
PoDIM: A Language for High-Level
Configuration Management

Thomas Delaet and Wouter Joosen – Katholieke Universiteit Leuven, Belgium

ABSTRACT

The high rate of requirement changes make system administration a complex task. This com-
plexity is further influenced by the increasing scale, unpredictable behaviour of software and diver-
sity in terms of hardware and software. In order to deal with this complexity, configuration manage-
ment solutions have been proposed. The processes that many configuration management solutions
advocate are kept close to manual system administration. This approach has failed to address the
complexity of system administration in the real world. In this paper, we propose PoDIM: a high-
level language for configuration management. In contrast to many existing configuration manage-
ment solutions, PoDIM allows modeling of cross machine constraints. We provide an overview of
the PoDIM notation, describe a case study and present a prototype. We believe that high-level lan-
guages are needed to reduce system administration complexity. PoDIM is one step in that direction.

Introduction

The fact is that configuration errors are the big-
gest contributors to service failures (between 40% and
51%). Configuration errors also take the longest time
to repair [37, 36, 34]. As the complexity of computer
infrastructures increases, the risk of configuration er-
rors increases likewise and introduces even higher
change costs. Changes to a configuration can be tech-
nically – such as software upgrades – or business ori-
ented. A difficulty with configuration changes is the
high number of dependencies between systems. Sys-
tems do not operate in isolation, but in a network. A
change in the configuration of one networked service
may cause a complex chain of changes in dependent
services. Furthermore, infrastructural complexity is in-
fluenced by increasing scale, unpredictability in soft-
ware behaviour and systems variety [21, 39, 4].

1. scale: The number of network devices, servers,
desktops and laptops in a typical infrastructure
is increasing significantly. New kinds of de-
vices such as PDA’s, mobile phones and sensor
nodes are extending the scope of an organiza-
tional computer infrastructure.

2. unpredictability in software behaviour: In-
creasingly complex software systems tend to
have more bugs, viruses and vulnerabilities.
Bugs in software, viruses and vulnerabilities
make full control over the system’s behaviour
an illusion [13].

3. systems variety: Computer infrastructures have
a large variety in terms of hardware platforms,
operating systems and application software. Our
definition of infrastructures includes not only
desktops, servers and laptops, but also embedded
devices such as palmtops, mobile phones and
network devices such as routers and switches.
All of these devices run on a variety of operating
systems and accompanying application software.

Using a network shell or a configuration manage-
ment language whose process is close to manual system
administration simply does not work in large and varied
computer infrastructures with complex software systems.
Indeed, the subtle interactions between (different ver-
sions of) software packages can make systems with the
same operating system and hardware platform unique.
According to [5], the cost per unit becomes excessively
large when using manual management processes. More
loose, higher-level, processes are necessary.

PoDIM abstracts from systems variety and al-
lows, more than existing configuration management
languages, expressing an administrator’s intentions.
Expressing intentions is clearly of a higher-level na-
ture than expressing, for example, what lines in the
sendmail.cf file need to be modified on a mail relay.
The key concept of PoDIM’s high-level language is
that it allows modeling of cross machine constraints.

The remainder of this article is structured as fol-
lows. First, we introduce PoDIM as a high-level lan-
guage for configuration management. Next, We elabo-
rate on PoDIM in the sections on Configuration De-
scriptions and Rules. The run-time semantics of PoDIM
are introduced in the Prototype Section. We also present
a case study. We end with sections on related and future
work.

Language Overview

The state of the art in configuration management
allows assigning roles to machines and setting high-
level parameters for those roles. ‘‘Configure machine
X to be a web server’’ and ‘‘configure machine Y to
be DHCP server’’ are examples of role assignments.
‘‘The web server must run on port 80’’ is an example
of a parameter assignment. The PoDIM language aims
for a higher level of abstraction. Instead of role assign-
ments, we want to express things such as: ‘‘One of my

21st Large Installation System Administration Conference (LISA ’07) 261

PoDIM: A Language for High-Level Configuration Management Delaet & Joosen

servers must be configured as a web server’’ and ‘‘On
every subnet, there must be two DHCP servers.’’ In-
stead of parameter assignments, we want to express
things such as: ‘‘A web server must use a port number
higher than 1024.’’

PoDIM’s language consists of a rule language
and a domain model. The distinction between domain
model and rule language is a recurring theme in policy
languages. A domain model provides a description of
the domain in which a rule language solves problems.
Since we are dealing with the domain of configuration
management, the domain model contains descriptions
for things such as DHCP servers and web servers. The
rule language defines types of rules and how they in-
teract with the domain model. A system administrator
writes rules in PoDIM’s rule language. These rules in-
teract with the domain model and output a configura-
tion for each managed device. The next section elabo-
rates on the domain model. Subsequently, we describe
PoDIM’s rule language.

The basic principle of PoDIM’s runtime is that
each real world object is simulated in the system. The
different classes of objects are defined in the domain
model. Examples of object classes are devices, net-
work interfaces and services such as DHCP servers
and web servers. PoDIM’s runtime takes a set of poli-
cy rules as input and tries to satisfy these rules by cre-
ating objects and setting parameters of objects. In do-
ing so, it generates a configuration for each managed
device. Existing tools, such as Cfengine [12, 10, 11,
14], can then be used to deploy the generated configu-
ration on each real world device.

Figure 1: Domain model in BON [40] notation. All units of functionality such as mail servers and DNS clients are
modeled as classes. All classes have one common ancestor: ENTITY. The arrows denote inheritance relation-
ships.

Configuration Descriptions

PoDIM’s domain model is object-oriented. This
means that the ‘‘things’’ in the domain model are cod-
ed as classes. Examples of classes are DHCP server
and web server. We use an existing object-oriented
programming language for coding classes, named Eif-
fel [30, 31].

Figure 1 shows a simplified graphical representa-
tion of the domain model in the BON notation [40].
All classes, such as DHCP server and web server,
have one common ancestor: ENTITY. The ENTITY
class is used for modeling common functionalities.
The arrows denote inheritance relationships. The sim-
plified example presented in Figure 1 uses only single
inheritance relationships. In real life examples, multi-
ple inheritance is often necessary. Eiffel supports this.

Classes define the interface of a software subsys-
tem in PoDIM. A class has attributes that can be set,
queries that can be executed and commands that can be
executed. For example, the WEB_SERVER class has
an attribute for setting its port, a query to find out the
administrative mail address and a command to enable
php support on the server. Attributes are set by the sys-
tem administrator when writing rules. Queries are used
by the system administrator and other objects to gather
information about the runtime system. Commands are
used as an inter-object communication mechanism. An
example of the latter occurs when a webmail object
commands a web server to enable php support.

In the rest of this section, we elaborate on the
definition of classes. We start with attributes and
queries. Attributes are an object’s data structures.
Queries define the questions one can ask an object.
Next, we discuss commands. Commands define how
objects can change each other’s state. We end this sec-
tion with a description on how dependencies are mod-
eled between classes.

Attributes and Queries
Attributes define the data structures for objects of

a class. Queries are methods which return a result. In
Eiffel, all attributes are also queries by definition, i.e.,
objects can query each other’s attributes. An object can
only modify another object’s attributes by using com-
mands. The result of a query is computed based on the
results of other queries or the values of attributes. The
example in Listing 1 shows a partial web server class. It
defines two attributes: ‘‘php_supported’’ and ‘‘domain’’

262 21st Large Installation System Administration Conference (LISA ’07)

Delaet & Joosen PoDIM: A Language for High-Level Configuration Management

and one query: ‘‘administrator_email’’. In the example,
the ‘‘administrator_email’’ query is based on the at-
tribute ‘‘domain’’. All attributes and queries have a
type. For example, the ‘‘php_supported’’ attribute has
type BOOLEAN. Note that the definition of WEB_
SERVER is used as an illustration, not as an introduc-
tion to a real world WEB_SERVER class.

01 class WEB_SERVER

03 feature -- Attributes

05 php_supported: BOOLEAN

07 domain: STRING

09 feature -- Queries

11 administrator_email: STRING is
12 do
13 Result := "webmaster@" + domain
14 end

16 feature -- Commands

18 enable_php is
19 require
20 php_supported = False
21 do
22 php_supported := True
23 ensure
24 php_supported = True
25 end

27 end

Listing 1: This partial WEB_SERVER class defines two attributes: ‘‘php_supported’’ and ‘‘domain’’, one query:
‘‘administrator_email’’ and one command: ‘‘enable_php’’.

Commands

Commands are methods that change the state of
an object (i.e., modify its attributes), but do not return
a result. The example in Listing 1 contains a partial
web server class with one command: ‘‘enable_php’’.
The ‘‘enable_php’’ command changes the value of the
‘‘ p h p _ s u p p o r t e d ’’ attribute. Since a command can
contain arbitrary code, its behaviour should be clearly
documented. For this documentation, we use another
feature of Eiffel: preconditions and postconditions.
Preconditions express conditions that need to be true
before the command is executed while postconditions
express the effects of the command’s execution. In our
web server example, the precondition of the ‘‘en-
able_php’’ command is that php support is not yet en-
abled. Its postcondition expresses that php support
will be enabled when the command is executed.

It is also possible to control access to commands,
i.e., prohibit objects to execute commands on other ob-
jects. In the web server example, we could only allow
objects that run on the same device to enable php sup-
port. In the Section on authorizing commands, we elab-
orate on how to specify access controls for objects.

Modeling Dependencies

A lot of dependencies exist between classes (and
their real world software configurations). Imagine a
startup class that is responsible for generating the

/etc/init.d directory on Linux systems.1 Both the web
server and DHCP server classes depend on the startup
system. Indeed, if these two network services have no
hook into the startup system, they are not activated when
we reboot a machine. Another example of a dependency
is the relationship between the implementation of a ser-
vice and its attributes. Imagine a web server class that
supports two web server implementations: apache and
publicfile. Apache supports php, publicfile does not. In
this case, php support can never be enabled on a web
server object if it uses publicfile as its implementation.

To make these kinds of dependencies explicit in
our domain model, we use two language constructs of
Eiffel: references and invariants. When declaring an
attribute in a class, it will contain a reference to anoth-
er object and not to the contents of the actual object.
For example, the dependency of the web server on the
startup system is modeled as a reference in Listing 2
on line 9. Invariants are arbitrary boolean expressions
that are required to be true at all times during an ob-
ject’s lifetime. They provide a built in mechanism for
modeling fine grained dependencies (and other restric-
tions on an object’s attributes state). For example, the
relationship between php support and the chosen im-
plementation is modeled in Listing 2 on line 12.

Making dependencies that exist in an IT infra-
structure explicit in the domain model has two advan-
tages. First, they can be used as a documentation aid.
Second, a dependency violation can be detected by the
PoDIM runtime. For example, when one rule states
that the attribute ‘‘implementation’’ of a web server
class must be set to ‘‘publicfile’’ and another rule

1Classes can be used to abstract away from details like the
operating system used and different software versions. For
example, the same startup object results in other files being
generated on Linux and BSD systems.

21st Large Installation System Administration Conference (LISA ’07) 263

PoDIM: A Language for High-Level Configuration Management Delaet & Joosen

states that the attribute ‘‘php_supported’’ must be set
to true, a dependency violation is detected. The default
behaviour is to signal an error and abort.

Rules

The rule language is the user interface for the
system administrator. It defines rules for expressing
how the configuration of an infrastructure must look
like. Remember that each real world object is simulat-
ed with PoDIM. For example, there exists an object
for each device in your system, each network interface
and every service that needs to be configured. The do-
main model presented in the previous section is a stat-
ic description of the possible classes that can exist in
the system. The rule language is used to create and
manipulate objects.

A distinguishing feature of our rule language is
that it allows the specification of constraints. We
demonstrate the need for constraints with two exam-
ples.2

• When configuring a web server, the port is one
of the attributes that can be set. A constraint al-
lows expressing things such as ‘‘the port should
be set to 80 or a value higher than 1024.’’ In
contrast, a regular assignment only allows ex-
pressing things such as ‘‘the port should be set
to the value 80.’’

• Servers typically have roles assigned which de-
termine the services they must offer. For exam-
ple, one can state that system X is going to be a
web and mail server. By using constraints we
can express things such as: ‘‘A device should
not provide more than four network services,’’
‘‘I want two DHCP servers on each subnet,’’ or
‘‘One of my servers should configure itself as a
web server.’’

01 class WEB_SERVER

03 feature -- Attributes

05 implementation: STRING

07 php_supported: BOOLEAN

09 startup: STARTUP

11 invariant
12 implementation.is_equal("publicfile") implies not php_supported
13 end

Listing 2: This partial web server class illustrates the invariant mechanism to model the dependency between the im-
plementation and php support and the reference mechanism to model the dependency between the web server
and startup system.

Since the domain model is object-oriented, the
rule language contains rules to create objects and
modify the attributes of objects. Remember that a
class also defines commands for its objects. Com-
mands allow objects to change each other’s behaviour.
The rule language also allows access controls between
objects to be defined. In the rest of this section, we

2Since this work is about configuration management, we
use examples from this domain. Nevertheless, the rule lan-
guage is generic enough to apply to other domains.

elaborate on the three types of rules: creating objects,
modifying objects and authorizing commands.

Creating Objects
As a system administrator, you configure the net-

work to offer services. This results in assigning a set of
roles to each device in the network. For example, ma-
chine A acts as a web server and DHCP server. Ma-
chine B acts as a DNS server. All machines act as IPv4
nodes or routers. PoDIM’s creation rules express role
assignments precisely. Since every real world object is
simulated in the PoDIM runtime, rules must exist for all
real world objects to be created. In general, a creation
rule instructs a set of objects to create other objects. For
example, we instruct machine A to create a web server
and a DHCP server. How do we know that a simulated
object of machine A exists in the system? We can not
assume this, so we have to create it with a creation rule.
But then again, which object needs to create machine
A? To get out this bootstrapping problem, we assume
the presence of one object of a predefined class called
SYSTEM_ENTITY.

Listing 3 shows a creation rule to create machine
A. The rule contains three parts: The first part on line
1 specifies the rule type. In this case, we want to write
a creation rule. The rule type can be extended with an
optional rule identifier, in this case ‘‘machine_A’’. The
second part states which object needs to be created. In
this case, we want to create a DEVICE object (line 2).
We also specify one initial attribute for the device ob-
ject that is going to be created on line 3. The attribute
‘‘name’’ will be set to ‘‘machine_A’’. The third and
last part on line 4, after the ‘‘select’’ keyword, speci-
fies which object(s) need to execute this rule. In this
case, we want all objects of class SYSTEM_ENTITY
to execute this rule. By definition, only one SYS-
TEM_ENTITY object exists, so this rule will only be
executed by one object. In plain English, the rule in
Listing 3 reads as ‘‘A device object with name ma-
chine_A must be created.’’

01 creation machine_A
02 DEVICE
03 name "machine_A"
04 select SYSTEM_ENTITY

Listing 3: This creation rule reads as ‘‘A device with
name machine_A must be created.’’

264 21st Large Installation System Administration Conference (LISA ’07)

Delaet & Joosen PoDIM: A Language for High-Level Configuration Management

Now that we can write rules to create objects for
all managed devices, it is time to enable some function-
alities on those devices. For example, all devices need
to resolve host names to addresses. Consequently, we
need to enable each machine’s DNS configuration. To
enable this, we assume the presence of a DNS_CLIENT
class in the domain model. Listing 4 shows how to ex-
press that every machine should configure itself as a
DNS client. The rule has ‘‘dns_clients’’ as its identifier
(line 1). In this case, the object that needs to be created
is of class DNS_CLIENT (line 2). The objects that need
to create a DNS_CLIENT objects are all objects of
class DEVICE (line 3). Enabling functionality on a de-
vice is thus equivalent to instructing a device to create
an object that represents that functionality (in this case,
a DNS client). In plain English, the rule in Listing 4
reads as ‘‘All machines must act as a DNS client.’’

01 creation dns_clients
02 DNS_CLIENT
03 select DEVICE

Listing 4: This creation rule reads as ‘‘All machines
must act as a DNS client.’’

01 creation mail_service
02 WEB_SERVER
03 select DEVICE
04 where DEVICE.labels.has("server")
05 group by DEVICE.labels.has("server")

Listing 7: This creation rule reads as ‘‘One device with label ‘‘server ’’ must act as a web server.’’

01 creation constraint dhcp_servers
02 [2 : 2] DHCP_SERVER
03 select NETWORK_INTERFACE
04 group by NETWORK_INTERFACE.subnet_interfaces

Listing 8: This creation constraint rule reads as ‘‘Each subnet must have two DHCP servers.’’

In many cases, a more fine grained mechanism is
needed to describe which objects need to execute a
rule. For example, how would you say that all ma-
chines you use as a server need to configure them-
selves as a web server? To enable this, the part of a
rule that selects objects on which to apply the rule can
be further refined with a boolean expression. This
boolean expression filters the objects that apply the
rule. For example, in Listing 5 the selection clause on
lines 3-4 includes all DEVICE objects, except for
those where the boolean expression on line 4 evaluates
to false. In plain English, this rule reads as ‘‘Machines
with label ‘server’ act as WEB_SERVER.’’ Note that
we assume the presence of a ‘‘labels’’ attribute in the
class DEVICE. The contents of this attribute can be
easily set when writing rules that create devices. This
is done in the same way as we assigned the value
‘‘machine_A’’ to the ‘‘name’’ attribute in Listing 3.

01 creation mail_servers
02 WEB_SERVER
03 select DEVICE
04 where DEVICE.labels.has("server")

Listing 5: This creation rule reads as ‘‘Machines with
label ‘‘server ’’ act as WEB_SERVER.’’

The syntax of the select-clause – lines 3 and 4 of
Listing 5 – is modeled after SQL SELECT statements
[2]. The name of a table – class name in our case – fol-
lows the ‘‘select’’ keyword. The optional ‘‘where’’
clause excludes rows – objects conforming to the class
name – where the boolean expression evaluates to
false. All queries and attributes of a class can be used
in a boolean expression. Operators are used to com-
pose composite expressions. Listing 5 uses the feature
call operator. Other examples of operators are: com-
parison operators, boolean operators and arithmetic
operators.

In many cases, you want to express not only
what objects need to be created on a DEVICE – or an-
other object – but also how many need to be created.
This is where creation constraint rules come into the
picture. Listing 6 expresses the previously mentioned
example that ‘‘a device should not provide more then
four network services’’. Creation constraint rules have
an extra keyword: ‘‘constraint’’. The name of the class
to be created is also prefixed with an interval. In this
case the interval expresses that a maximum of four
server objects can be created. Note that we are using
the inheritance features from the domain model in this
example. We assume that all types of network services
such as DHCP servers and web servers inherit from
the SERVER class.

01 creation constraint server_objects
02 [0 : 4] SERVER
03 select DEVICE

Listing 6: This creation constraint rule reads as ‘‘A
device should not provide more then 4 network
services.’’

Often, you don’t care which DEVICE will be
your web server, as long as one – or more – devices
are configured as web server. This can be expressed
with the ‘‘group by’’ clause of the SQL SELECT syn-
tax. The group by clause applies a rule to a group of
objects rather than to of single objects. Listing 7 then
reads as ‘‘One device with label ‘server’ must act as a
web server.’’

We end with an often cited example in the con-
text of configuration management: ‘‘I want two DHCP
servers on each subnet.’’ The rule for this example is
shown in Listing 8. This example combines constraint
rules and rules with ‘‘group by’’ clauses.

21st Large Installation System Administration Conference (LISA ’07) 265

PoDIM: A Language for High-Level Configuration Management Delaet & Joosen

Before we explain the rule itself, we introduce the
NETWORK_INTERFACE class. In the same way as
we can create devices, DNS clients and web servers ob-
jects, we can create objects representing network inter-
faces. It does not matter if an object represents hardware
(such as device and network interface) functionality or
software functionality (such as DNS client and web
server). The basic concept is that the SYSTEM_ENTI-
TY object creates DEVICE objects. DEVICE objects
can be instructed to create other objects such as DNS_
CLIENT or NETWORK_INTERFACE objects. In the
same way, NETWORK_INTERFACE objects can be
instructed to create DHCP_SERVER objects, which is
the functionality demonstrated in Listing 8.

The interval on line 2 limits the number of
DHCP_SERVER objects to two. The ‘‘subnet_inter-
faces’’ query of the NETWORK_INTERFACE object
returns a set of all subnet interfaces in the same subnet
as the object on which the query is executed. The re-
sult of the ‘‘select’’ clause on lines 3-4 will be a set of
network interface sets. Each inner set represents one
subnet. On each of those inner sets, the rule to create
two DHCP servers is executed, which results in two
DHCP servers on each subnet.

Modifying Attributes
Once roles are assigned to devices, you want to

tune the behaviour of those roles. Your web server
needs a port to run on, your DHCP server needs to
know whether it should serve fixed addresses, your
DNS client needs to know what its domain is, and so
forth. These examples can be expressed with PoDIM’s
attribute assignment rules. They change the value of
an object’s attributes.

01 filter php_enabling
02 enable_php block
03 select ENTITY, WEB_SERVER
04 where not ENTITY.device.is_equal(WEB_SERVER.device)

Listing 11: This filter rule reads as ‘‘PHP support on web server can only be enabled by objects on the same de-
vice.’’

Let’s start with the simple case: how do we spec-
ify the search domain for our DNS clients? The rule
that realizes this is shown in Listing 9. Rules dealing
with attribute assignments are called assignment rules
(hence the keyword ‘‘assignment’’ on line 1 of Listing
9). In general, an assignment rule consists of a series
of attribute-value assignments that are applied to the
objects in the select-clause. In our example, we show
one attribute-value assignment, where the attribute is
‘‘search_domain’’ and the value is ‘‘mydomain.com’’.
The objects on which this assignment is applied are, in
this case, all DNS clients.

01 assignment dns_search_domain
02 search_domain "mydomain.com"
03 select DNS_CLIENT

Listing 9: This assignment rule reads as ‘‘All DNS
clients have mydomain.com as their search do-
main.’’

In some cases, you don’t care what value an ob-
ject’s attribute has, as long as it’s within a predefined
range. For example, you might want to express that
‘‘the port of all my web servers should be set to 80 or
a value higher than 1024.’’ This is where assignment
constraint rules come into the picture. Listing 10
shows the assignment constraint rule for our example.
The attribute to be set is called ‘‘port’’. The valid val-
ues for this attribute are the union of the singleton 80
and all values greater than 1024.

01 assignment constraint webserver_ports
02 port [80] + [1024 :]
03 select WEB_SERVER

Listing 10: This assignment constraint rule reads as
‘‘A web server’s port must be within the range 80
or a value greater than 1024.’’

Authorizing Commands

Many system administrators work in a team. In
most teams, people have roles: Jack is our Linux server
specialist, Greg is our networking guy and Bill is our
desktop guy. In small teams, communication is easy –
Jack, Greg and Bill are located in the same office. In
larger teams, however, there is a need to specify roles
more precisely and enforce those automatically.

Since Bill is our desktop guy, we do not want
him to configure network services of any kind. How
do we express this? Consider the SERVER class. All
network services like DHCP servers and web servers
inherit from this class. The SERVER class thus repre-
sents common functionality for network services. We
want to express that Bill cannot modify the attributes
of an object if it inherits from SERVER. To realize
this, we first introduce two extra PoDIM features: a
rule type to express access controls and support for
writing rules about other rules.

Recall from the discussion of commands that we
wanted to limit access to the ‘‘enable_php’’ command
on a web server to objects that run on the same device
as the web server. To allow this, we introduce a third
type of rule: filter rules. Remember that we already in-
troduced creation and assignment rules. Listing 11
shows a filter rule for the case where we want to limit
access to the ‘‘enable_php’’ command of web servers.
The filter rule blocks the execution of the ‘‘enable_
php’’ command on a WEB_SERVER for every ENTI-
TY that is not created by the same device as the
WEB_SERVER.

Filter rules allow to block the execution of a
command based on the caller object and callee. A fil-
ter rule starts with the ‘‘filter ’’ keyword and has an

266 21st Large Installation System Administration Conference (LISA ’07)

Delaet & Joosen PoDIM: A Language for High-Level Configuration Management

optional identifier. It contains one or more commands
(with optional arguments) that need to be blocked. The
selection part on lines 3-4 is a bit different than that of
creation and assignment rules. A filter rule always se-
lects pairs of objects to identify a caller/callee pair. In
SQL terminology: the SELECT clause contains a join
of tables named ENTITY and WEB_SERVER. The
resulting tuple-set is then filtered with the ‘‘where’’
expression on line 4. In this case, we express that we
want to block communications when the caller is any
entity and the callee a WEB_SERVER (line 3). If the
caller executes the ‘‘enable_php’’ command, it is
blocked when the caller is not created by the same de-
vice as the web server.

The other feature we need are rules about other
rules. When we want to express that Bill cannot con-
figure network services of any kind, we need a filter
rule that prohibits the modification of objects repre-
senting network services. The only way Bill can modi-
fy objects is to write assignment rules. So, we want to
write a filter rule that blocks assignment rules written
by Bill from being applied on network services. Re-
member that we defined a common class for network
services in this example, called SERVER. Since a fil-
ter rule specifies a policy for the interaction between
two objects and assignment rules are in this case part
of the interaction, assignment rules themselves must
be objects.

01 filter bill_cannot_configure_services
02 execute_assignment_rule(rule) block
03 select ASSIGNMENT_RULE, SERVER
04 where ASSIGNMENT_RULE.creator = "BillsPublicKey"

Listing 12: This filter rule reads as ‘‘Bill cannot configure network services.’’

Let’s go into more detail on how rules can be ob-
jects themselves. Take for example the assignment
rule from Listing 9. The assignment rule contains a
rule identifier, ‘‘dns_search_domain’’, an attribute that
needs to be modified, ‘‘search_domain’’, the value for
that attribute, ‘‘mydomain.com’’, and the set of target
objects, all DNS_CLIENT objects. Looking at this rule
as an object, we have an object with attributes ‘‘identifi-
er ’’, ‘‘attribute’’, ‘‘value’’, and ‘‘targets’’. In this exam-
ple, the value of ‘‘identifier ’’ is ‘‘dns_search_domain’’;
‘‘ a t t r i b u t e ’’ is set to ‘‘search_domain’’ and so on.

Since rules exist as objects in our system, they
must have a static definition (class) in the domain
model. An updated graphical representation of our do-
main model is shown in Figure 2. PoDIM’s three type
of rules – creation, assignment and filter – are shown
as classes in the domain model.

We have now introduced all features needed for
expressing that Bill cannot configure network ser-
vices. This policy is represented with a filter rule
shown in Listing 12. The filter rule deals with the in-
teraction between ASSIGNMENT_RULE objects and
SERVER objects. By definition, the ‘‘execute_assign-
ment_rule’’ command is used to execute an assign-
ment rule on an object. Since we want to forbid Bill to

configure network services, we must block the execu-
tion of this command for rules created by Bill on
SERVER objects.

Note that we depend on the presence of the ‘‘cre-
ator ’’ attribute of an ASSIGNMENT_RULE. This at-
tribute can be set with another assignment rule. We
will not delve into how we can be sure that identities
can not be spoofed. For now, it suffices that this can
be achieved with public key cryptography and rule
signatures.

Notice from Figure 2 that rule classes have a
common parent: RULE. RULE itself is a child of the
common class MANAGED_OBJECT, as is the ENTI-
TY class that was discussed previously. In the same
way that you can not compare a DNS client with a
web server, it is useless to compare rules with entities.
They both have the same structure: they contain at-
tributes, queries and commands, but they represent
very different things: rules represent intentions on the
part of the system administrators while entities repre-
sent real world objects such as devices, network inter-
faces and network services.

Figure 2: Domain model in BON [40] notation. This
model includes RULE classes. RULE and ENTI-
TY have a common parent: MANAGED_OB-
JECT. The arrows denote inheritance relation-
ships.

Prototype

The prototype described below is available for
testing from http://purl.org/podim/devel. First we de-
scribe the rule resolution process. Next, we describe
how a configuration is deployed on a set of machines.

Rule Resolution
We have seen that the basic principle of PoDIM’s

runtime is that objects are created for each real world
‘‘thing’’. We have also discussed how a system admin-
istrator uses creation rules to specify which objects

21st Large Installation System Administration Conference (LISA ’07) 267

PoDIM: A Language for High-Level Configuration Management Delaet & Joosen

need to be created. The basic form of a creation rule is
that it states that an object or objects of a particular
class must be created by other objects. For example,
we can assert that all devices must create a DNS client
object. Remember that there is a bootstrapping prob-
lem with this approach. To solve this, we assumed the
presence of one object of a predefined class, SYS-
TEM_ENTITY.

The component responsible for creating a SYS-
TEM_ENTITY object is the translation controller. The
translation controller contains compiled versions of all
domain model classes. At startup, it creates a SYS-
TEM_ENTITY object and then parses one or more pol-
icy files. Policy files contain one or more creation, as-
signment or filter rules. Remember that rules them-
selves are also objects in the system. Thus, the transla-
tion controller creates an object for each rule.

At this moment, there is one SYSTEM_ENTITY
object and an object for each rule. The translation con-
troller then iterates over all available objects and asks
them to configure themselves. This configuration process
is different for RULE and ENTITY objects. RULE ob-
jects check if there are new objects that conform to their
selection clause. If there are, they attach themselves to
those objects.

The configuration process of an ENTITY object
starts with checking all attached creation rules. The
creation rules are sorted by class name. Remember
that classes represent things such as DHCP servers
and web servers. For each class name, the intersection
of all creation constraints is computed. Creation con-
straints are constraints on the number of objects of
each class name. If the intersection of all creation con-
straints is empty, an error is generated. Else, the mini-
mum number of objects is created to satisfy all cre-
ation rules.

Next, all attached assignment rules are checked
and sorted per attribute name. For each attribute, the
set of allowable values is computed. If this set is emp-
ty, an error is generated. Else, the number of elements
in the set is computed. If there is only one element, the
attribute’s value can be assigned. Else, one value is
chosen from the set. The algorithm that chooses one
value from a set can be redefined in each class. For
example, the algorithm for choosing a valid port on a
web server will have to take into account ports chosen
by other services on the same device. The algorithm
for choosing a valid IPv4 address from a set will have
to take into account the network address of its subnet
and addresses already assigned to other devices on the
same subnet.

After all objects have been asked to configure
themselves for the first time, the whole process is re-
peated. In practice, SYSTEM_ENTITY will create a
number of DEVICE objects based on its attached cre-
ation rules. In the next run of the configuration
process, DEVICE objects will create other objects

representing services like DHCP servers and web
servers.

The configuration process continues until all ex-
isting objects reach a stable state. A stable state for an
object is defined as follows: all rules attached to the
object are satisfied. A class can extend the definition
of a stable state. In the RULE classes, for example, the
definition of stable state is extended with the require-
ment that a rule must be attached to all objects satisfy-
ing its selection clause. For a web server class, the
definition can be extended with the requirement that
the port attribute must have a value, even if no rules
exist that set the port attribute. Determining values for
attributes for which no rule exist is done by calling an
extra method after the configuration process of each
object. By default this method contains nothing, but
objects can redefine it. For example, the web server
class can define this method to set the port attribute to
80 if no rules exist for this attribute.

It is possible that a stable state is never reached.
First, a class definition can be erroneous. The specifica-
tion of what is a stable state can be ill-defined. The ex-
tra method that can be defined in each class for addi-
tional configuration can also contain errors that prevent
objects from the class (or other objects) to reach a sta-
ble state. Second, because of the complex (multiple) in-
heritance relationships that can exist between classes it
is possible that the creation rules are never satisfied.

The enforcement of filter rules is done when ob-
jects execute methods on each other. Before executing
a method, the attached filter rules are checked. If a
block policy exists, the execution is not allowed.

Configuration Deployment
When the translation controller notices that all

objects have reached a stable state, the deployment
process is started. The goal of the deployment process
is to generate configuration files from the created ob-
jects and deploy these files on all managed devices.

The first phase is to output an XML-based repre-
sentation of the in-memory objects. This is done by
asking the SYSTEM_ENTITY object to output its con-
figuration. The SYSTEM_ENTITY object asks all its
children (which are DEVICE objects) to output their
configuration. The DEVICE objects in turn, ask their
children to output their configuration and so on. The re-
sult is that, for each DEVICE, a tree-structured XML
profile is created. This profile consists of simple at-
tribute-value assignments for all attributes and queries
of an object. The format of this XML representation de-
fined in Anderson’s and Smith’s LISA 2005 paper [8].

Next, the XML profiles are used as input for a
template engine which generates configuration files and
associated configuration instructions. Except configura-
tion files themselves, everything that can be changed in
a system is defined as a configuration instruction. Ex-
amples are: settings permissions and ownerships of
files, installing packages, restarting software services

268 21st Large Installation System Administration Conference (LISA ’07)

Delaet & Joosen PoDIM: A Language for High-Level Configuration Management

and creating links. The format of configuration instruc-
tion is XML-based and is derived from the internal
XML format that Bcfg2 [18, 20, 19] uses. The grammar
of the format can be found on http://purl.org/podim/
devel . The configuration instructions are then translat-
ed to the languages used by one of the deployment
backends. The prototype allows multiple deployment
backends to be used. For example, it is possible to
translate configuration instructions to Cfengine [12,
10, 11, 14], Bcfg2 [18, 20, 19] or Lcfg [7, 3, 6] speci-
fications. It is also possible to add additional deploy-
ment backends.

Case Study

To validate our system, we use the IPv4 address-
ing policies for the Computer Science Department of
the K. U. Leuven (CSNet). CSNet has a total of 600
machines in about 20 subnets. The 134.58.39.0-134.58.
47.255 block of addresses is assigned to CSNet. CSNet
has two connections to the university-wide network.
The main connection is a subnet that contains, besides
the external router for CSNet, switches from other de-
partments and a router that connects to the main K. U.
Leuven backbone. One lab is connected to the private
network of the K. U. Leuven. We want to assign static
addresses to all network interfaces. Some subnets need
private addresses. Private addresses are used by the lab
networks and the network of the departmental admini-
stration, since this is a Windows network which is
safer behind a NAT device.

Besides classes for modeling devices and net-
work interfaces, we need a class to model a static IPv4
address configuration. This class is shown in Listing
13. The class contains a reference to a network inter-
face (line 6), the value for its address (line 9) and its
network (line 12). The class also defines a query that
returns the netmask (lines 17-20).

01 class
02 NETWORK_IPV4_STATIC_ADDRESS

04 feature -- Attributes

06 interface: NETWORK_INTERFACE
07 -- attached interface

09 address: IPV4_ADDRESS
10 -- IPv4 address

12 network: IPV4_NETWORK
13 -- subnet configuration

15 feature -- Queries

17 netmask: INTEGER is
18 do
19 Result := network.netmask
20 end

22 end

Listing 13: Class definition of a static IPv4 address.

The IPv4 addressing policies for CSNet are de-
scribed in Listing 14. Because of space limitations, we
omitted the creation of device and network interface

objects, representing the hardware configuration of
our infrastructure. Notice that, except for a few corner
cases (the networks providing external access), all de-
vices are managed with the first three constraint rules:
one creation constraint rule that that creates static IPv4
address configuration and two rules for configuring
the private and public address space. In plain English,
the rules in Listing 14 read as follows.

1. Rule on lines 3-8: All network interfaces must
have one static IPv4 address configured, except
for the interface of ‘‘jasje’’ on the external ac-
cess subnet (KULEUVENNET). ‘‘Jasje’’ is our
network sniffer.

2. Rule on lines 10-14: All network interfaces
that must be reachable from the Internet must
have an IPv4 address in the range 134.58.39.0 -
134.58.47.255.

3. Rule on lines 16-20: All network interfaces on
private subnets must have an IPv4 address in
the range 192.168.0.0 - 195.168.255.255.

4. Rule on lines 22-26: The network interfaces on
the PC_KLAS subnet must have an IPv4 ad-
dress on the 10.2.15.0/24 subnet.

5. Rule on lines 28-32: The access switch on the
PC_KLAS subnet must have the 10.2.15.254
address.

6. Rule on lines 34-38: All interfaces in the exter-
nal access subnet – KULEUVENNET – must
have an IPv4 address on the 134.58.254.64/29
subnet.

7. Rule on lines 40-45: The gateway of the exter-
nal access subnet must have the 134.58.254.70
address.
As discussed previously, the translation con-

troller reads the policy rules and tries to find a stable
state. If the latter succeeds, configuration files are gen-
erated by the template engine. Based on the operating
system of a device, a template file is chosen. This tem-
plate then generates configuration files. For example,
for OpenBSD devices, /etc/hostname.xxx files are
generated. For Debian GNU/Linux devices, /etc/net-
work/interfaces are generated. On Cicso routers and
switches, one global configuration file is generated.
Depending on the mechanics of the chosen deploy-
ment engine (Cfengine, Bcfg2, Lcfg, . . .), configura-
tion files and are then transported to and deployed on
a device.

Related Work

Related work of PoDIM’s high-level configuration
language includes configuration management tools. We
also discuss how generic policy languages and a model
finder are related to the problem PoDIM is trying to
solve. We end this discussion with a characterization of
application deployment frameworks.

Configuration Management Tools
Bcfg2 [18, 20, 19], Cfengine [12, 10, 11, 14],

LCFG [7, 3, 6] and Puppet [26, 27] are the most cited

21st Large Installation System Administration Conference (LISA ’07) 269

PoDIM: A Language for High-Level Configuration Management Delaet & Joosen

configuration management tools. As discussed previ-
ously, these tools can be used as a deployment back-
end for PoDIM. Bcfg2 and Cfengine are in the first
place deployment engines. LCFG and Puppet include
capabilities for modeling dependencies between con-
figurations.

Other related work in the context of configuration
management includes the work of Couch on closures
[16]. Closures are defined as functional units that can ac-
cept commands from the user or other closures. Their in-
ternal mechanics are hidden. The classes from PoDIM’s
domain model can be seen as closures. Classes define
commands that change the behaviour of their objects,
but can also have queries and attributes.

1 -- IPv4 Addressing

3 creation
4 -- Each interface has 1 IPv4 address, except "jasje"
5 [1-1] NETWORK_IPV4_STATIC_ADDRESS
6 select NETWORK_INTERFACE
7 where NETWORK_INTERFACE.device.name /= "jasje" and
8 NETWORK_INTERFACE.labels.has("KULEUVENNET")

10 assignment constraint
11 -- Public address space
12 address [!!IPV4_ADDRESS.make("134.58.39.0"):!!IPV4_ADDRESS.make("134.58.47.255")]
13 select NETWORK_IPV4_STATIC_ADDRESS
14 where NETWORK_IPV4_STATIC_ADDRESS.interface.labels.has("PUBLIC_SUBNET")

16 assignment constraint
17 -- Private address space
18 address [!!IPV4_ADDRESS.make("192.168.0.0"):!!IPV4_ADDRESS.make("192.168.255.255")]
19 select NETWORK_IPV4_STATIC_ADDRESS
20 where NETWORK_IPV4_STATIC_ADDRESS.interface.labels.has("PRIVATE_SUBNET")

22 assignment
23 -- PC_KLAS IPv4 Address range
24 network !!IPV4_NETWORK.make("10.2.15.0",24)
25 select NETWORK_IPV4_STATIC_ADDRESS
26 where NETWORK_IPV4_STATIC_ADDRESS.interface.labels.has("PC_KLAS")

28 assignment
29 -- PC_KLAS external router
30 address !!IPV4_ADDRESS.make("10.2.15.254")
31 select NETWORK_IPV4_STATIC_ADDRESS
32 where NETWORK_IPV4_STATIC_ADDRESS.interface.device.name = "lswitch-cw"

34 assignment
35 -- KULEUVENNET external access
36 subnet !!IPV4_NETWORK.make("134.58.254.64",29)
37 select NETWORK_IPV4_STATIC_ADDRESS
38 where NETWORK_IPV4_STATIC_ADDRESS.interface.labels.has("KULEUVENNET")

40 assignment
41 -- Gateway configuration for KULEUVENNET
42 address !!IPV4_ADDRESS.make("134.58.254.70")
43 select NETWORK_IPV4_STATIC_ADDRESS
44 where NETWORK_IPV4_STATIC_ADDRESS.interface.device.name = "default-gateway" and
45 NETWORK_IPV4_STATIC_ADDRESS.interface.labels.has("KULEUVENNET")

Listing 14: Policy Specification for the network configuration of K. U. Leuven’s CS department.

Policy Languages

PoDIM separates the domain model and the poli-
cy specification language. Many other policy lan-
guages use this separation. It allows for reuse of both
the policy specification language and domain model in

different contexts. The PCIM [33, 32] (Policy Core In-
formation Model) and CIM (Common Information
Model) [15] initiatives define a generic model for rep-
resenting policy specifications on one side and a set of
domain classes on the other side. The generic model de-
fines policy rules in a Condition-Action format. The
domain model includes definitions for common net-
work functionalities such as routing protocols, network
configurations and IPSec configurations. The domain
model itself is object-oriented and models relations
between classes. The CIM domain model provides a
valuable repository of existing domain knowledge,
modeled as object-oriented classes. The CIM model is
very similar to the PoDIM domain model. However, it
has no support for specifying fine-grained dependen-
cies. PoDIM uses Eiffel invariants for this. PCIM/CIM
also does not support constraint handling.

Other frequently cited policy languages such as
Ponder [17] and JRules [23] also offer an extensible
domain model. The domain model of these languages

270 21st Large Installation System Administration Conference (LISA ’07)

Delaet & Joosen PoDIM: A Language for High-Level Configuration Management

is object-oriented, as is the case with the PoDIM do-
main model. Policy rules are Event-Condition-Action
based in these languages. The action that can be exe-
cuted is an arbitrary operation of the domain model.
Notice that differs with our approach. Our approach is
less expressive in the sense that we do not allow the
execution of arbitrary operations. However, we do al-
low to model constraints on attributes, which is some-
thing that is not supported by the current generation of
policy languages.

Model Finding
In [35] a model finding approach is proposed

for configuration management based on Alloy [24,
25, 1]. This approach is based on creating a model
for an infrastructure based on first-order logic. Based
on a number of inputs (such as the number of de-
vices and network interfaces) an outcome is con-
structed that satisfies the model. The advantage of
using a tool such as Alloy is that it allows very ad-
vanced reasoning over a configuration. The same
model can be used to generate and validate configu-
rations. The limitations are that constraints, as we
discussed them in this paper, can not be modeled. It
is also difficult to set specific attributes of ‘‘things’’.
For example, it is difficult to set a human readable
name for every device.

Application Deployment Frameworks
Application deployment frameworks like Smart-

Frog [29, 28], Spring [38] and JBoss Microcontainer
[22] manage applications directly by tuning their pa-
rameters. Notice the difference with PoDIM: classes
directly control real world things, while PoDIM class-
es representate real world things that are deployed
when a stable state is reached. Because of this differ-
ence, application deployment frameworks listed above
do not provide constraint resolution of the kind that
PoDIM uses.

Future Work

There are various areas where PoDIM could be im-
proved. We already mentioned the stable state problem:
in some cases, it is impossible to reach a stable state and,
as a consequence, generate a valid configuration. It is al-
so possible that, on different runs of the translation con-
troller, different configuration files are generated for the
same input rule sets. This is because of the possibility
that classes define random choices for choosing a value
from a constraint set. Including information about previ-
ous runs could solve this problem.

A dry-run or analysis mode would also be useful.
Currently, the prototype supports the actual translation
and deployment process. Checking the validity of a
rule set requires a simulation modus. Ponder, for ex-
ample, uses Event Calculus [9] to do this.

We have not yet gathered data on the scalability
of our prototype. In its current implementation, the
translation from rules to configuration files is done on

one central component. We are currently working on a
decentralized version of the translation controller. In
the decentralized version, each device can be made re-
sponsible for generating its own configuration and will
need to communicate with other devices to find a
globally valid state.

Other areas for improvement deal with usability.
• Extending the domain model requires knowl-

edge of Eiffel. In many cases, a less expressive
(and easier) notation suffices for creating new
classes in the domain model. A program can
then translate classes to the Eiffel notation.

• There is no support to track configurations
throughout the translation process. Therefore, it
is impossible to know what rules influence the
generation of a configuration files or what
changes in a configuration file are caused by a
change in one of the rules. Both would be use-
ful for debugging rules. In general, the transla-
tion controller must be able to explain why a
configuration is generated.

• The rule language contains no structuring mech-
anisms. Working with large policy sets becomes
cumbersome. Existing preprocessor systems can
solve part of this problem, but specifying meta-
rules will stay inconvenient. Instead of looking
at PoDIM’s rule language as a user interface, it
is better to see it as a target format for more ad-
vanced interfaces which could be, depending on
the case text-based, command-line programs,
graphical user interfaces, web interfaces, and so
on.

Conclusion

PoDIM tries to address the complexity of config-
uration management by abstracting from system vari-
ety and providing mechanisms for specifying cross
machine constraints. The PoDIM language consists of
a rule language and an extensible domain model. The
current prototype translates high-level rules in low-
level configuration files and subsequently uses exist-
ing configuration management tools to deploy the gen-
erated configuration on all managed devices. We be-
lieve that PoDIM provides an advancement of the
state of the art. It provides a higher-level specification
compared to what is currently available, which in-
cludes cross machine constraints and abstracts away
systems variety.

Acknowledgments

This research has been supported by a grant from
the Institute for the Promotion of Innovation by Sci-
ence and Technology in Flanders (http://www.iwt.be).
We would like to thank Sara Vermeylen and Nico
Janssens for proofreading this paper. Thanks also to
Ed Smith for his excellent work on shepherding this
paper, and Paul Anderson for discussing configuration
management ideas.

21st Large Installation System Administration Conference (LISA ’07) 271

PoDIM: A Language for High-Level Configuration Management Delaet & Joosen

Author Biographies

Thomas Delaet is a Ph.D. student at the comput-
er science department of the Katholieke Universiteit
Leuven. His research is funded by the IWT, the Flem-
ish institute for innovation in science and technology.

Wouter Joosen is a full professor in Distributed
Systems at the Katholieke Universiteit Leuven, Bel-
gium. He has been a professor in software engineering
at Odense University, Denmark, from 1997 to 2001.
Wouter ’s research interests include the development,
deployment and management of distributed and secure
software systems.

Bibliography

[1] The Alloy Analyzer, http://alloy.mit.edu .
[2] American National Standards Institute, ANSI X3.

135-1992: Information Systems – Database 1430
Broadway, New York, 1989.

[3] Anderson, Paul, LCFG Homepage, http://www.
lcfg.org .

[4] Anderson, Paul, Short Topics in system Admini-
stration 14: System Configuration, USENIX As-
sociation, Berkeley, CA, 2006.

[5] Anderson, Paul and Alva Couch, ‘‘What Is This
Thing Called ‘‘System Configuration?’’ LISA In-
vited Talk, November, 2004.

[6] Anderson, Paul, and Alastair Scobie, ‘‘Large Scale
Linux Configuration with LCFG,’’ Proceedings of
the 4th Annual Linux Showcase and Conference,
Atlanta, October 10-14, pages 363-372, USENIX,
Berkeley, CA, 2000.

[7] Anderson, Paul and Alastair Scobie, ‘‘LCFG –
the Next Generation,’’ UKUUG Winter Confer-
ence, UKUUG, 2002.

[8] Anderson, Paul and Edmund Smith, ‘‘Configura-
tion Tools: Working Together,’’ Proceedings of
the Large Installations Systems Administration
(LISA) Conference, pages 31-38, USENIX Asso-
ciation, Berkeley, CA, December 2005.

[9] Bandara, A. K., E. C. Lupu, J. Moffett, and A.
Russo, ‘‘Using Event Calculus to Formalise Poli-
cy Specification and Analysis,’’ Proceedings of
the 4th IEEE Workshop on Policies for Distrib-
uted Systems and Networks, 2003.

[10] Burgess, M., Cfengine WWW site, 1993, http://
www.iu.hio.no/cfengine .

[11] Burgess, M., GNU cfengine, Free Software
Foundation, Boston, Massachusetts, 1994.

[12] Burgess, M., ‘‘A Site Configuration Engine,’’
Computing Systems, MIT Press: Cambridge, MA,
Vol. 8, p. 309, 1995.

[13] Burgess, M., ‘‘Needles in the Cray Stack: The
Myth of Computer Control,’’ USENIX ;login:,
Vol. 26, Num. 2, pp. 30-36, 2001.

[14] Burgess, Mark, ‘‘Recent Developments in Cfen-
gine,’’ Unix.nl Conference Proceedings, 2001.

[15] Common Information Model (CIM) Standards,
http://www.dmtf.org/standards/cim/ .

[16] Couch, A., J. Hart, E. G. Idhaw, and D. Kallas,
‘‘Seeking Closure in an Open World: A Be-
havioural Agent Approach to Configuration Man-
agement,’’ Proceedings of the Seventeenth Systems
Administration Conference (LISA XVII), USENIX
Association, Berkeley, CA, p. 129, 2003.

[17] Damianou, Nicodemos C., A Policy Framework
for Management of Distributed Systems, Ph.D. the-
sis, University of London, Department of Comput-
ing, 2002.

[18] Desai, Narayan, Rick Bradshaw, and Joey Hage-
dorn, Bcfg2 Trac Homepage, http://trac.mcs.anl.
gov/projects/bcfg2 .

[19] Desai, Narayan, Rick Bradshaw, and Joey Hage-
dorn, System Management Methodologies with
Bcfg2, ;login: The USENIX Association Newslet-
ter, Vol. 31, Num. 1, February 2006.

[20] Desai, Narayan, Rick Bradshaw, Scott Matott,
Sandra Bittner, Susan Coghlan, Rémy Evard,
Cory Lueninghoener, Ti Leggett, John-Paul Navar-
ro, Gene Rackow, Craig Stacey, and Tisha Stacey,
‘‘ A Case Study in Configuration Management Tool
Deployment,’’ Proceedings of the Large Installa-
tions Systems Administration (LISA) Conference,
pp. 39-46, USENIX Association, Berkeley, CA,
December, 2005.

[21] Evard, R., ‘‘An Analysis of UNIX System Con-
figuration,’’ Proceedings of the Eleventh Systems
Administration Conference (LISA XI), USENIX
Association, Berkeley, CA, p. 179, 1997.

[22] JBoss Group, Jboss Microcontainer, http://www.
jboss.com/products/jbossmc .

[23] ILOG, Jrules: Technical White Paper (Version
4.0), 2002, http://www.ilog.com/products/jrules/ .

[24] Jackson, Daniel, ‘‘Alloy: A Lightweight Object
Modelling Notation,’’ ACM Transactions on Soft-
ware Engineering and Methodology, Vol. 11,
Num. 2, pp. 256-290, 2002.

[25] Jackson, Daniel, Software Abstractions: Logic,
Language and Analysis, The MIT Press, 2006.

[26] Kanies, Luke, Puppet, http://reductivelabs.com/
projects/puppet/ .

[27] Kanies, Luke, Puppet: Next-Generation Configura-
tion Management, ;login: The USENIX Association
Newsletter, Vol. 31, Num. 1, February, 2006.

[28] Hewlett Packard Laboratories, The smartfrog Ref-
erence Manual, 2007.

[29] Low, Colin and Julio Guijarro, A smartfrog Tuto-
rial, Technical Report, Hewlett Packard Labora-
tories, 2004.

[30] Meyer, B., Eiffel, the Language. Prentice Hall,
1992.

[31] Meyer, Bertrand, Object-Oriented Software Con-
struction, Prentice-Hall, Second Edition, 1997.

272 21st Large Installation System Administration Conference (LISA ’07)

Delaet & Joosen PoDIM: A Language for High-Level Configuration Management

[32] Moore, B., Policy Core Information Model (PCIM)
Extensions, RFC 3460 (Proposed Standard), Jan-
uary, 2003.

[33] Moore, B., E. Ellesson, J. Strassner, and A. West-
erinen, Policy Core Information Model – Version
1 Specification, RFC 3060 (Proposed Standard);
Updated by RFC 3460, February, 2001.

[34] Narain, Sanjai, Towards a Foundation for Build-
ing Distributed Systems via Configuration, 2004,
http://www.argreenhouse.com/papers/narain/Service-
Grammar-Web-Version.pdf .

[35] Narain, Sanjai, ‘‘Network Configuration Manage-
ment via Model Finding,’’ LISA’05: Proceedings
of the 19th Conference on Large Installation Sys-
tem Administration Conference, p. 15, USENIX
Association, Berkeley, CA, 2005.

[36] Oppenheimer, D., The Importance of Understand-
ing Distributed System Configuration,’’ Proceed-
ings of the 2003 Conference on Human Factors
in Computer Systems workshop, April, 2003.

[37] Patterson, D. A., ‘‘A Simple Way to Estimate the
Cost of Downtime,’’ Proceedings of the Sixteenth
Systems Administration Conference (LISA’02), pp.
185-188, USENIX Association, Berkeley, CA,
2002.

[38] Spring Framework, http://www.springframework.
org .

[39] Strassner, John, ‘‘Policy management challenges
for the future,’’ Policy 2005 Keynote, 2005.

[40] Walden, Kim and Jean-Marc Nerson, Seamless
Object-Oriented Software Architecture, Prentice-
Hall, 1994.

21st Large Installation System Administration Conference (LISA ’07) 273

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

