have
used this prototype to securely isolate and migrate a
wide range of unmodified legacy and network applica-
tions. We measure the performance and demonstrate
the utility of AutoPod across multiple systems running
different Linux 2.4 kernel versions using three real-
world application scenarios, including a full KDE desk-
top environment with a suite of desktop applications,
an Apache/MySQL web server and database server
environment, and a Exim/Procmail e-mail processing
environment. Our performance results show that Auto-
Pod can provide secure isolation and migration func-
tionality on real world applications with low overhead.

This paper describes how AutoPod can enable
operating system self-maintenance by suspending,
resuming, and migrating applications across operating
system kernel changes to facilitate kernel maintenance
and security updates with minimal application down-
time. Subsequent sections describe the AutoPod virtu-
alization abstractions, present the virtualization archi-
tecture to support the AutoPod model, discuss the
AutoPod checkpoint-restart mechanisms used to facili-
tate migration across operating system kernels that
may differ in maintenance and security updates, pro-
vide a brief overview of the AutoPod system status
service, provide a security analysis of the AutoPod
system as well as examples of how to use AutoPod,
and present experimental results evaluating the over-
head associated with AutoPod virtualization and quan-
tifying the performance benefits of AutoPod migration
versus a traditional maintenance approach for several
application scenarios. We discuss related work before
some concluding remarks.

AutoPod Model

The AutoPod model is based on a virtual
machine abstraction called a pod. Pods were previ-
ously introduced in Zap [16] to support migration
assuming the same operating system version is used
for all systems. AutoPod extends this work to enable
pods to provide a complete secure virtual machine
abstraction in addition to heterogeneous migration
functionality. A pod looks just like a regular machine
and provides the same application interface as the
underlying operating system. Pods can be used to run
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any application, privileged or otherwise, without mod-
ifying, recompiling, or relinking applications. This is
essential for both ease-of-use and protection of the
underlying system, since applications not executing in
a pod offer an opportunity to attack the system. Pro-
cesses within a pod can make use of all available oper-
ating system services, just like processes executing in
a traditional operating system environment. Unlike a
traditional operating system, the pod abstraction pro-
vides a self-contained unit that can be isolated from the
system, checkpointed to secondary storage, migrated to
another machine, and transparently restarted.

Pod A Pod B

AutoPod Virtualization Layer

IOJIUOJA WASAS poJoiny

‘ Host Operating System ‘

‘ Host Hardware ‘
Figure 1: The AutoPod model.

AutoPod enables server consolidation by allowing
multiple pods to be in use on a single machine, while
enabling automatic machine status monitoring as shown
in Figure 1. Since each pod provides a complete secure
virtual machine abstraction, they are able to run any
server application that would run on a regular machine.
By consolidating multiple machines into distinct pods
running on a single server, one improves manageability
by limiting the number of physical hardware and the
number of operating system instances an administrator
has to manage. Similarly, when kernel security holes are
discovered, server consolidation improves manageabil-
ity by minimizing the amount of machines that need to
be upgraded and rebooted. The AutoPod system monitor
further improves manageability by constantly monitor-
ing the host system for stability and security problems.

Since a pod does not run an operating system
instance, it provides a virtualized machine environ-
ment by providing a host-independent virtualized view
of the underlying host operating system. This is done
by providing each pod with its own virtual private
namespace. All operating system resources are only
accessible to processes within a pod through the pod’s
virtual private namespace.

A pod namespace is private in that only pro-
cesses within the pod can see the namespace. It is pri-
vate in that it masks out resources that are not con-
tained within the pod. Processes inside a pod appear to
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one another as normal processes that can communicate
using traditional Inter-Process Communication (IPC)
mechanisms. Other processes outside a pod do not
appear in the namespace and are therefore not able to
interact with processes inside a pod using IPC mecha-
nisms such as shared memory or signals. Instead, pro-
cesses outside the pod can only interact with processes
inside the pod using network communication and
shared files that are normally used to support process
communication across machines.

A pod namespace is virtual in that all operating
system resources including processes, user informa-
tion, files, and devices are accessed through virtual
identifiers within a pod. These virtual identifiers are
distinct from host-dependent resource identifiers used
by the operating system. The pod virtual namespace
provides a host-independent view of the system by
using virtual identifiers that remain consistent
throughout the life of a process in the pod, regardless
of whether the pod moves from one system to another.
Since the pod namespace is distinct from the host’s
operating system namespace, the pod namespace can
preserve this naming consistency for its processes
even if the underlying operating system namespace
changes, as may be the case in migrating processes
from one machine to another. This consistency is
essential to support process migration [16].

The pod private, virtual namespace enables
secure isolation of applications by providing complete
mediation to operating system resources. Pods can
restrict what operating system resources are accessible
within a pod by simply not providing identifiers to
such resources within its namespace. A pod only
needs to provide access to resources that are needed
for running those processes within the pod. It does not
need to provide access to all resources to support a
complete operating system environment. An admin-
istrator can configure a pod in the same way one con-
figures and installs applications on a regular machine.
Pods enforce secure isolation to prevent exploited
pods from being used to attack the underlying host or
other pods on the system. Similarly, the secure isola-
tion allows one to run multiple pods from different
organizations, with different sets of users and adminis-
trators on a single host, while retaining the semantic of
multiple distinct and individually managed machines.

For example, to provide a web server, one can
easily setup a web server pod to only contain the files
the web server needs to run and the content it wants to
serve. The web server pod could have its own IP
address, decoupling its network presence from the
underlying system. The pod can have its network
access limited to client-initiated connections using
firewall software to restrict connections to the pod’s IP
address to only the ports served by the application run-
ning within this pod. If the web server application is
compromised, the pod limits the ability of an attacker
to further harm the system since the only resources he
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has access to are the ones explicitly needed by the ser-
vice. The attacker cannot use the pod to directly initi-
ate connections to other systems to attack them since
the pod is limited to client-initiated connections. Fur-
thermore, there is no need to carefully disable other
network services commonly enabled by the operating
system to protect against the compromised pod since
those services, and the core operating system itself,
reside outside of the pod’s context.

AutoPod Virtualization

To support the AutoPod abstraction design of
secure and isolated namespaces on commodity operat-
ing systems, we employ a virtualization architecture
that operates between applications and the operating
system, without requiring any changes to applications
or the operating system kernel. This virtualization
layer is used to translate between the AutoPod name-
spaces and the underlying host operating system name-
space. It protects the host operating system from dan-
gerous privileged operations that might be performed
by processes within the AutoPod, as well as protecting
those processes from processes outside of the Auto-
Pod.

Pods are supported using virtualization mecha-
nisms that translate between the pod’s resource identi-
fiers and the operating system’s resource identifiers.
Every resource that a process in a pod accesses is
through a virtual private name which corresponds to
an operating system resource identified by a physical
name. When an operating system resource is created
for a process in a pod, such as with process or IPC key
creation, instead of returning the corresponding physi-
cal name to the process, the pod virtualization layer
catches the physical name value, and returns a virtual
private name to the process. Similarly, any time a
process passes a virtual private name to the operating
system, the virtualization layer catches it and replaces
it with the appropriate physical name.

The key pod virtualization mechanisms used are
a system call interposition mechanism and the chroot
utility with file system stacking to provide each pod
with its own file system namespace that can be sepa-
rate from the regular host file system. Pod virtualiza-
tion support for migration is based on Zap [16]. We
focus here on pod virtualization support for secure vir-
tual machine isolation.

Because current commodity operating systems
are not built to support multiple namespaces, AutoPod
must take care of the security issues this causes. While
chroot can give a set of processes a virtualized file sys-
tem namespace, there are many ways to break out of
the standard chrooted environment, especially if one
allows the chroot system call to be used by processes in
a pod. Pod file system virtualization enforces the
chrooted environment and ensures that the pod’s file
system is only accessible to processes within the given
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pod by using a simple form of file system stacking to
implement a barrier. File systems provide a permission
function that determines if a process can access a file.

For example, if a process tries to access a file a
few directories below the current directory, the per-
mission function is called on each directory as well as
the file itself in order. If any of the calls determine that
the process does not have permission on a directory,
the chain of calls end. Even if the permission function
would determine that the process would have access to
the file itself, it must have permission to traverse the
directory hierarchy to the file to access it.

We implement a barrier by simply stacking a
small pod-aware file system on top of the staging
directory that overloads the underlying permission
function to prevent processes running within the pod
from accessing the parent directory of the staging
directory, and to prevent processes running only on the
host from accessing the staging directory. This effec-
tively confines a process in a pod to the pod’s file sys-
tem by preventing it from ever walking past the pod’s
file system root.

While any network file system can be used with
pods to support migration, we focus on NFS because it
is the most commonly used network file system. Pods
can take advantage of the user identifier (UID) secu-
rity model in NFS to support multiple security
domains on the same system running on the same
operating system kernel. For example, since each pod
can have its own private file system, each pod can
have its own /etc/passwd file that determines its list of
users and their corresponding UIDs. In NFS, the UID
of a process determines what permissions it has in
accessing a file.

By default, pod virtualization keeps process UIDs
consistent across migration and keeps process UIDs
the same in the pod and operating system namespaces.
However, since the pod file system is separate from the
host file system, a process running in the pod is effec-
tively running in a separate security domain from
another process with the same UID that is running
directly on the host system. Although both processes
have the same UID, each process is only allowed to
access files in its own file system namespace. Simi-
larly, multiple pods can have processes running on the
same system with the same UID, but each pod effec-
tively provides a separate security domain since the
pod file systems are separate from one another.

The pod UID model supports an easy-to-use
migration model when a user may be using a pod on a
host in one administrative domain and then moves the
pod to another. Even if the user has computer accounts
in both administrative domains, it is unlikely that the
user will have the same UID in both domains if they
are administratively separate. Nevertheless, pods can
enable the user to run the same pod with access to the
same files in both domains.
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Suppose the user has UID 100 on a machine in
administrative domain A and starts a pod connecting
to a file server residing in domain A. Suppose that all
pod processes are then running with UID 100. When
the user moves to a machine in administrative domain
B where he has UID 200, he can migrate his pod to the
new machine and continue running processes in the
pod. Those processes can continue to run as UID 100
and continue to access the same set of files on the pod
file server, even though the user’s real UID has
changed. This works, even if there’s a regular user on
the new machine with a UID of 100. While this exam-
ple considers the case of having a pod with all pro-
cesses running with the same UID, it is easy to see
that the pod model supports pods that may have run-
ning processes with many different UIDs.

Because the root UID 0 is privileged and treated
specially by the operating system kernel, pod virtual-
ization treats UID 0 processes inside of a pod specially
as well. AutoPod is required to do this to prevent pro-
cesses running with privilege from breaking the pod
abstraction, accessing resources outside of the pod, and
causing harm to the host system. While a pod can be
configured for administrative reasons to allow full priv-
ileged access to the underlying system, we focus on the
case of pods for running application services which do
not need to be used in this manner. Pods do not disal-
low UID 0 processes, which would limit the range of
application services that could be run inside pods.
Instead, pods provide restrictions on such processes to
ensure that they function correctly inside of pods.

While a process is running in user space, its UID
does not have any affect on process execution. Its UID
only matters when it tries to access the underlying ker-
nel via one of the kernel entry points, namely devices
and system calls. Since a pod already provides a virtual
file system that includes a virtual /dev with a limited set
of secure devices, the device entry point is already
secured. The only system calls of concern are those that
could allow a root process to break the pod abstraction.
Only a small number of system calls can be used for
this purpose. These system calls are listed and
described in further detail in the Appendix. Pod virtual-
ization classifies these system calls into three classes.

The first class of system calls are those that only
affect the host system and serve no purpose within a
pod. Examples of these system calls include those that
load and unload kernel modules or that reboot the host
system. Since these system calls only affect the host,
they would break the pod security abstraction by
allowing processes within it to make system adminis-
trative changes to the host. System calls that are part
of this class are therefore made inaccessible by default
to processes running within a pod.

The second class of system calls are those that
are forced to run unprivileged. Just like NFS, by
default, squashes root on a client machine to act as
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user nobody, pod virtualization forces privileged pro-
cesses to act as the nobody user when they want to
make use of some system calls. Examples of these
system calls include those that set resource limits and
ioctl system calls. Since system calls such as setrlimit
and nice can allow a privileged process to increase its
resource limits beyond predefined limits imposed on
pod processes, privileged processes are by default
treated as unprivileged when executing these system
calls within a pod. Similarly, the ioctl system call is a
system call multiplexer that allows any driver on the
host to effectively install its own set of system calls.
Since the ability to audit the large set of possible sys-
tem calls is impossible given that pods may be
deployed on a wide range of machine configurations
that are not controlled by the AutoPod system, pod
virtualization conservatively treats access to this sys-
tem call as unprivileged by default.

The final class of system calls are calls that are
required for regular applications to run, but have
options that will give the processes access to underly-
ing host resources, breaking the pod abstraction. Since
these system calls are required by applications, the
pod checks all their options to ensure that they are
limited to resources that the pod has access to, making
sure they are not used in a manner that breaks the pod
abstraction. For example, the mknod system call can be
used by privileged processes to make named pipes or
files in certain application services. It is therefore
desirable to make it available for use within a pod.
However, it can also be used to create device nodes
that provide access to the underlying host resources.
To limit how the system call is used, the pod system
call interposition mechanism checks the options of the
system call and only allows it to continue if it is not
trying to create a device.

Migration Across Different Kernels

To maintain application service availability with-
out losing important computational state as a result of
system downtime due to operating system upgrades,
AutoPod provide a checkpoint-restart mechanism that
allows pods to be migrated across machines running
different operating system kernels. Upon completion of
the upgrade process, the respective AutoPod and its
applications are restored on the original machine. We
assume here that any kernel security holes on the
unpatched system have not yet been exploited on the
system; migrating across kernels that have already
been compromised is beyond the scope of this paper.
We also limit our focus to migrating between machines
with a common CPU architecture with kernel differ-
ences that are limited to maintenance and security
patches. These patches often correspond to changes in
the minor version number of the kernel. For example,
the Linux 2.4 kernel has nearly thirty minor versions.
Even within minor version changes, there can be sig-
nificant changes in kernel code. Table 1 shows the
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number of files that have been changed in various sub-
systems of the Linux 2.4 kernel across different minor
versions. For example, all of the files for the VM sub-
system were changed since extensive modifications
were made to implement a completely new page
replacement mechanism in Linux.

Many of the Linux kernel patches contain secu-
rity vulnerability fixes, which are typically not sepa-
rated out from other maintenance patches. We simi-
larly limit our focus to where the application’s execu-
tion semantics, such as how threads are implemented
and how dynamic linking is done, do not change. On
the Linux kernels this is not an issue as all these
semantics are enforced by user-space libraries.
Whether one uses kernel or user threads, or how
libraries are dynamically linked into a process is all
determined by the respective libraries on the file sys-
tem. Since the pod has access to the same file system
on whatever machine it is running on, these semantics
stay the same.

To support migration across different kernels,
AutoPod use a checkpoint-restart mechanism that
employs an intermediate format to represent the state
that needs to be saved on checkpoint. On checkpoint,
the intermediate format representation is saved and
digitally signed to enable the restart process to verify
the integrity of the image. Although the internal state
that the kernel maintains on behalf of processes can be
different across different kernels, the high-level prop-
erties of the process are much less likely to change. We
capture the state of a process in terms of higher-level
semantic information specified in the intermediate for-
mat rather than kernel specific data in native format to
keep the format portable across different kernels.

For example, the state associated with a UNIX
socket connection consists of the directory entry of the
UNIX socket file, its superblock information, a hash
key, and so on. It may be possible to save all of this
state in this form and successfully restore on a differ-
ent machine running the same kernel. But this repre-
sentation of a UNIX socket connection state is of lim-
ited portability across different kernels. A different
high-level representation consisting of a four tuple,
virtual source PID, source FD, virtual destination PID,
destination FD is highly portable. This is because the
semantics of a process identifier and a file descriptor
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are typically standard across different kernels, espe-
cially across minor version differences.

The intermediate representation format used by
AutoPod for migration is chosen such that it offers the
degree of portability needed for migrating between
different kernel minor versions. If the representation
of state is too high-level, the checkpoint-restart mech-
anism could become complicated and impose addi-
tional overhead. For example, the AutoPod system
saves the address space of a process in terms of dis-
crete memory regions called virtual memory (VM)
areas. As an alternative, it may be possible to save the
contents of a process’s address space and denote the
characteristics of various portions of it in more
abstract terms. However, this would call for an unnec-
essarily complicated interpretation scheme and make
the implementation inefficient. The VM area abstrac-
tion is standard across major Linux kernel revisions.
AutoPod view the VM area abstraction as offering suf-
ficient portability in part because the organization of a
process’s address space in this manner has been stan-
dard across all Linux kernels and has never changed.

AutoPod further support migration across differ-
ent kernels by leveraging higher-level native kernel
services to transform intermediate representation of the
checkpointed image into an internal representation
suitable for the target kernel. Continuing with the pre-
vious example, AutoPod restore a UNIX socket con-
nection using high-level kernel functions as follows.
First, two new processes are created with virtual PIDs
as specified in the four tuple. Then, each one creates a
UNIX socket with the specified file descriptor and one
socket is made to connect to the other. This procedure
effectively recreates the original UNIX socket connec-
tion without depending on many kernel internal details.

This use of high-level functions helps in general
portability of using AutoPod for migration. Security
patches and minor version kernel revisions commonly
involve modifying the internal details of the kernel
while high-level primitives remain unchanged. As
such services are usually made available to kernel
modules, the AutoPod system is able to perform cross-
kernel migration without requiring modifications to
the kernel code.

The AutoPod checkpoint-restart mechanism is
also structured in such a way to perform its operations

52

Type 24.1 | 2.4.29 | Modified | Unmodified | % Unmodified
Drivers 2623 3784 1742 501 13.2

Arch 123 128 93 22 17.1

FS 536 894 410 59 6.6
Network 461 600 338 84 9.4

Core Kernel 27 27 24 3 11.1

VM 21 20 20 0 0

IPC 6 6 5 1 16.6

Table 1: Kernel file changes within the Linux 2.4 series for i386.
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when processes are in a state that checkpointing can
avoid depending on many low-level kernel details. For
example, semaphores typically have two kinds of state
associated with each of them: the value of the sema-
phore and the wait queue of processes waiting to
acquire the corresponding semaphore lock. In general,
both of these pieces of information have to be saved
and restored to accurately reconstruct the semaphore
state. Semaphore values can be easily obtained and
restored through GETALL and SETALL parameters of
the semctl system call. But saving and restoring the
wait queues involves manipulating kernel internals
directly. The AutoPod mechanism avoids having to
save the wait queue information by requiring that all
the processes be stopped before taking the checkpoint.
When a process waiting on a semaphore receives a stop
signal, the kernel immediately releases the process
from the wait queue and returns EINTR. This ensures
that the semaphore wait queues are always empty at the
time of checkpoint so that they do not have to be saved.

While AutoPod can abstract and manipulate
most process state in higher-level terms using higher-
level kernel services, there are some parts that not
amenable to a portable intermediate representation.
For instance, specific TCP connection states like time-
stamp values and sequence numbers, which do not
have a high-level semantic value, have to be saved and
restored to maintain a TCP connection. As this inter-
nal representation can change, its state needs to be
tracked across kernel versions and security patches.
Fortunately, there is usually an easy way to interpret
such changes across different kernels because net-
working standards such as TCP do not change often.
Across all of the Linux 2.4 kernels, there was only one
change in TCP state that required even a small modifi-
cation in the AutoPod migration mechanism. Specifi-
cally, in the Linux 2.4.14 kernel, an extra field was
added to TCP connection state to address a flaw in the
existing syncookie mechanism. If configured into the
kernel, syncookies protect an Internet server against a
synflood attack. When migrating from an earlier ker-
nel to a Linux-2.4.14 or later version kernel, the Auto-
Pod system initializes the extra field in such a way
that the integrity of the connection is maintained. In
fact, this was the only instance across all of the Linux
2.4 kernel versions where an intermediate representa-
tion was not possible and the internal state had
changed and had to be accounted for.

To provide proper support for AutoPod virtual-
ization when migrating across different kernels, we
must ensure that that any changes in the system call
interfaces are properly accounted for. As AutoPod has
a virtualization layer using system call interposition
mechanism for maintaining namespace consistency, a
change in the semantics for any system call inter-
cepted by AutoPod could be an issue in migrating
across different kernel versions. But such changes usu-
ally do not occur as it would require that the libraries
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be rewritten. In other words, AutoPod virtualization is
protected from such changes in a similar way as
legacy applications are protected. However, new sys-
tem calls could be added from time to time. For
instance, across all Linux 2.4 kernels to date, there
were two new system calls, gettid and tkill for querying
the thread identifier and for sending a signal to a par-
ticularly thread in a thread group, respectively, which
needed to be accounted for to properly virtualize
AutoPod across kernel versions. As these system calls
take identifier arguments, they were simply inter-
cepted and virtualized.

Autonomic System Status Service

AutoPod provides a generic autonomic frame-
work for managing system state. The framework is
able to monitor multiple sources for information and
can use this information to make autonomic decisions
about when to checkpoint pods, migrate them to other
machines, and restart them. While there are many
items that can be monitored, our service monitors two
items in particular. First, it monitors the vendor’s soft-
ware security update repository to ensure that the sys-
tem stays up to date with the latest security patches.
Second, it monitors the underlying hardware of the
system to ensure that an imminent fault is detected
before the fault occurs and corrupts application state.
By monitoring these two sets of information, the auto-
nomic system status service is able to reboot or shut-
down the computer, while checkpointing or migrating
the processes. This helps ensure that data is not lost or
corrupted due to a forced reboot or a hardware fault
propagating into the running processes.

Many operating system vendors provide their
users with the ability to automatically check for sys-
tem updates and to download and install them when
they become available. Example of these include
Microsoft’s Windows Update service, as well as
Debian based distribution’s security repositories.
Users are guaranteed that the updates one gets through
these services are genuine because they are verified
through cryptographic signed hashes that verify the
contents as coming from the vendors. The problem
with these updates is that some of them require
machine reboots; In the case of Debian GNU/Linux
this is limited to kernel upgrades. We provide a simple
service that monitors these security update reposito-
ries. The autonomic service simply downloads all
security updates, and by using the pod’s check-
point/restart mechanism enables the security updates
that need reboots to take effect without disrupting run-
ning applications and causing them to lose state.

Commodity systems also provide information
about the current state of the system that can indicate if
the system has an imminent failure on its hands. Sub-
systems, such as a hard disk’s Self-Monitoring Analysis
Reporting Technology (SMART), let an autonomic ser-
vice monitor the system’s hardware state. SMART
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provides diagnostic information, such as temperature
and read/write error rates, on the hard drives in the sys-
tem that can indicate if the hard disk is nearing failure.
Many commodity computer motherboards also have the
ability to measure CPU and case temperature, as well as
the speeds of the fans that regulate those temperatures.
If temperature in the machine rises too high, hardware
in the machine can fail catastrophically. Similarly, if the
fans fail and stop spinning, the temperature will likely
rise out of control. Our autonomic service monitors
these sensors and if it detects an imminent failure, will
attempt to migrate an AutoPod to a cooler system, as
well as shutdown the machine to prevent the hardware
from being destroyed.

Many administrators use an uninterruptible power
supply to avoid having a computer lose or corrupt data
in the event of a power loss. While one can shutdown a
computer when the battery backup runs low, most appli-
cations are not written to save their data in the presence
of a forced shutdown. AutoPod, on the other hand,
monitors UPS status and if the battery backup becomes
low can quickly checkpoint the pod’s state to avoid any
data loss when the computer is forced to shutdown.

Similarly, the operating system kernel on the
machine monitors the state of the system, and if irreg-
ular conditions occur, such as DMA timeout or need-
ing to reset the IDE bus, will log this occurrence. Our
autonomic service monitors the kernel logs to discover
these irregular conditions. When the hardware moni-
toring systems or the kernel logs provide information
about possible pending system failures, the autonomic
service checkpoints the pods running on the system,
and migrates them to a new system to be restarted on.
This ensures state is not lost, while informing system
administrators the a machine needs maintenance.

Many policies can be implemented to determine
which system a pod should be migrated to while a
machine needs maintenance. Our autonomic service
uses a simple policy of allowing a pod to be migrated
around a specified set of clustered machines. The
autonomic service gets reports at regular intervals
from the other machines’ autonomic services that
reports each machine’s load. If the autonomic service
decides that it must migrate a pod, it chooses the
machine in its cluster that has the lightest load.

Security Analysis

Saltzer and Schroeder [24] describe several prin-
ciples for designing and building secure systems.
These include:

¢ Economy of mechanism: Simpler and smaller
systems are easier to understand and ensure that
they do not allow unwanted access.

¢ Complete mediation: Systems should check
every access to protected objects.

¢ Least privilege: A process should only have
access to the privileges and resources it needs
to do its job.
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* Psychological acceptability: If users are not
willing to accept the requirements that the secu-
rity system imposes, such as very complex
passwords that the users are forced to write
down, security is impaired. Similarly, if using
the system is too complicated, users will mis-
configure it and end up leaving it wide open.

® Work factor: Security designs should force an
attacker to have to do extra work to break the
system. The classic quantifiable example is when
one adds a single bit to an encryption key, one
doubles the key space an attacker has to search.

AutoPod is designed to satisfy these five princi-
ples. AutoPod provides economy of mechanism using
a thin virtualization layer based on system call inter-
position and file system stacking that only adds a
modest amount of code to a running system. Further-
more, AutoPod changes neither applications nor the
underlying operating system kernel. The modest
amount of code to implement AutoPod makes the sys-
tem easier to understand. Since the AutoPod security
model only provides resources that are physically
within the environment, it is relatively easy to under-
stand the security properties of resource access pro-
vided by the model.

AutoPod provides for complete mediation of all
resources available on the host machine by ensuring
that all resources accesses occur through the pod’s vir-
tual namespace. Unless a file, process, or other operat-
ing system resource was explicitly placed in the pod
by the administrator or created within the pod, Auto-
Pod’s virtualization will not allow a process within a
pod to access the resource.

AutoPod provides a least privilege environment
by enabling an administrator to only include the data
necessary for each service. AutoPod can provide sepa-
rate pods for individual services so that separate ser-
vices are isolated and restricted to the appropriate set
of resources. Even if a service is exploited, AutoPod
will limit the attacker to the resources the administra-
tor provided for that service. While one can achieve
similar isolation by running each individual service on
a separate machine, this leads to inefficient use of
resources. AutoPod maintains the same least privilege
semantic of running individual services on separate
machines, while making efficient use of machine
resources at hand. For instance, an administrator could
run MySQL and Exim mail transfer services on a sin-
gle machine, but within different pods. If the Exim pod
gets exploited, the pod model ensures that the MySQL
pod and its data will remain isolated from the attacker.

AutoPod provides psychological acceptability by
leveraging the knowledge and skills system adminis-
trators already use to setup system environments.
Because pods provide a virtual machine model,
administrators can use their existing knowledge and
skills to run their services within pods. This differs
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from other least privilege architectures that force an
administrator to learn new principles or complicated
configuration languages that require a detailed under-
standing of operating system principles.

AutoPod increases the work factor required to
compromise a system by not making available the
resources that attackers depend on to harm a system
once they have broken in. For example, services like
mail delivery do not depend on having access to a
shell. By not including a shell program within a mail
delivery AutoPod, one makes it difficult for an
attacker to get a root shell that they would use to fur-
ther their attacks. Similarly, the fact that one can
migrate a system away from a host that is vulnerable
to attack increases the work an attacker would have to
do to make services unavailable.

AutoPod Examples

We briefly describe two examples that help illus-
trate how AutoPod can be used to improve application
availability for different application scenarios. The
application scenarios are system services, such as e-
mail delivery and desktop computing. In both cases
we describe the architecture of the system and show
how it can be run within AutoPod, enabling adminis-
trators to reduce downtime in the face of machine
maintenance. We also discuss how a system admin-
istrator can setup and use pods.

System Services

Administrators like to run many services on a
single machine. By doing this, they are able to benefit
from improved machine utilization, but at the same
time give each service access to many resources they
do not need to perform their job. A classic example of
this is e-mail delivery. E-mail delivery services, such
as Exim, are often run on the same system as other
Internet services to improve resource utilization and
simplify system administration through server consoli-
dation. However, services such as Exim have been
easily exploited by the fact that they have access to
system resources, such as a shell program, that they do
not need to perform their job.

For e-mail delivery, AutoPod can isolate e-mail
delivery to provide a significantly higher level of
security in light of the many attacks on mail transfer
agent vulnerabilities that have occurred. Consider iso-
lating an Exim service, the default Debian mail trans-
fer agent, installation. Using AutoPod, Exim can exe-
cute in a resource restricted pod, which isolates e-mail
delivery from other services on the system. Since pods
allow one to migrate a service between machines, the
e-mail delivery pod is migratable. If a fault is discov-
ered in the underlying host machine, the e-mail deliv-
ery service can be moved to another system while the
original host is patched, preserving the availability of
the e-mail service.

With this e-mail delivery example, a simple system
configuration can prevent the common buffer overflow
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exploit of getting the privileged server to execute a local
shell. This is done by just removing shells from within
the Exim pod, thereby limiting the amateur attacker’s
ability to exploit flaws while requiring very little addi-
tional knowledge about how to configure the service.
AutoPod can further automatically monitor system status
and checkpoint the Exim pod if a fault is detected to
ensure that no data is lost or corrupted. Similarly, in the
event that a machine has to be rebooted, the service can
automatically be migrated to a new machine to avoid any
service downtime.

A common maintenance problem system admin-
istrators face is that forced machine downtime, for
example due to reboots, can cause a service to be
unavailable for a period of time. A common way to
avoid this problem is to throw multiple machines at
the problem. By providing the service through a clus-
ter of machines, system administrators can upgrade
the individual machines in a rolling manner. This
enables system administrators to upgrade the systems
providing the service while keeping the service avail-
able. The problem with this solution is that system
administrators need to throw more machines at the
problem than they might need to provide the service
effectively, thereby increasing management complex-
ity as well as cost.

AutoPod in conjunction with hardware virtual
machine monitors improves this situation immensely.
Using a virtual machine monitor to provide two virtual
machines on a single host, AutoPod can then run a pod
within a virtual machine to enable a single node main-
tenance scenario that can decrease costs as well man-
agement complexity. During regular operation, all
application services run within the pod on one virtual
machine. When one has to upgrade the operating sys-
tem in the running virtual machine, one brings the sec-
ond virtual machine online and migrates the pod to the
new virtual machine.

Once the initial virtual machine is upgraded and
rebooted, the pod can be migrated back to it. This
reduces costs as only a single physical machine is
needed. This also reduces management complexity as
only one virtual machine is in use for the majority of
the time the service is in operation. Since AutoPod
runs unmodified applications, any application service
that can be installed can make use of AutoPod’s ability
to provide general single node maintenance.

Desktop Computing

As personal computers have become more ubig-
uitous in large corporate, government, and academic
organizations, the total cost of owning and maintain-
ing them is becoming unmanageable. These computers
are increasingly networked which only complicates
the management problem. They need to be constantly
patched and upgraded to protect them, and their data,
from the myriad of viruses and other attacks common-
place in today’s networks.
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To solve this problem, many organizations have
turned to thin-client solutions such as Microsoft’s
Windows Terminal Services and Sun’s Sun Ray. Thin
clients give administrators the ability to centralize
many of their administrative duties as only a single
computer or a cluster of computers needs to be main-
tained in a central location, while stateless client
devices are used to access users’ desktop computing
environments. While thin-client solutions provide
some benefits for lowering administrative costs, this
comes at the loss of semantics users normally expect
from a private desktop. For instance, users who use
their own private desktop expect to be isolated from
their coworkers. However, in a shared thin-client envi-
ronment, users share the same machine. There may be
many shared files and a user’s computing behavior can
impact the performance of other users on the system.

While a thin-client environment minimizes the
machines one has to administrate, the centralized
servers still need to be administrated, and since they
are more highly utilized, management becomes more
difficult. For instance, on a private system one only
has to schedule system maintenance with a single user,
as reboots will force the termination of all programs
running on the system. However, in a thin-client envi-
ronment, one has to schedule maintenance with all the
users on the system to avoid having them lose any
important data.

AutoPod enables system administrators to solve
these problems by allowing each user to run a desktop
session within a pod. Instead of users directly sharing
a single file system, AutoPod provides each pod with
a composite of three file systems: a shared read-only
file system of all the regular system files users expect
in their desktop environments, a private writable file
system for a user’s persistent data, and a private
writable file system for a user’s temporary data. By
sharing common system files, AutoPod provides cen-
tralization benefits that simplify system administra-
tion. By providing private writable file systems for
each pod, AutoPod provides each user with privacy
benefits similar to a private machine.

Coupling AutoPod virtualization and isolation
mechanisms with a migration mechanism can provide
scalable computing resources for the desktop and
improve desktop availability. If a user needs access to
more computing resources, for instance while doing
complex mathematical computations, AutoPod can
migrate that user’s session to a more powerful machine.
If maintenance needs to be done on a host machine,
AutoPod can migrate the desktop sessions to other
machines without scheduling downtime and without
forcefully terminating any programs users are running.

Setting Up and Using AutoPod
To demonstrate how simple it is to setup a pod to

run within the AutoPod environment, we provide a
step by step walkthrough on how one would create a
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new pod that can run the Exim mail transfer agent.
Setting up AutoPod to provide the Exim pod on Linux
is straightforward and leverages the same skill set and
experience system administrators already have on stan-
dard Linux systems. AutoPod is started by loading its
kernel module into a Linux system and using its user-
level utilities to setup and insert processes into a pod.

Creating a pod’s file system is the same as creat-
ing a chroot environment. Administrators that have
experience creating a minimal environment, that just
contains the application they want to isolate, do not
need to do any extra work. However, many adminis-
trators do not have experience creating such an envi-
ronment and therefore need an easy way to create an
environment to run their application in. These admin-
istrators can take advantage of Debian’s debootstrap
utility that enables a user to quickly setup an environ-
ment that’s the equivalent of a base Debian installa-
tion. An administrator would do a debootstrap stable
Ipod to install the most recently released Debian sys-
tem into the /pod directory. While this will also include
many packages that are not required by the installa-
tion, it provides a small base to work from. An admin-
istrator can remove packages, such as the installed
mail transfer agent, that are not needed.

To configure Exim, an administrator edits the
appropriate configuration files within the /pod/etc/
eximd/ directory. To run Exim in a pod, an administra-
tor does mount -0 bind /pod /autopod/exim/root to loop-
back mount the pod directory onto the staging area
directory where AutoPod expects it. autopod add exim
is used to create a new pod named exim which uses
fautopod/exim/root as the root for its file system. Finally,
autopod addproc exim /usr/sbin/exim4 is used to start
Exim within the pod by executing the /usr/sbin/exim4
program, which is actually located at /autopod/exim/
root/usr/sbin/exim4.

AutoPod isolates the processes running within a
pod from the rest of the system, which helps contain
intrusions if they occur. However, since a pod does not
have to be maintained by itself, but can be maintained
in the context of a larger system, one can also prune
down the environment and remove many programs that
an attacker could use against the system. For instance,
if an Exim pod has no need to run any shell scripts,
there is no reason an administrator has to leave pro-
grams such as /bin/bash, /bin/sh and /bin/dash within the
environment. One issue is that these programs are nec-
essary if the administrator wants to be able to simply
upgrade the package in the future via normal Debian
methods. Since it is simple to recreate the environment,
one approach would be to remove all the programs that
are not wanted within the environment and recreate the
environment when an upgrade is needed. Another
approach would be to move those programs outside of
the pod, such as by creating a /pod-backup directory. To
upgrade the pod using the normal Debian package
upgrade methods, the programs can then be moved
back into the pod file system.
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If an administrator wants to manually reboot the
system without killing the processes within this Exim
pod, the administrator can first checkpoint the pod to
disk by running autopod checkpoint exim -0 /exim.pod,
which tells AutoPod to checkpoint the processes asso-
ciated with the exim pod to the file /exim.pod. The sys-
tem can then be rebooted, potentially with an updated
kernel. Once it comes back up, the pod can be
restarted from the /exim.pod file by running autopod
restart exim -i /exim.pod. These mechanisms are the same
as those used by the AutoPod system status service for
controlling the checkpointing and migration of pods.

Standard Debian facilities for installing packages
can be used for running other services within a pod.
Once the base environment is setup, an administrator
can chroot into this environment by running chroot /pod
to continue setting it up. By editing the /etc/apt/
sources.list file appropriately and running apt-get update,
an administrator will be able to install any Debian
package into the pod. In the Exim example, Exim does
not need to be installed since it is the default MTA and
already included in the base Debian installation. If one
wanted to install another MTA, such as Sendmail, one
could run apt-get install sendmail, which will download
Sendmail and all the packages needed to run it. This
will work for any service available within Debian. An
administrator can also use the dpkg --purge option to
remove packages that are not required by a given pod.
For instance, in running an Apache web server in a
pod, one could remove the default Exim mail transfer
agent since it is not needed by Apache.

Experimental Results

We implemented AutoPod as a loadable kernel
module in Linux, that requires no changes to the
Linux kernel, as well as a user space system status
monitoring service. We present some experimental
results using our Linux prototype to quantify the over-
head of using AutoPod on various applications. Exper-
iments were conducted on a trio of IBM Netfinity
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4500R machines, each with a 933 Mhz Intel Pentium-
III CPU, 512 MB RAM, 9.1 GB SCSI HD and a 100
Mbps Ethernet connected to a 3Com Superstack II
3900 switch. One of the machines was used as an NFS
server from which directories were mounted to con-
struct the virtual file system for the AutoPod on the
other client systems. The clients ran different Linux
distributions and kernels, one machine running Debian
Stable with a Linux 2.4.5 kernel and the other running
Debian Unstable with a Linux 2.4.18 kernel.

To measure the cost of AutoPod virtualization,
we used a range of micro benchmarks and real applica-
tion workloads and measured their performance on our
Linux AutoPod prototype and a vanilla Linux system.
Table 2 shows the seven micro-benchmarks and four
application benchmarks we used to quantify AutoPod
virtualization overhead as well as the results for a
vanilla Linux system. To obtain accurate measure-
ments, we rebooted the system between measurements.
Additionally, the system call micro-benchmarks di-
rectly used the TSC register available on Pentium
CPUs to record timestamps at the significant measure-
ment events. Each timestamp’s average cost was 58 ns.
The files for the benchmarks were stored on the NFS
Server. All of these benchmarks were performed in a
chrooted environment on the NFS client machine run-
ning Debian Unstable with a Linux 2.4.18 kernel. Fig-
ure 4 shows the results of running the benchmarks
under both configurations, with the vanilla Linux con-
figuration normalized to one. Since all benchmarks
measure the time to run the benchmark, a small num-
ber is better for all benchmarks results.

The results in Figure 2 show that AutoPod virtu-
alization overhead is small. AutoPod incurs less than
10% overhead for most of the micro-benchmarks and
less than 4% overhead for the application workloads.
The overhead for the simple system call getpid bench-
mark is only 7% compared to vanilla Linux, reflecting
the fact that AutoPod virtualization for these kinds of
system calls only requires an extra procedure call and

Name Description Linux
getpid average getpid runtime 350 ns
ioctl average runtime for the FIONREAD ioctl 427 ns
shmget-shmctl | IPC Shared memory segment holding an integer is created and | 3361 ns
removed
semget-semctl | IPC Semaphore variable is created and removed 1370 ns
fork-exit process forks and waits for child which calls exit immediately 44.7 us
fork-sh process forks and waits for child to run /bin/sh to run a pro- | 3.89 ms
gram that prints “hello world” then exits
Apache Runs Apache under load and measures average request time 1.2 ms
Make Linux Kernel compile with up to 10 process active at one time 2245s
Postmark Use Postmark Benchmark to simulate Exim performance .002 s
MySQL “TPC-W like” interactions benchmark 833 s

Table 2: Application benchmarks.
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a hash table lookup. The most expensive benchmarks
for AutoPod is semget+semctl which took 51% longer
than vanilla Linux. The cost reflects the fact that our
untuned AutoPod prototype needs to allocate memory
and do a number of namespace translations.
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Figure 2: AutoPod virtualization overhead.

The ioctl benchmark also has high overhead,
because of the 12 separate assignments it does to pro-
tect the call against malicious root processes. This is
large compared to the simple FIONREAD ioctl that just
performs a simple dereference. However, since the ioctl
is simple, we see that it only adds 200 ns of overhead
over any ioctl. For real applications, the most overhead
was only four percent which was for the Apache work-
load, where we used the http_load benchmark [18] to
place a parallel fetch load on the server with 30 clients
fetching at the same time. Similarly, we tested MySQL
as part of a web-commerce scenario outlined by TPC-
W with a bookstore servlet running on top of Tomcat
with a MySQL back-end. The AutoPod overhead for
this scenario was less than 2% versus vanilla Linux.

To measure the cost of AutoPod migration and
demonstrate the ability of AutoPod to migrate real appli-
cations, we migrated the three application scenarios; an
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email delivery service using Exim and Procmail, a web
content delivery service using Apache and MySQL, and
a KDE desktop computing environment. Table 3
described the configurations of the application scenarios
we migrated, as well as showing the time it takes to
startup on a regular Linux system. To demonstrate our
AutoPod prototype’s ability to migrate across Linux ker-
nels with different minor versions, we checkpointed
each application workload on the 2.4.5 kernel client
machine and restarted it on the 2.4.18 kernel machine.
For these experiments, the workloads were check-
pointed to and restarted from local disk.

Check
Case Point | Restart | Size | Compr’d
E-mail 11 ms 14 ms | 284 KB 84 KB
Web 308ms | 47ms | 5.3 MB 332 KB
Desktop | 851 ms | 942 ms | 35 MB 8.8 MB

Table 4: AutoPod migration costs.

Table 4 shows the time it took to checkpoint and
restart each application workload. In addition to these,
migration time also has to take into account network
transfer time. As this is dependent on the transport
medium, we include the uncompressed and compressed
checkpoint image sizes. In all cases, checkpoint and
restart times were significantly faster than the regular
startup times listed in Table 5, taking less than a second
for both operations, even when performed on separate
machines or across a reboot. We also show that the
actual checkpoint images that were saved were modest
in size for complex workloads. For example, the Desk-
top pod had over 30 different processes running, provid-
ing the KDE desktop applications, as well as substantial
underlying window system infrastructure, including
inter-application sharing, a rich desktop interface man-
aged by a window manager with a number of applica-
tions running in a panel such as the clock. Even with all
these applications running, they checkpoint to a very
reasonable 35 MB uncompressed for a full desktop

to a remote host

L. Normal

Name Applications Startup

E-mail Exim 3.36 504 ms

Web Apache 1.3.26 and MySQL 4.0.14. 2.1s
Desktop | Xvnec — VNC 3.3.3r2 X Server 19s

KDE — Entire KDE 2.2.2 environment, including window manager,
panel and assorted background daemon and utilities

SSH — openssh 3.4p1 client inside a KDE konsole terminal connected

Shell — The Bash 2.05a shell running in a konsole terminal

KGhostView — A PDF viewer with a 450 KB 16 page PDF file loaded.

Konqueror — A modern standards compliant web browser that is part of
KDE

KOffice — The KDE word processor and spreadsheet programs

Table 3: Application scenarios.
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environment. Additionally, if one needed to transfer the
checkpoint images over a slow link, Table 6 shows that
they can be compressed very well with the bzip2 com-
pression program.

Related Work

Virtual machine monitors (VMMs) have been
used to provide secure isolation [4, 29, 30], and have
also been used to to migrate an entire operating system
environment [25]. Unlike AutoPod, standard VMMs
decouple processes from the underlying machine hard-
ware, but tie them to an instance of an operating sys-
tem. As a result, VMMs cannot migrate processes
apart from that operating system instance and cannot
continue running those processes if the operating sys-
tem instance ever goes down, such as during security
upgrades. In contrast, AutoPod decouples process exe-
cution from the underlying operating system which
allows it to migrate processes to another system when
an operating system instance is upgraded. VMMs have
been proposed to support online maintenance of sys-
tems [14] by having a microvisor that supports at most
two virtual machines running on the machine at the
same time, effectively giving each physical machine
the ability to act as its own hot spare. However, this
proposal explicitly depends on AutoPod migration
functionality yet does not provide it.

A number of other approaches have explored the
idea of virtualizing the operating system environment
to provide application isolation. FreeBSD’s Jail mode
[10] provides a chroot like environment that processes
can not break out of. However, since Jail is limited in
what it can do, such as the fact it does not allow IPC
within a jail [9] many real world application will not
work. More recently, Linux Vserver [1] and Solaris
Zones [19] offer a similar virtual machine abstraction
as AutoPod pods, but require substantial in-kernel
modifications to support the abstraction. They do not
provide isolation of migrating applications across
independent machines, and have no support for main-
taining application availability in the presence of oper-
ating system maintenance and security upgrades.

Many systems have been proposed to support
process migration [2, 3, 6, 7, 8, 13, 15, 17, 20, 21, 23,
26], but do not allow migration across independent
machines running different operating system versions.
TUI [27] provides support for process migration across
machines running different operating systems and hard-
ware architectures. Unlike AutoPod, TUI has to compile
applications on each platform using a special compiler
and does not work with unmodified legacy applications.
AutoPod builds on a pod abstraction introduced in Zap
[16] to support transparent migration across systems
running the same kernel version. Zap does not address
security issues or heterogeneous migration. AutoPod
goes beyond Zap in providing a complete, secure virtual
machine abstraction for isolating processes, finer-grain
mechanisms for isolating application components, and
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transparent migration across minor kernel versions,
which is essential for providing application availability
in the presence of operating system security upgrades.

Replication in clustered systems can provide the
ability to do rolling upgrades. By leveraging many
nodes, individual nodes can be taken down for mainte-
nance, without significantly impacting the load the
cluster can handle. For example, web content is com-
monly delivered by multiple web servers behind a front
end manager. This front end manager enables an
administrator to bring down back end web servers for
maintenance as it will only direct requests to the active
web servers. This simple solution is effective because it
is easy to replicate web servers to serve the same con-
tent. While this model works fine for web server loads,
as the individual jobs are very short, it does not work
for long running jobs, such as a user’s desktop. In the
web server case, replication and upgrades are easy to do
since only one web server is used to serve any individ-
ual request and any web server can be used to serve any
request. For long running stateful applications, such as
a user’s desktop, requests cannot be arbitrarily redi-
rected to any desktop computing environment as each
user’s desktop session is unique. While specialized
hardware support could be used to keep replicas syn-
chronized, by having all of them process all operations,
this is prohibitively expensive for most workloads and
does not address the problem of how to resynchronize
the replicas in the presence of rolling upgrades.

Another possible solution to this problem is allow-
ing the kernel to be hot plugable. While micro-kernels
are not prevalent, they contain this ability to upgrade
their parts on the fly. More commonly, many modern
monolithic kernels have kernel modules that can be
inserted and removed dynamically. This can allow one
to upgrade parts of a monolithic kernel without requir-
ing any reboots. The Nooks [28] system extends this
concept by enabling kernel drivers and other kernel
functionality, such as file systems, to be isolated into
their own protection domain to help isolate faults in
kernel code and provide a more reliable system. How-
ever, in all of these cases, their is still a base kernel on
the machine that cannot be replaced without a reboot. If
one has to replace that part, all data would be lost.

The K42 operating system has the ability to be
dynamically updated [5]. This functionality enables
software patches to be applied to a running kernel even
in the presence of data structure changes. However, it
requires a completely new operating system design
and does not work with any commodity operating sys-
tem. Even on K42, it is not yet possible to upgrade the
kernel while running realistic application workloads.

Conclusions

The AutoPod system provides an operating system
virtualization layer that decouples process execution
from the underlying operating system, by running the
process within a pod. Pods provide an easy-to-use

19th Large Installation System Administration Conference (LISA *05) 59



Reducing Downtime Due to System Maintenance and Upgrades

lightweight virtual machine abstraction that can securely
isolate individual applications without the need to run an
operating system instance in the pod. Furthermore, Auto-
Pod can be transparently migrate isolated applications
across machines running different operating system ker-
nel versions. This enables security patches to be applied
to operating systems in a timely manner with minimal
impact on the availability of application services. It also
preserves secure isolation of untrusted applications in the
presence of migration.

We have implemented AutoPod on Linux with-
out requiring any application or operating system ker-
nel changes. We demonstrated how pods can be used
to enable autonomic machine maintenance and
increase availability for a range of applications, includ-
ing e-mail delivery, web servers with databases and
desktop computing. Our measurements on real world
applications demonstrate that AutoPod imposes little
overhead, provides sub-second suspend and resume
times that can be an order of magnitude faster than
starting applications after a system reboot, and enables
systems to autonomously stay updated with relevant
maintenance and security patches, while ensuring no
loss of data and minimizing service disruption.
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Appendix

To isolate regular Linux processes within a pod,
AutoPod interposes on a number of system calls.
Below we provide a complete list of the small number
of system calls that require more than plain virtualiza-
tion. We give the reasoning for the interposition and
what functionality was changed from the base system
call. Most system calls do not require more than sim-
ple virtualization to ensure isolation because virtual-
ization of the resources itself takes care of the isola-
tion. For example, the kill system call can not signal a
processes outside of a pod because the virtual private
namespace will not map them and therefore it cannot
reference it.

Host Only System Calls

1. mount — If a user within a regular pod is able to
mount a file system, they could mount a file sys-
tem with device nodes already present and thus
would be able to access the underlying system
directly in a manner that is not controlled by
AutoPod. Therefore, regular pod processes are
prevented from using this system call.

2. stime, adjtimex — These system call enable a privi-
leged process to adjust the host’s clock. If a user
within a regular pod could call this system call
they would cause a change on the host. Therefore
regular pod processes are prevented from using
this system call.

3. acct — This system call sets what file on the host
BSD process accounting information should be
written to. As this is host specific functionality,
AutoPod prevents regular pod processes from
using this system call.

4. swapon, swapoff — These system calls control
swap space allocation. Since these system calls
are host specific and have no use within a regu-
lar pod, AutoPod prevents regular pod pro-
cesses from calling these system calls.

5. reboot — This system call can cause the system
to reboot or change Ctrl-Alt-Delete functional-
ity and therefore serves no place inside a regu-
lar pod. AutoPod therefore disallows regular
pod processes from calling it.

6. ioperm, iopl — These system calls enable a privi-
leged process to gain direct access to underly-
ing hardware resources. Since regular pod pro-
cesses do not access hardware directly, Auto-
Pod prevents regular pod process from calling
these system calls.
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7. create_module, init_module, delete_module, query_

module — These system calls are only related to
inserting and removing kernel modules. As this
is a host specific function, AutoPod prevents
regular pod processes from calling these system
calls.

. sethostname, setdomainname — These system call

sets the name for the underlying host. AutoPod
wraps these system calls to save it as a pod spe-
cific name and allows each pod to call it inde-
pendently.

. nfsservctl — This system call can enable a privi-

leged process inside a pod to change the host’s
internal NFS server. AutoPod therefore pre-
vents a process within a regular pods from call-
ing this system call.

Root Squashed System Calls
1. nice, setpriority, sched_setscheduler — These sys-

tem calls lets a process change its priority. If a
process is running as root (UID 0), it can
increase its priority and freeze out other pro-
cesses on the system. Therefore, AutoPod pre-
vents any regular pod process from increasing
its priority.

. ioctl — This system call is a syscall demulti-

plexer that enables kernel device drivers and
subsystems to add their own functions that can
be called from user space. However, as func-
tionality can be exposed that enables root to
access the underlying host, all system call
beyond a limited audited safe set are squashed
to user nobody, similar to what NFS does.

. setrlimit — this system call enables processes run-

ning as uid O to raise their resource limits
beyond what was preset, thereby enabling them
to disrupt other processes on the system by
using too much resources. AutoPod therefore
prevents regular pod processes from using this
system call to increase the resources available
to them.

. mlock, mlockall — These system calls enable a privi-

leged process to pin an arbitrary amount of mem-
ory, thereby enabling a pod process to lock all of
available memory and starve all the other pro-
cesses on the host. AutoPod therefore squashes a
privileged processes to user nobody when it
attempts to call this system call to treat it like a
regular process.

Option Checked System Calls

62

1. mknod — This system call enables a privileged

user to make special files, such pipes, sockets
and devices as well as regular files. Since a privi-
leged process needs to make use of such func-
tionality, the system call cannot be disabled.
However, if the process could create a device it
be creating an access point to the underlying host
system. Therefore when a regular pod process

Potter and Nieh

makes use of this system call, the options are
checked to prevent it from creating a device spe-
cial file, while allowing the other types through
unimpeded.
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