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ABSTRACT

Existing applications often contain security holes that are not patched until after the system
has already been compromised. Even when software updates are available, applying them often re-
sults in system services being unavailable for some time. This can force administrators to leave
system services in an insecure state for extended periods. To address these system security issues,
we have developed the PeaPod virtualization layer. The PeaPod virtualization layer provides a
group of processes and associated users with two virtualization abstractions, pods and peas. A pod
provides an isolated virtualized environment that is decoupled from the underlying operating sys-
tem instance. A pea provides an easy-to-use least privilege model for fine grain isolation amongst
application components that need to interact with one another. As a result, the system easily en-
ables the creation of lightweight environments for privileged program execution that can help with
intrusion prevention and containment. Our measurements on real world desktop and server appli-
cations demonstrate that the PeaPod virtualization layer imposes little overhead and enables secure

isolation of untrusted applications.

Introduction

Security problems can wreak havoc on an orga-
nization’s computing infrastructure. To prevent this,
software vendors frequently release patches that can
be applied to address security issues that have been
discovered. However, software patches need to be ap-
plied to be effective. It is not uncommon for systems
to continue running unpatched applications long after
a security exploit has become well-known [25]. This is
especially true of the growing number of server appli-
ances intended for very low-maintenance operation by
less-skilled users. Furthermore, by reverse engineering
security patches, attackers have been able to release
exploits less than a month after the vulnerability is
patched [16].

This impacts system administrators, as even with
security patches being released, one cannot always ap-
ply them in a timely manner. First, many security
patches require that the system service being patched be
taken off-line, thereby making it unavailable. Patching
an operating system can result in the entire system hav-
ing to be down for some period of time. If a system ad-
ministrator chooses to fix an operating system security
problem immediately, he risks upsetting his users be-
cause of loss of data. Therefore, a system administrator
must schedule downtime in advance and in cooperation
with all the users, leaving the computer vulnerable until
repaired. Furthermore, just because a security patch is
released, does not mean it will apply successfully to
one’s system. If the system service is patched success-
fully, the system downtime may be limited to just a
few minutes during the reboot. However, if the patch
is not successful, downtime can extend for many hours
while the problem is diagnosed and a solution is

found. Therefore, a system administrator will have to
delay applying the security patch until one is sure that
it will cause only a minimum amount of downtime.

Second, many system services in use today are
supplied as appliances. Just like one’s physical appli-
ances are simple single task machines, computing ap-
pliances, be they commercial appliances, such as a
TiVo or a NetApp Filer, or a simplified appliance a
corporation deploys internally, such as a web or mail
server appliance, are simplified single task systems.
A primary advantage of computing appliances is that
they can be deployed very easily by less-skilled
users. However, this can result in them being set up,
left running, and forgotten about since they “just
work.” As with all software systems, they will suffer
from bugs, some of which can have large security im-
plications. Since these appliances are meant to be put
into use by people who are not skilled in system ad-
ministration, one can end up deploying a large num-
ber of systems that are vulnerable to be taken over
and used maliciously, without the owner of the appli-
ance having any knowledge that this has occurred.
Today, actively used personal machines are being ac-
tively taken over and used as part of large bot-nets
without any knowledge of the owners of the ma-
chines [6]. In the future where large numbers of com-
puting appliances will be deployed, this problem will
become significantly worse.

There are many principles that are used to in-
crease the security of a software system and limit the
damage that can occur if security is breached [26]. One
of the most important is ensuring that one operates in a
Least Privilege environment. Least Privilege environ-
ments requires that a user or a program only have ac-
cess to the resources that are required to complete their
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job. Even if the user or service’s environment is ex-
ploited, the attacker will be constrained. For a system
with many distinct users and uses, designing a least
privilege system can prove to be very difficult as many
independent application systems can be used in many
different and unknown ways. On the other hand, secur-
ing a single service, such as a software appliance, is
more tractable due to the limited nature of what the ser-
vice accesses.

A common approach to providing least privilege
environment to a single service is a sandbox container
environment. Many sandbox container environments
have been developed to isolate untrusted applications,
however, many of these approaches have suffered
from being too complex and too difficult to configure
to use in practice, and have often been limited by an
inability to work seamlessly with existing system tools
and applications. Virtual machine monitors (VMMs)
offer a more attractive approach by providing a much
easier-to-use isolation model of virtual machines, which
look like separate and independent systems apart from
the underlying host system. However, because VMMs
need to run an entire operating system instance in each
virtual machine, the granularity of isolation is very
coarse, enabling malicious code in a virtual machine
to make use of the entire set of operating system re-
sources. Multiple operating instances also need to be
maintained, adding administrative overhead.

A primary problem with a sandbox container that
attempts to isolate a single service is that many ser-
vices are composed of many interdependent programs.
Each individual application that makes up the service
has their own set of requirements. However, since they
will all be run within the same sandbox container,
each individual application will end up with access to
the superset of resources that are needed by all the
programs that make up the service, thereby negating
the least privilege principle. One cannot divide the
programs into distinct sandbox container environ-
ments since many programs are interdependent and
expect to work from within a single context.

We present PeaPod, a virtualization layer that
provides an easy-to-use abstraction that can be used at
the granularity of individual applications. The PeaPod
virtualization layer provides virtual machine isolation
without the need to run multiple operating system in-
stances. PeaPod further enables fine-grain isolation
among application components that may need to inter-
act within a single machine environment. PeaPod pro-
vides its functionality without modifying, recompiling,
or relinking applications or operating system kernels.

PeaPod combines two key virtualization abstrac-
tions in its virtualization layer. First, it leverages the
pod (PrOcess Domain) [20, 22] to provide a sandbox
container for entire services to run within. A pod is a
lightweight environment that mirrors the underlying op-
erating system environment. PeaPod isolates processes
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in pods from underlying system by associating virtual
identifiers with operating system resources and only al-
lowing access to resources that are made available
within the pod virtualized namespace. Since the pod
virtualization layer provides a virtual machine like en-
vironment, it also defines its own set of users, which
can be distinct from those supported by the underlying
system. Since it does not run an operating system in-
stance, a pod prevents malicious code from making use
of an entire set of operating system resources. Second,
it introduces peas (Protection and Encapsulation Ab-
straction). A pea is an easy-to-use least privilege mech-
anism that enables further isolation among application
components that need to share limited system resources
within a pod. It can prevent compromised application
components from attacking other components within
the same pod. A pea provides a simple resource-based
model that restricts access to other processes, IPC, file
system, and network resources within a pod.

PeaPod improves upon previous approaches by
not requiring any operating system modifications, as
well as avoiding the time of check, time of use race
conditions that affect many of them [31]. For instance,
unlike other approaches that perform file system secu-
rity checks at the system call level and therefore do
not check the actual file system object that the operat-
ing system uses, PeaPod leverages stackable file sys-
tem to integrate directly into the kernel’s file system
security framework. PeaPod is designed to avoid the
time of check, time of use race conditions that affect
previous approaches by performing all file system se-
curity checks within the regular file system security
paths and on the same file system objects that the ker-
nel itself uses.

This paper describes how the PeaPod system can
isolate applications to limit their ability to attack a sys-
tem. The next section describes the PeaPod’s virtual-
ization abstractions in further detail followed by the
virtualization architecture to support PeaPod. The next
two sections provide a security analysis of the PeaPod
system as well as examples of how to use PeaPod.
Then the experimental results evaluating the overhead
associated with PeaPod and measures the system per-
formance of providing secure isolation for several ap-
plication scenarios are presented followed by related
work. Finally, we present some concluding remarks.

PeaPod Model

The PeaPod model is based on a virtualization
abstraction called a pod (PrOcess Domain). A pod
looks just like a regular machine and provides the
same application interface as the underlying operating
system. Pods can be used to run any application, privi-
leged or otherwise, without modifying, recompiling,
or relinking applications. This is essential for both
easy-of-use and protection of the underlying system,
since applications not executing in a pod offer an op-
portunity to attack the system. Processes within a pod
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can make use of all available operating system ser-
vices, just like processes executing in a traditional op-
erating system environment.

A pod does not run an operating system instance,
it instead provides a virtualized machine environment
by providing a host-independent virtualized view of
the underlying host operating system. This is done by
providing each pod with its own private, virtual
namespace. All operating system resources are only
accessible to processes within a pod through the pod’s
private, virtual namespace.

A pod namespace is private in that only process-
es within the pod can see the namespace. It is private
in that it masks out resources that are not contained
within the pod. Processes inside a pod appear to one
another as normal processes that can communicate us-
ing traditional IPC mechanisms. Other processes out-
side a pod do not appear in the namespace and are
therefore not able to interact with processes inside a
pod using IPC mechanisms such as shared memory or
signals. Instead, processes outside the pod can only in-
teract with processes inside the pod using network
communication and shared files that are normally used
to support process communication across machines.

A pod namespace is virtual in that all operating
system resources including processes, user informa-
tion, files, and devices are accessed through virtual
identifiers within a pod. These virtual identifiers are
distinct from host-dependent resource identifiers used
by the operating system. The pod virtual namespace
provides a host-independent view of the system by us-
ing virtual identifiers that remain consistent through-
out the life of a process in the pod, regardless of
whether the pod moves from one system to another.

The pod private, virtual namespace enables se-
cure isolation of applications by providing complete
mediation to operating system resources. Pods can re-
strict what operating system resources are accessible
within a pod by simply not providing identifiers to
such resources within its namespace. A pod only
needs to provide access to resources that are needed
for running those processes within the pod. It does not
need to provide access to all resources to support a
complete operating system environment. An admini-
strator can configure a pod in the same way one con-
figures and installs applications on a regular machine.

For example, if one had a web server that just
serves static content, one can easily setup a web server
pod to only contain the files the web server needs to
run and the content it wants to serve. The web server
pod could have its own IP address, decoupling its net-
work presence from the underlying system. It could al-
so limit network access to client-initiated connections.
If the web server application gets compromised, the
pod limits the ability of an attacker to further harm the
system since the only resources he has access to are
the ones explicitly needed by the service. Furthermore,
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there is no need to carefully disable other network ser-
vices commonly enabled by the operating system that
might be compromised within the pod since there is no
operating system running in the pod.

Pods can be used in conjunction with peas (Pro-
tection and Encapsulation Abstraction). While pods
separate processes into separate machine environ-
ments, a pea can be used in a pod to provide fine-
grain isolation among application components that
may need to interact within a single machine envi-
ronment, such as using interprocess communication
mechanisms, including signals, shared memory, IPC
messages and semaphores, and process forking and
execution.

A pea is an abstraction that can contain a group
of processes and restrict those processes in interacting
with processes outside of the pea, and limit their ac-
cess to only a subset of system resources. Unlike a
pod, which achieves isolation by controlling what re-
sources are located within the namespace, a pea
achieves isolation levels by controlling what system
resources within a namespace its processes are al-
lowed to access and interact with. For example, a
process in a pea can see file system resources and pro-
cesses available to other peas within a single pod, but
can be restricted from accessing them. Unlike process-
es in separate pods, processes in separate peas in a sin-
gle pod share the same namespace and can be allowed
to interact using traditional interprocess communica-
tion mechanisms. Processes can also be allowed to
move from one pea to another in the same pod. How-
ever, by default processes in separate peas cannot ac-
cess any resource that is not made available to its pea,
be it a process pid, IPC key or file system entry.

Peas can support a wide range of resource re-
striction policies. By default, processes contained in a
pea can only interact with other processes in the same
pea. They have no access to other resources, such as
file system and network resources or processes outside
of the pea. This provides a set of fail safe defaults, as
any extra access has to be explicitly allowed by the
administrator.

The pea abstraction allows for processes running
on the same system to have varying levels of isolation,
by running in separate peas. Many peas can be used
side by side to provide flexibility in implementing a
least privilege system for programs that are composed
of multiple components that must work together, but
do not all need the same level of privilege. One usage
scenario would be to have a severely resource limited
pea in which a privileged process executes but allows
the process to use traditional UNIX semantics to work
with less privileged programs that are in less resource
restricted peas.

For example, peas can be used to allow a web
server appliance the ability to serve dynamic content
via CGI in a more secure manner. Since the web
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server and the CGI scripts need separate levels of priv-
ilege, as well as different resource requirements, they
should not have to run within the same security con-
text. By configuring two separate peas for a web ser-
vice, one for the web server to run within, and a sepa-
rate for the specific CGI programs it wants to execute,
one limits the damage that can occur if a fault is dis-
covered within the web server. If one manages to exe-
cute malicious code within the context of the web
server, one can only make use of resources that are al-
located to the web server’s pea, as well as only exe-
cute the specific programs that are needed as CGIs.
Since the CGI programs will also only run within their
specific security context, the ability for malicious code
to do harm is severely limited.

Peas and pods together provide secure isolation
based on flexible resource restriction for programs as
opposed to restricting access based on users. Peas and
pods also do not subvert underlying system restric-
tions based on user permissions, but instead comple-
ment such models by offering additional resource con-
trol based on the environment in which a program is
executed. Instead of allowing programs with root priv-
ileges to do anything they want to a system, PeaPod
enables a system to control the execution of such pro-
grams to limit their ability to harm a system even if
they are compromised.

PeaPod Virtualization

To support the PeaPod virtualization abstraction
design of secure and isolated namespaces on commod-
ity operating systems, we employ a virtualization ar-
chitecture that operates between applications and the
operating system, without requiring any changes to
applications or the operating system kernel. This thin
virtualization layer is used to translate between the
PeaPod namespaces and the underlying host operating
system namespace. It protects the host operating sys-
tem from dangerous privileged operations that might
be performed by processes within the PeaPod, as well
as protecting those processes from processes outside
of the PeaPod on the host. It also enables program-
based resource restriction for file access, device ac-
cess, network access, root privileges, process interac-
tions, and process transitions among peas.

Pod Virtualization

Pods are supported using virtualization mecha-
nisms that translate between pod virtual resource iden-
tifiers and operating system resource identifiers. Every
resource that a process in a pod accesses is through a
virtual name, which corresponds to an operating sys-
tem resource identified by a physical name. When an
operating system resource is created for a process in a
pod, such as with process or IPC key creation, instead
of returning the corresponding physical name to the
process, the pod virtualization layer catches the physi-
cal name value, creates a shadow identifier with a
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private virtual name that maps to the physical name
and returns the private virtual name to the process.
Similarly, any time a process passes a virtual name to
the operating system, the virtualization layer catches
it, and replaces it with the appropriate physical name.
The key pod virtualization mechanisms used are a sys-
tem call interposition mechanism and the chroot utility
with file system stacking to provide each pod with its
own file system namespace that can be separate from
the regular host file system.

Pods can take advantage of the regular user iden-
tifier (UID) security model to support multiple securi-
ty domains on the same system running on the same
operating system kernel. For example, since each pod
can have its own private file system, each pod can
have its own /etc/passwd file that determines its list of
users and their corresponding UIDs. Since the pod file
system is separate from the host file system, a process
running in the pod is effectively running in a separate
security domain from another process with the same
UID that is running directly on the host system. Al-
though both processes have the same UID, each
process is only allowed to access files in its own file
system namespace. Similarly, multiple pods can have
processes running on the same system with the same
UID, but each pod effectively provides a separate se-
curity domain since the pod file systems are separate
from one another. Since each pod provides a separate
security domain, it needs to be viewed as if it is a dis-
tinct machine. For instance, if two physical machines
share a writable file system, an attacker could leverage
flaws in one machine to get programs on the shared
file system that can be used to exploit the second one.
While there is value in sharing file system data be-
tween pods, one has to use the same care in verifying
the shared file system data with multiple pods as one
would with multiple independent machines.

Because the root UID 0 is privileged and treated
specially by the operating system kernel, pod virtual-
ization also treat UID 0 processes inside of a pod in a
special way to prevent them from breaking the pod ab-
straction, accessing resources outside of the pod, and
causing harm to the host system. While a pod can be
configured for administrative reasons to allow full
privileged access to the underlying system, we focus
on the case of pods for running application services
that do not need to be used in this manner. Pods do not
disallow UID 0 processes, which would limit the
range of application services that could be run inside
pods. Instead, pods provide restrictions on such pro-
cesses to ensure that they function correctly inside of
pods [22].

While a process is running in user space, the
UID it runs as does not have any effect. Its UID only
matters when it tries to access the underlying kernel
via one of the kernel entry points, namely devices and
system calls. Since a pod already provides a virtual
file system that includes a virtual /dev with a limited
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set of secure devices, the device entry point is already
secured. The only system calls of concern are those
that could allow a root process to break the pod ab-
straction. Only a small number of system calls can be
used for this purpose [22].

Pea Virtualization

Peas are supported using virtualization mecha-
nisms that label resources and enforce a simple set of
configurable permission rules to impose levels of iso-
lation among process running within a single pod. For
example, when a process is created via the fork() and
clone() system calls, its process identifier is tagged
with the identifier of the pea in which it was created.
Pea’s leverage the pod’s shadow pod process identifier
and also place it in the same pea as its parent process.
A process’s ability to access pod resources is then dic-
tated by the set of access permissions rules associated
with its pea. Like pod virtualization, the key pea virtu-
alization mechanisms used are a system call interposi-
tion mechanism and file system stacking for file sys-
tem resources.

Pea virtualization employs system call interposi-
tion to wrap existing system calls to enforce restric-
tions on process interactions by controlling access to
process and IPC virtual identifiers. Since each re-
source is labeled with the pea in which it was created,
the system call interposition mechanism checks if the
pea labels of the calling process and the resource to be
accessed are the same. For example, if a process in
one pea would try to send a signal to another process
in a separate pea by using the kill system call, the sys-
tem would return an error value of EPERM, as the
process exists, but this process has no permission to
signal it. On the other hand, a parent is able to use the
wait system call to clean up a terminated child process’s
state, even if that child process is running within a sepa-
rate pea since wait does not modify a process by affect-
ing its execution. This is analogous to a regular user be-
ing able to list the meta data of a file, such as owner
and permission bits, even if the user has no permission
to read from or write to the file.

When a new process is created, it executes in the
pea security domain of its parent. However, when the
process executes a new program, one wants the ability
to transition the pea security domain the new program
is executing within. Therefore, peas support a single
type of pea access transition rule that lets a pea deter-
mine how a process can transition from its current pea
to another. This transition rule is specified by a pro-
gram filename and pea identifier. A pea is able to have
multiple pea access transition rules of this type. The
rule specifies that a process should be moved into the
pea specified by the pea identifier if it executes the
program specified by the given filename. This is use-
ful when it is desirable to have that new program exe-
cution occur in an environment with different resource
restrictions. For example, an Apache web server
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running in a pea may want to execute its CGI child
processes in a pea with different restrictions. Pea tran-
sitioning is supported by interposing on the exec sys-
tem call and transitioning peas if the process to be ex-
ecuted matches a pea access transition rule for the cur-
rent pea. Note that pea access transition rules are one-
way transitions that do not enable a process to return
to its previous pea unless its new pea explicitly pro-
vides for such a transition.

System call interposition is also used to control
network access for processes inside the pea. Peas pro-
vide two networking access rule types, one to allow
processes in the pea to make outgoing network con-
nections on a pod’s virtual network adapters, the other
to allow processes in the pea to bind to specific ports
on the adapter to receive incoming connections. Pea
network access rules can allow complete access to a
pod network adapter, or only allow access on a per
port basis. Since any network access occurs through
system calls, peas simply check the options of the net-
working system call, such as bind and connect, to en-
sure that it is allowed to perform the specified action.

Pea virtualization employs a set of file system
access rules and file systems stacking to provide each
pea with its own permission set on top of the pod file
system. To provide a least privilege environment, pro-
cesses should not have access to file system privileges
they do not need. For example, while Sendmail has to
write to /var/spool/mqueue, it only has to read its con-
figuration from /etc/mail and should not need to have
write permission on its configuration. To implement
such a least privilege environment, peas enable files to
be tagged with additional permissions that overlay the
respective underlying file permissions. File system
permissions determine access rights based on the user
identity of the process while pea file permission rules
determine access rights based on the pea context in
which a process is executed. Each pea file permission
rule can selectively allow or deny use of the underly-
ing read, write and execute permissions of a file on a
per pea basis. The underlying file permission is always
enforced, but pea permissions can further restrict
whether the underlying permission is allowed to take
effect. The final permission is achieved by performing
a bitwise AND operation on both the pea and file sys-
tem permissions. For example, if the pea permission
rule allowed for read and execute, the permission set
of r-x would be triplicated to r-xr-xr-x for the three
sets of UNIX permissions and the bitwise AND opera-
tion would mask out any write permission that the un-
derlying file system allow. This prevents any process
in the pea from opening the file to modify it.

Enforcing on disk labeling of every single file,
such as supported through access control lists provid-
ed by many modern file systems, is too inflexible if a
single underlying file system is going to be used for
multiple disparate pods and peas. Since each pea in
each pod might make use of similar underlying files
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but have different permission schemes, storing the pea
permission data on disk is not feasible. Instead, peas
support the ability to dynamically label each file with-
in a pod’s file system based on two simple path match-
ing permission rules, path specific permission rules
and directory default permission rules. A path specific
permission matches an exact path on the file system.
For instance, if there is a path specific permission for
/home/userffile, only that file will be matched with the
appropriate permission set. On the other hand, if there
is a directory default permission for the directory
lhome/user/ any file under that directory in the directo-
ry tree can match it, and inherit its permission set.

Given a set of path specific and directory default
permissions for a pea, the algorithm for determining
what permission matches to what path starts with the
complete path and walks up the path to the root direc-
tory until it finds a matching permission rule. The al-
gorithm can be described in four simple steps:

1. If the specific path has a path specific permis-
sion, return that permission set.

2. Otherwise, choose the path’s directory as the
current directory to test.

3. If the directory being tested has a directory de-
fault permission, return that permission set.

4. Otherwise set its parent as the current directory

to test and go back to step 3.

If there is no path specific permission, the closest
directory default permission to the specified path be-
comes the permission set for that path. Since, by de-
fault, peas give the root directory *“/” a directory de-
fault permission denying all permissions, the default
for every file on the system, unless otherwise specified
is deny. This ensures the pea’s have a fail safe default
setup and do not allow access to any files unless speci-
fied by the administrator.

The semantics of pea file permission are based
on file path name. If a file has more than one path
name, such as via a hard link, both have to be protect-
ed by the same permission, otherwise depending on
what order the underlying file is accessed the permis-
sion set it gets will be determined simply based on the
path name that was accessed initially. This issue only
occurs on creating the initial set of pea file access per-
missions. Once the pea is setup, any hard links that are
created will obey the regular file system permissions.
For instance, one is not allowed to create a hard link to
a file that one does not have permission to. On the oth-
er hand, if one has permission to access the file, a path
specific permission rule will be created for the newly
created file that corresponds to the permission of the
path name it was linked to.

The pea architecture makes use of the pod’s
stackable file system to integrate the pea file system
namespace restrictions into the regular kernel permis-
sion model, thereby avoiding time of check, time of
use race conditions. It accomplishes this by stacking
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on top of the file system’s lookup function, which fills
in the respective file’s inode structure, and the permis-
sion function, which makes use of the stored permis-
sion data to make simple permission determinations.
A file system’s permission function is a standard part
of the operating system’s security infrastructure, so no
kernel changes are necessary.
Pea Configuration Rules
File System

Many system resources in UNIX, including nor-
mal files, directories, and system devices, are accessed
via files so controlling access to the file system is cru-
cial. Each pea must be restricted to those files used by
its component processes. This control is important for
security, because processes that work together do not
necessarily need the same access rights to files. All
file system access is controlled by path specific and
directory default rules, which specify a file or directo-
ry and an access right, such as read, write, and exe-
cute.

The access values for file rules are read, write,
execute, similar to standard UNIX permissions. For
convenience, we also define allow and deny, which
are aliases for all three of read, write, and execute and
cannot be combined with other access values in the
same rules. When a path specific or directory default
rule gives access to a file, it implicitly gives execute,
but not read or write, access to all parent directories of
the file, up to the root directory. On the other hand, if a
path specific rule denies access to a directory, then ac-
cess to both the directory and the directory contents,
including subdirectories and files, will be denied, even
if a separate rule would give access to subdirectories
or files due to it being the best match.

pod mailserver {

pea sendmail {
path /etc/mail/aliases read
path /etc/mail/aliases.db read

}

pea newaliases {
path /etc/mail/aliases read
path /etc/mail/aliases.db read,write

Rule 1: Example of Read/Write rules.

Consider the case of the Sendmail mail daemon
and the newaliases command with regard to the sys-
tem-wide aliases file. Sendmail runs as the root user
and needs to be able to read the aliases file in order to
know to where it should forward mail or otherwise re-
direct it. newaliases is a symbolic link to sendmail and
typically also runs as the root user in order to update the
aliases file and convert it into the database format used
by the Sendmail daemon. In our example, newaliases
runs in its own pea and is able to read from /etc/
mail/aliases and read from and write to /etc/mail/aliases.
db. Meanwhile sendmail runs in another pea and is able
to read both files, but not write to them. We use two path
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specific rules to express these access rules as described
in Rule 1.

pod music {
pea play {
path /dev/dsp write
}
pea rec {
path /dev/dsp read
}

Rule 2: Protecting a device.

Similar rules can protect a device like /dev/dsp.
When a user logins into a system locally, via the con-
sole, they are typically given control of local devices,
such as the physical display and the sound card. Any
application that the user runs has access to read from
and write to these local devices, even though this priv-
ilege is not necessary. For example, we want to restrict
playing and recording of sound files to the play and rec
applications, which are part of SoX [27]. Rule 2 de-
scribe the rules that provide the appropriate access to
the device.

The other file system rule is dir-default. 1t uses
the same access values as path, but it is used to specify
the default access for files below a directory. Any file
or sub-directory will inherit the same access flags
since access is determined by matching the longest
possible path prefix. Unlike path specific rules, direc-
tory default rules can deny access to a directory in
general, while still allowing access to specific files.
Rule 3 describes a pea that denies access to all files in
/bin, while only allowing access to /bin/ls.

pod filelLister {
pea onlyLs {
dir-default /bin  deny
path /bin/ls allow

Rule 3: Directory default rule.

Transition Rules

In the Sendmail/Procmail use case, sendmail
forks off and executes a procmail process to deliver the
mail to the user’s spool. Procmail needs different se-
curity settings, so it must transition from a Sendmail
pea to a Procmail pea. Rules must be defined that state
to which pea a process will transition upon execution.
When a process calls the execve system call, we exam-
ine the file name to be executed and perform a longest
prefix match on all the transition rules. For instance,
by specifying a directory for a transition, PeaPod will
cause a pea transition to occur for any program exe-
cuted that is located in that directory, unless there’s a
more specific transition rule available.

Rule 4 creates a pea for Sendmail and Procmail,
and specifies that a process should transition when the
procmail program is executed.
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pod mailserver {
pea sendmail {
transition /usr/bin/procmail
}
pea procmail {

}

procmail

}
Rule 4: Transition rules.

PeaPod does not provide the ability for a process
to transition to another pea besides by executing a new
program. If it could, a process could open an allowed
file in one pea and then transition to another pea
where access to that file was not allowed and thus cir-
cumvent the security restrictions.

Networking Rules

PeaPod provides two rules that define the net-
work capabilities a pea exposes to the processes run-
ning within it. First, peas are able to restrict a process
from instantiating an outgoing connection. Second,
peas are able to limit what ports a process can bind to
and listen for incoming connections. By default, peas
do not let processes make any outgoing connections or
bind to any port. While a full network firewall is an
important part of any security architecture, it is or-
thogonal to the goals of PeaPod and therefore belongs
in its own security layer.

Continuing the simplified Sendmail/Procmail us-
age case, an administrator would want to easily con-
fine the network presence of processes running within
Sendmail/Procmail peas. By allowing sendmail to
make outgoing connections, to enable it to send mes-
sages, as well as bind to port 25, the standard port for
receiving messages, Sendmail can continue to work
normally. On the other hand, processes run within the
procmail pea, which will be less restricted, are not al-
lowed to bind to any port for this same reason. On the
other hand, programs run from within the procmail
pea are allowed to initiate outgoing network connec-
tions. This allows programs, such as spam filters that
require checking network based information, to con-
tinue to work.

pod mailserver {
pea sendmail {
outgoing allow
bind tep/25
}
pea procmail {
outgoing allow

}

Rule 5: Networking rules.

Shared Namespace Rules

PeaPod provides a single namespace rule for en-
abling processes to access the pod’s virtual private
identifiers that do belong to its personal pea. PeaPod
enables peas to be configured to only have access to
resources tagged with specific pea identifiers or with
the special global pea identifier that enables access to
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every virtual private resource in the pod. A common
usage of this rule is to enable the creation of a global
pea with access to all the resources of a pod, for in-
stance to be enable a process to startup and shutdown
services run within a resource restricted pea. Rule 6
describes a pod that has a global pea that is able to ac-
cess every private virtual identifier in the pod, as well
as pea that is able to access the virtual identifiers that
belong to one of its sibling peas.

pod service {

pea global access {
namespace global

}

pea testl {
namespace test2

}

pea test {

}

Rule 6: Namespace access rules.

Managing Rules

To make it simpler for administrators to create
peas in a pod, we allow groups of rules to be saved to
a file and included in the main configuration file for a
given PeaPod configuration. These groups of rules
would typically describe the minimum resources nec-
essary for a single application. Application packagers
can include rule group files in their package and ad-
ministrators can share rule groups with each other.

path /usr/bin/gcc read, execute
dir-default /usr/lib/gcc-1ib read,execute
path /usr/bin/cpp read, execute

path /usr/lib/libiberty.a read

path /usr/bin/ar read, execute
path /usr/bin/as read,execute
path /usr/bin/1d read, execute
path /usr/bin/ranlib read,execute

path /usr/bin/strip read, execute

Rule 7: Compiler rules.

A rule group, such as Rule 7 for a compiler,
would be stored in a central location. An administrator
uses an include rule to reference the external file as
part of a development PeaPod. Rule 8 contains the
tools necessary to build a Linux kernel from source;
and permits access to the source code itself and a
writable directory for the binaries.

pod workstation {
pea kernel-development {

include "stdlibs"
include "compiler"
include "tar"
include "bzip2"
dir-default /usr/local/src/ read
dir-default /scratch/binaries allow

Rule 8: Set of multiple rule files.

These management rules demonstrate PeaPod’s
ability to distinguish the minimal needs of a program
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service in order to execute, while enabling an admini-
strator to define a local policy that can restrict what lo-
cal resources the program service has access to. The
knowledge needed to build a set of rules for a program
service that provides the minimal needed set of re-
sources to execute is not always readily available to
users of security systems. However, this knowledge is
available to the authors and distributors of the system.
PeaPod’s management rules enable the creation and
distribution of rule files that define the minimal set of
resources needed to execute a program service, while
enabling the local administrator to further define the
resources restriction policy.

Security Analysis

Saltzer and Schroeder [26] describe several prin-
ciples for designing and building secure systems.
These include:

® Economy of mechanism: Simpler and smaller

systems are easier to understand and ensure that
they do not allow unwanted access.

® Fail safe defaults: Systems must choose when
to allow access as opposed to choosing when to
deny.
Complete mediation: Systems should check ev-
ery access to protected objects.
® Least privilege: A process should only have ac-

cess to the privileges and resources it needs to

do its job.
® Psychological acceptability: 1f users are not
willing to accept the requirements that the secu-
rity system imposes, such as very complex
passwords that the users are forced to write
down, security is impaired. Similarly, if using
the system is too complicated, users will mis-
configure it and end up leaving it wide open.
Work factor: Security designs should force an
attacker to have to do extra work to break the
system. The classic quantifiable example is
when one adds a single bit to an encryption key,
one doubles the key space an attacker has to
search.

PeaPod is designed to satisfy these six principles.
PeaPod provides economy of mechanism using a thin
virtualization layer based on system call interposition
and file system stacking that only adds a modest amount
of code to a running system. The largest part of the sys-
tem is due to the use of a null stackable file system with
7000 lines of C code, but this file system was generated
using a simple high-level file system language [33], and
only 50 lines of code were added to this well tested file
system to implement the PeaPod file system security.
Furthermore, PeaPod changes neither applications nor
the underlying operating system kernel. The modest
amount of code to implement PeaPod makes the system
easier to understand. Since the PeaPod security model
only provides resources that are explicitly stated, it is
relatively easy to understand the security properties of
resource access provided by the model.
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PeaPod provides fail safe defaults by only pro-
viding access to resources that have been explicitly
given to peas and pods. If a resource is not created
within a pea, or explicitly made available to that pea,
no process within that pea will be allowed to access it.
While a pea can be configured to enable access to all
resources of the pod, this is an explicit action an ad-
ministrator has to take.

PeaPod provides for complete mediation of all
resources available on the host machine by ensuring
that all resource accesses occur through the pod’s vir-
tual namespace. Unless a file, process, or other operat-
ing system resource was explicitly placed in the pod
by the administrator or created within the pod, Pea-
Pod’s virtualization will not allow a process within a
pod to access the resource.

PeaPod’s provide a least privilege environment
in two ways. First, pods provide a least privilege envi-
ronment by enabling an administrator to only include
the data necessary for each service. PeaPod can pro-
vide separate pods for individual services so that sepa-
rate services are isolated and restricted to the appropri-
ate set of resources. Even if a service is exploited,
PeaPod will limit the attacker to the resources the ad-
ministrator provided for that service. While one can
achieve similar isolation by running each individual
service on a separate machine, this leads to inefficient
use of resources. PeaPod maintains the same least
privilege semantic of running individual services on
separate machines, while making efficient use of ma-
chine resources at hand. For instance, an administrator
could run MySQL and Sendmail mail transfer services
on a single machine, but within different pods. If the
Sendmail pod gets exploited, the pod model ensures
that the MySQL pod and its data will remain isolated
from the attacker. Furthermore, PeaPod’s peas are ex-
plicitly designed to enable least privileged environ-
ments by restricting programs in an environment that
can be easily limited to provide the least amount of ac-
cess for the encapsulated program to do its job.

PeaPod provides psychological acceptability by
leveraging the knowledge and skills system adminis-
trators already use to setup system environments. Be-
cause pods provide a virtual machine model, adminis-
trators can use their existing knowledge and skills to
run their services within pods. Furthermore, peas use a
simple resource based model that does not require a
detailed understanding of any underlying operating
system specifics. This differs from other least privi-
lege architectures that force an administrator to learn
new principles or complicated configuration languages
that require a detailed understanding of operating sys-
tem principles.

Similar to least privilege, PeaPod increases the
work factor that it would take to compromise a system
by simply not making available the resources that at-
tackers depend on to harm a system once they have
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broken in. For example, since PeaPod can provide se-
lective access to what program are included within their
view, it would be very difficult to get a root shell on a
system that does not have access to any shell program.

Usage Examples

We briefly describe three examples that help il-
lustrate how the PeaPod virtualization layer can be
used to improve computer security and application
availability for different application scenarios. The ap-
plication scenarios are e-mail delivery, web content
delivery, and desktop computing. In the following ex-
amples we make extensive use of PeaPod’s ability to
compose rule files in order to simplify the rules. In-
stead of listing every file and library necessary to exe-
cute a program, we isolate them into a separate rule
file to place the focus on the actual management of the
service the pea is trying to protect.

E-mail Delivery

For e-mail delivery, PeaPod’s virtualization layer
can isolate different components of e-mail delivery to
provide a significantly higher level of security in light
of the many attacks on Sendmail vulnerabilities that
have occurred. Consider isolating a Sendmail installa-
tion that also provides mail delivery and filtering via
Procmail. E-mail delivery services are often run on the
same system as other Internet services to improve re-
source utilization and simplify system administration
through server consolidation. However, this can pro-
vide additional resources to services that do not need
them, potentially increasing the damage that can be
done to the system if attacked.

pod mail-delivery {
pea sendmail {
include "stdlibs"
include "sendmail"

dir-default /etc read
dir-default /var/spool/mqueue allow
dir-default /var/spool/mail allow
dir-default /var/run allow
path /usr/bin/procmail read, execute
transition /usr/bin/procmail  procmail
bind tep/25
outgoing allow

}
pea procmail ({
dir-default / allow
outgoing allow
}
}

Rule 9: E-Mail delivery configuration.

As shown in Rule 9, using PeaPod’s virtualiza-
tion layer, both Sendmail and Procmail can execute in
the same pod, which isolates e-mail delivery from oth-
er services on the system. Furthermore, Sendmail and
Procmail can be placed in separate peas, which allows
necessary interprocess communication mechanisms be-
tween them while improving isolation. This pod is a
common example of a privileged service that has child
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helper applications. In this case, the Sendmail pea is
configured with full network access to receive e-mail,
but only with access to files necessary to read its con-
figuration and to send and deliver email. Sendmail
would be denied write access to file system areas such
as /usr/bin to prevent modification to those executables,
and would only be allowed to transition a process to
the Procmail pea if it is executing Procmail, the only
new program its pea allows it to execute. On mail de-
livery, Sendmail would then exec Procmail, which
transitions the process into the Procmail pea. The
Procmail pea is configured with a more liberal access
permission, namely allowing access to the pod’s entire
file system, enabling it to run other programs, such as
SpamAssassin. While an administrator could config-
ure programs Procmail executes, such as SpamAssas-
sin, to run within their own Peas, this case keeps them
all within a single pea to demonstrate how simple a
system can be. As a result, the Sendmail/Procmail pod
can provide full e-mail delivery service while isolating
Sendmail such that even if Sendmail is compromised
by an attack, such as a buffer overflow, the attacker
would be contained in the Sendmail pea and not even
be able to execute processes, such as a root shell, to
further compromise the system.

Web Content Delivery

For web content delivery, PeaPod’s virtualization
layer can isolate different components of web content
delivery to provide a significantly higher level of se-
curity in light of common web server attacks that may
exploit CGI script vulnerabilities. Consider isolating
an Apache web server front end, a MySQL database
back-end, and CGI scripts that interface between
them. While one could run Apache and MySQL in
separate pods, since they are providing a single ser-
vice, it makes sense to run them within a single pod
that is isolated from the rest of the system. However,
since both Apache and MySQL are within the pod’s
single namespace, if an exploit is discovered in Apache,
it could be used to perform unauthorized modifications
to the MySQL database.

To provide greater isolation among different web
content delivery components, Rule 10 describes a set
of three peas in a pod: one for Apache, a second for
MySQL, and a third for the CGI programs. Each pea
is configured to contain the minimal set of resources
needed by the processes running within the respective
pea. The Apache pea includes the apache binary, con-
figuration files and the static HTML content, as well
as a transition permission to exec all CGI programs in-
to the CGI pea. The CGI pea contains the relevant
CGI programs as well as access to the MySQL dae-
mon’s named socket, allowing interprocess communi-
cation with the MySQL daemon to perform the rele-
vant SQL queries. The MySQL pea contains the mysql
daemon binary, configuration files and the files that
make up the relevant databases. Since Apache is the
only program exposed to the outside world, it is the
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only process that can be directly exploited. However,
if an attacker is able to exploit it, the attacker is limit-
ed to a pea that is only able to read or write specific
Apache files, as well as exec specific CGI programs
into a separate pea. Since the only way to access the
database is through the CGI programs, the only access
to the database an attacker would have is what is al-
lowed by said programs. Consequently, the ability of
an attacker to cause serious harm to such a web con-
tent delivery system running with PeaPod’s virtualiza-
tion layer is significantly reduced.

pod web-delivery {

pea apache {
include "stdlibs"
path /usr/sbin/apache
path /usr/sbin/apachectl read, execute
dir-default /var/www read, execute
transition /var/www/cgi-bin cgi
bind tcp/80

}

pea cgi {
include "stdlibs"
include "perl"
dir-default /var/www/data allow
path /tmp/mysql.sock allow

}

pea mysql {
include "stdlibs"
path /usr/sbin/mysqld read, execute
path /tmp/mysql.sock allow
dir-default /usr/share/mysql read
dir-default /var/lib/mysql allow

read, execute

Rule 10: Web delivery rules.

Desktop Computing

For desktop computing, PeaPod’s virtualization
layer enables desktop computing environments to run
multiple desktops from different security domains
within multiple pods. Peas can also be used within the
context of such a desktop computing environment to
provide additional isolation. Many application used on
a daily basis, such as mp3 players and web browsers,
have had security holes. These holes enable attackers
to execute malicious code or gain access to the entire
local file system [12, 13]. Rule 11 describes a set of
PeaPod rules that are used to contain a small set of
desktop applications being used by a user with the
/home/spotter home directory.

To secure an mp3 player, a pea can be created
within the desktop computing pod that restricts the
mp3 player’s ability to make use of files outside of a
special mp3 directory. Since most users store their mu-
sic within its own subtree, this isn’t a serious restric-
tion. Most mp3 content should not be trusted, espe-
cially if one is streaming mp3s from a remote site. By
running the mp3 player within this fully restricted pea,
a malicious mp3 cannot compromise the user’s desk-
top session. This mp3 player pea is simply configured
with four file system permissions. A path specific per-
mission that provides access to the mp3 player itself is
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required to load the application. A directory default
permission that provides access to the entire mp3 di-
rectory subtree is required to give the process access
to the mp3 file library. A directory-default permission
to a directory meant to store temporary files so the
mp3 player can be used as a helper application. Final-
ly, a path specific permission that provides access to
the /dev/dsp audio device is required to allow the
process to play audio.

pod desktop {
pea firefox {
include "firefox"
dir-default /home/spotter/.mozilla allow

dir-default /home/spotter/tmp allow
dir-default /home/spotter/download allow
transition /usr/bin/mpgl23 mpgl23
transition /usr/bin/acroread acroread
}
pea mpgl23 {
include "stdlibs"
path /usr/bin/mpgl23 read, execute
path /dev/dsp write
dir-default /home/spotter/tmp allow
dir-default /home/spotter/music allow
}
pea acroread {
include "stdlibs"
include "acroread"
dir-default /home/spotter/tmp allow

}
}

Rule 11: Desktop application rules.

To secure a web browser, a pea can be created
within a desktop computing pod that restricts the web
browser’s access to system resources. Consider the
Mozilla Firefox web browser as an example. A Fire-
fox pea would need to have all the files Firefox needs
to run accessible from within the pea. Mozilla dynami-
cally loads libraries and stores them along with its
plugins within the /usr/lib/firefox directory. By providing
a directory default permission that provides access to
that directory, as well as another directory default per-
mission that provides access to the user’s .mozilla di-
rectory, the Firefox web browser can run as normal
within this special Firefox pea. Users also want the
ability to be able to download and save files, as well
as launch viewers, such as for postscript or mp3 files,
directly from the web browser. This involves a simple
reconfiguration of Firefox to change its internal appli-
cation.tmp_dir variable to be a directory that is writable
within the Mozilla pea. By creating such a directory,
such as download within the users home directory, and
providing a directory default permission allowing ac-
cess, we enable one to explicitly save files, as well as
implicitly save when one wants to execute a helper ap-
plication. Similarly, just like Mozilla is configured to
run helper applications for certain file types, one would
have to configure the Mozilla pea to execute those
helper applications within their respective peas. As
shown, for an mp3 player, configuring such a pea for
these process is fairly simple. The only addition one
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would have to make is to provide an additional pea
transition permission to the Mozilla pea that tells the
PeaPod’s virtualization layer to transition the process to
a separate pea on execution of programs such as the
mpg123 mp3 player or the Acrobat Reader PDF viewer.

Experimental Results

We implemented PeaPod’s virtualization layer as
a loadable kernel module in Linux that requires no
changes to the Linux kernel source code or design. We
present some experimental results using our Linux
prototype to quantify the overhead of using PeaPod on
various applications. Experiments were conducted on
two IBM Netfinity 4500R machines, each with a 933
Mhz Intel Pentium-III CPU, 512 MB RAM, 9.1 GB
SCSI HD and a 100 Mbps Ethernet connected to a
3Com Superstack II 3900 switch. One of the machines
was used as an NFS server from which directories
were mounted to construct the virtual file system for
the PeaPod on the other client system. The client ran
Debian stable with a 2.4.21 kernel.

Name Description
getpid average getpid runtime
ioctl average runtime for the FION-
READ ioctl

shmget-shmctl ~ IPC Shared memory segment
holding an integer is created and

removed

semget-semctl  [PC Semaphore variable is creat-

ed and removed

fork-exit process forks and waits for child
that calls exit immediately

Apache Runs Apache 1.3 under load and
measures average request time

Make Linux Kernel 2.4.21 compile with
up to 10 processes active at one
time

Postmark Use Postmark Benchmark to sim-
ulate Sendmail performance

MySQL “TPC-W like” interactions

benchmark that uses Tomcat 4
and MySQL 4

Table 1: Application benchmarks.

To measure the cost of PeaPod’s virtualization
layer, we used a range of micro benchmarks and real
application workloads and measured their performance
on our Linux PeaPod prototype and a vanilla Linux sys-
tem. Table 1 shows the seven micro-benchmarks and
four application benchmarks we used to quantify Pea-
Pod’s virtualization overhead. To obtain accurate mea-
surements, we rebooted the system between measure-
ments. Additionally, the system call micro-benchmarks
directly used the TSC register available on Pentium
CPUs to record time-stamps at the significant mea-
surement events. Each time-stamp has an average cost
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of 58 ns. The files for the benchmarks were stored on
the NFS Server. All of these benchmarks were per-
formed in a chrooted environment on the NFS client
machine running Debian Unstable. Figure 1 shows the
results of running the benchmarks under both configu-
rations, with the vanilla Linux configuration normal-
ized to one. Since all benchmarks measure the time to
run the benchmark, a small number is better for all
benchmarks results.
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Figure 1: PeaPod virtualization overhead.
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The results in Figure 1 show that PeaPod’s virtu-
alization overhead is small. PeaPod incurs less than
10% overhead for most of the micro-benchmarks and
less than 4% overhead for the application workloads.
The overhead for the simple system call getpid bench-
mark is only 7% compared to vanilla Linux, reflecting
the fact that PeaPod virtualization for these kinds of
system calls only requires an extra procedure call and
a hash table lookup.

The most expensive benchmarks for PeaPod is
semget+semctl, which took 51% longer than vanilla
Linux. The cost reflects the fact that our untuned Pea-
Pod prototype needs to allocate memory and do a
number of namespace translations. The ioctl bench-
mark also has high overhead, because of the 12 sepa-
rate assignments it does to protect the call against ma-
licious root processes. These assignments correspond
to saving the four variables that store UID state, as-
signing them a non privileged UID, and then restoring
the original state. This is large compared to the simple
FIONREAD ioctl that just performs a simple derefer-
ence. However, since the ioctl is simple, we see that it
only adds 200 ns of overhead over any ioctl.

For real applications, the most overhead was only
four percent, which was for the Apache 1.3 workload,
where we used the http_load benchmark [21] to place a
parallel fetch load on the server with 30 clients fetching
at the same time. Similarly, we tested MySQL as part of
a web-commerce scenario outlined by TPC-W with a
bookstore servlet running on top of Tomcat 4 with a
MySQL 4 back-end. The PeaPod overhead for this sce-
nario was less than 2% versus vanilla Linux. These
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results are directly comparable to the virtualization re-
sults in AutoPod [22] and are effectively the same,
demonstrating the additional overhead needed to con-
fine processes into distinct peas is minimal.

Related Work

Many systems have been developed to isolate
untrusted applications. NSA’s Security Enhanced Lin-
ux [19], which is based upon the Flask Architecture
[28], implements a policy language that one can use to
implement models that enable one to enforce privilege
separation. The policy language is very flexible but al-
so very complex to use. The example security policy
is over 80 pages long. There is research into creating
tools to make policy analysis tractable [2], but the fact
that the language is so complex makes it difficult for
the average end user to construct an appropriate policy.

System call interception has been used by sys-
tems such as Janus [30, 10], Systrace [24], MAPbox
[1], Software Wrappers [15], and Ostia [11]. These
systems can enable flexible access controls per system
call, but they have been limited by the difficulty of
creating appropriate policy configurations. TRON [5],
SubDomain [7] and Alcatraz [17] also operate at the
system call level but focus on limiting access to the
underlying file system. TRON allows transitions be-
tween different isolation units but requires application
modifications to use this feature, while SubDomain
supports an implicit transition on execution of a new
child process. These systems provide a model some-
what similar to the file system approach used by Pea-
Pod peas. However, peas are designed based on a full-
fledged stackable file system that integrates fully with
regular kernel security infrastructure and provides
much better performance. Similarly, the PeaPod’s virtu-
alization layer provide a complete process isolation so-
lution that is not just limited to file system protection.

Safer languages and run-time environments, most
notably Java, have been developed to prevent common
software errors and isolate applications in language-
based virtual machine environments. These solutions
require applications to be rewritten or recompiled, of-
ten with some loss in performance. Other language-
based tools [8, 3] have also been developed to harden
applications against common attacks, such as buffer
overflow attacks. PeaPod’s virtualization layer com-
plements these approaches by providing isolation of
legacy applications without modification.

Virtual machine monitors (VMMs) have been
used to provide secure isolation [29, 32, 4]. Unlike
PeaPod’s virtualization layer, VMMs decouple pro-
cesses from the underlying machine hardware, but tie
them to an instance of an operating system. As a re-
sult, VMMs provide an entire operating system in-
stance and namespace for each VM and lack the abili-
ty to isolate components within an operating system. If
a single process in a VM is exploitable, malicious
code can make use of it to access and make use of the
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entire set of operating system resources. Since Pea-
Pod’s virtualization layer decouples processes from
the underlying operating system and its resulting
namespace, they are natively able to limit the separate
processes of a larger system to the appropriate re-
sources needed by them. Furthermore, VMMs require
more administrative overhead due to requiring admini-
stration of multiple full operating system instances as
well imposing higher memory overhead due to the re-
quirements of the underlying operating system.

A number of other approaches have explored the
idea of virtualizing the operating system environment
to provide application isolation. FreeBSD’s Jail mode
[14] provides a chroot like environment that processes
cannot break out of. However, Jail is limited in what it
can do, such as the fact that it doesn’t allow IPC with-
in a jail [9], and therefore many real world application
will not work. More recently, Linux Vserver [18] and
Solaris Zones [23] offer a similar virtual machine ab-
straction as PeaPod pods, but require substantial in-
kernel modifications to support the abstraction. While
these system’s share the simplicity of the Pod abstrac-
tion. they do not provide finer-granularity isolation as
provided with peas.

Conclusions

The PeaPod system provides an operating system
virtualization layer that enables secure isolation of
legacy applications. The virtualization layer supports
two key abstractions for encapsulating processes, pods
and peas. Pods provide an easy-to-use lightweight vir-
tual machine abstraction that can securely isolate indi-
vidual applications without the need to run an operat-
ing system instance in the pod. Peas provide a fine-
grain least privilege mechanism that can further isolate
application components within pods. PeaPod’s virtual-
ization layer can isolate untrusted applications, pre-
venting them from being used to attack the underlying
host system or other applications even if they are com-
promised.

PeaPod secure isolation functionality is achieved
without any changes to applications or operating sys-
tem kernels. We have implemented PeaPod in a Linux
prototype and demonstrated how peas and pods can be
used to improve computer security and application
availability for a range of applications, including e-
mail delivery, web servers and databases, and desktop
computing. Our results show that PeaPod’s virtualiza-
tion layer can provide easily configurable and secure
environments that can run a wide range of desktop and
server Linux applications in least privilege environ-
ments with low overhead.
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