
Inferring Higher Level Policies
from Firewall Rules

Alok Tongaonkar, Niranjan Inamdar, and R. Sekar – Stony Brook University

ABSTRACT

Packet filtering firewall is one of the most important mechanisms used by corporations to en-
force their security policy. Recent years have seen a lot of research in the area of firewall manage-
ment. Typically, firewalls use a large number of low-level filtering rules which are configured us-
ing vendor-specific tools. System administrators start off by writing rules which implement the se-
curity policy of the organization. They add/delete/change order of rules as the requirements
change. For example, when a new machine is added to the network, new rules might be added to
the firewall to enable certain services to/from that machine. Making such changes to the low-level
rules is complicated by the fact that the effect of a rule is dependent on its priority (usually deter-
mined by the position of the rule in the rule set). As the size and complexity of a rule set increases,
it becomes difficult to understand the impact of a rule on the rule set. This makes management of
rule sets more error prone. This is a very serious problem as errors in firewall configuration mean
that the desired security policy is not enforced.

Previous research in this area has focused on either building tools that generate low-level
firewall rules from a given security policy or finding anomalies in the rules, i.e., verifying that the
rules implement the given security policy correctly. We propose a technique that aims to infer the
high-level security policy from low-level representation. The first step in our approach is that of
generating flattened rules, i.e., rules without priorities, which are equivalent to the given firewall
rule set. Removal of priorities from a rule set enables us to merge a number of rules that have a
similar effect. Our rule merging algorithm reduces the size and complexity of the rule set signifi-
cantly by grouping the services, hosts, and protocols present in these rules into various (possibly
overlapping) classes. We have built a prototype implementation1 of our approach for iptables fire-
wall rules. Our preliminary experiments indicate that the technique infers security policy that is at
a sufficiently high level of abstraction to make it understandable and debuggable.

Introduction

Firewalls are the first line of defense for protect-
ing corporate networks. System administrators use
packet filtering firewalls as one of the mechanisms to
implement the security policy of an enterprise. These
firewalls are configured using rules that specify match-
ing criteria, and the action to be performed when a
packet matches each rule. These rules are matched se-
quentially against all packets passing through the fire-
wall. These rules can be conflicting, i.e., multiple rules
with different actions can match a packet. In such a
case, the priority of the rules in the rule set determines
the action to be performed. Typically, firewalls use a
first match policy, i.e., the action corresponding to the
first matched rule is taken irrespective of the other
rules that can match the packet. Thus the order of rules
in a firewall rule set defines a priority relation over the
rules. Understanding the effect of firewall rules on
network traffic is complicated by this priority relation
between the rules.

System administrators initially configure the fire-
walls with rules that implement the security policy of
the organization. As the requirements of the enterprise

1This research is supported by NSF grants 0208877 and 0627687.

change, new rules are added or deleted from the rule
set without refactoring. Over time, the rule set con-
tains many rules which are very similar and the map-
ping between the security policy and the rules becomes
unclear. Managing such large rule sets becomes increas-
ingly difficult leading to configuration errors which are
a serious security concern [10]. Hence, firewall man-
agement tools become necessary to help system admin-
istrators.

Many tools for firewall management (e.g., Fir-
mato [2], Firestarter [3], Shorewall [4]) focus on gen-
erating low-level rules from high-level policy lan-
guage (or GUI). Recent years have seen many works
[6, 13, 1] which try to discover configuration errors in
the firewalls. But tools which aid in understanding ex-
isting firewall rule sets are missing from the arsenal of
system administrators. Some tools (e.g., ITVal [8, 9],
Fang [7]) provide a way of querying whether certain
packets will be allowed through the firewall.

The problem with such tools is that the admini-
strator has to know what to query for. Tools like
Lumeta Firewall Analyzer [12] try to avoid this prob-
lem by automating the task of querying the firewalls.
Lumeta Firewall Analyzer queries the firewall for all

21st Large Installation System Administration Conference (LISA ’07) 17



Inferring Higher Level Policies from Firewall Rules Tongaonkar, Inamdar, & Sekar

possible packets that are allowed to pass. For medium
to large rule sets this results in a large amount of data
being generated. Analyzing such large amounts of data
presents another challenge to the system administrator.

1. IPTABLES -A FORWARD -p tcp -d 192.168.1.250 --dport domain -j ACCEPT
2. IPTABLES -A FORWARD -p tcp -d 192.168.1.251 --dport smtp -j ACCEPT
3. IPTABLES -A FORWARD -p tcp -d 192.168.1.251 --dport smtps -j ACCEPT
4. IPTABLES -A FORWARD -p tcp -d 192.168.1.251 --dport imaps -j ACCEPT
5. IPTABLES -A FORWARD -p tcp -d 192.168.1.251 --dport pop3s -j ACCEPT
6. IPTABLES -A FORWARD -p tcp -d 192.168.1.252 --dport www -j ACCEPT
7. IPTABLES -A FORWARD -p tcp -d 192.168.1.126/25 --dport auth -j ACCEPT
8. IPTABLES -A FORWARD -s 192.168.1.126/25 -p tcp -d 192.168.1.13 --dport ssh -j ACCEPT
9. IPTABLES -A FORWARD -s 192.168.1.126/25 -p tcp -d 192.168.1.14 --dport ssh -j ACCEPT

10. IPTABLES -A FORWARD -s 192.168.1.126/25 -p tcp -d 192.168.1.15 --dport ssh -j ACCEPT
11. IPTABLES -A FORWARD -s 192.168.1.126/25 -p tcp -d 192.168.1.20 --dport ssh -j ACCEPT
12. IPTABLES -A FORWARD -p tcp -d 192.168.1.252 --dport https -j ACCEPT
13. IPTABLES -A FORWARD -s 192.168.1.254/28 -d 192.168.1.11 -p tcp --dport sunrpc -j ACCEPT
14. IPTABLES -A FORWARD -s 192.168.1.236 -p tcp -d 192.168.1.35 --dport ipp -j ACCEPT
15. IPTABLES -A FORWARD -s 192.168.1.254/28 -d 192.168.1.11 -p udp --dport nfs -j ACCEPT
16. IPTABLES -A FORWARD -s 192.168.1.254/28 -d 192.168.1.11 -p udp --dport 4000:4002 -j ACCEPT
17. IPTABLES -A FORWARD -p udp -d 192.168.1.251 --dport smtp -j ACCEPT
18. IPTABLES -A FORWARD -p udp -d 192.168.1.250 --dport domain -j ACCEPT
19. IPTABLES -A FORWARD -s 192.168.1.254/28 -d 192.168.1.11 -p udp --dport sunrpc -j ACCEPT
20. IPTABLES -A FORWARD -s 192.168.1.236 -p udp -d 192.168.1.35 --dport ipp -j ACCEPT
21. IPTABLES -A FORWARD -d 192.168.1.126/25 -p icmp --icmp-type destination-unreachable -j ACCEPT
22. IPTABLES -A FORWARD -d 192.168.1.126/25 -p icmp --icmp-type parameter-problem -j ACCEPT
23. IPTABLES -A FORWARD -d 192.168.1.126/25 -p icmp --icmp-type source-quench -j ACCEPT
24. IPTABLES -A FORWARD -j REJECT

Figure 1: Sample iptables script.

We present a novel way to address this problem
in this paper. Our approach of inferring the high-level
policy from low-level packet filtering rules presents
the information to the user in a compact format. Fig-
ure 1 shows 24 iptables rules taken from a larger fire-
wall rule set (65 rules) being used for a network with-
in our department.2 It is quite difficult to understand
what kind of traffic is allowed through the firewall
looking at the script. A new system administrator who
is assigned to manage a firewall rule set like this needs
to understand the security policy so that she may an-
swer questions such as:

• which services are allowed on each host?
• which hosts are allowed to communicate with

each other?
• what protocol is valid between communicating

hosts?
Figure 2 shows the 10 rule policy generated by our
technique for the same rule set.3 Clearly it is easier for
a system administrator to understand this policy than
the rule set in the Figure 1. Moreover, the high-level
policy can reveal opportunities for refactoring the low-
level rules.

System administrators have an intuitive notion of
whether a policy is ‘‘complicated’’ or ‘‘simple.’’ The
complexity of a policy depends not just on the number
of rules in the policy but also on how complicated those
rules are. In this work, we define a metric for the

2We have modified the IP addresses due to privacy con-
cerns.

3Rules in flattened rule set and high-level policy are la-
beled with alphabets to emphasize the fact that these rules
do not have any priority relation defined over them

complexity of a rule set/policy that captures this notion.
This allows us to compare different representations of
the same rule sets. Our technique infers policies with
low complexity and hence these policies are easier to
understand.

Our objective was to develop a technique to infer
firewall policies that would help the system adminis-
trators to work at a higher level of abstraction. Our
technique can be combined with existing techniques to
form a comprehensive firewall management toolkit.
The benefits of such a toolkit are clear from the fol-
lowing scenario: a system administrator who needs to
modify some existing legacy firewall rule set can ex-
tract the security policy from the rule set using our
technique. She can then make changes to the high-lev-
el policy and use an automated tool to generate the
low-level rules.

Since our technique uses decision tree like graphs
(explained in Section Priority Elimination Phase) to
represent the firewall rules, it is easy to enhance our
system to provide querying facility. Moreover, our sys-
tem automatically removes redundant rules from the
policy. Hence, it is a trivial task to identify such redun-
dant rules in the input rule set using our technique.

We initially present an overview of our approach.
The next two sections provide the details of the com-
ponents in our system. We then discuss related work
followed by concluding remarks in final section.

Approach Overview

Our approach for inferring policy consists of two
phases. First, in priority elimination phase, we convert
the low-level rule set that contains rules with priorities
to an equivalent rule set that contains rules with no
priority relation defined over them. We call the gener-
ated rules as flattened rules. The flattened rule set

18 21st Large Installation System Administration Conference (LISA ’07)



Tongaonkar, Inamdar, & Sekar Inferring Higher Level Policies from Firewall Rules

does not contain any overlapping rules, i.e., there is
one and only one flattened rule that can match a given
packet. This simplifies the process of inferring poli-
cies from rule sets. Unlike the original rules, flattened
rules can be arbitrarily reordered without modifying
their overall effect. This enables us to reorder and
merge similar rules together, thereby reducing the size
and complexity of the generated policy.

Allow only the following packets:
a. tcp, udp FROM 192.168.1.254/28 TO 192.168.1.11 FOR sunrpc
b. udp FROM 192.168.1.254/28 TO 192.168.1.11 FOR nfs, ports [4000-4002]
c. tcp FROM 192.168.1.126/25 TO [192.168.1.13 - 15], 192.168.1.20 FOR ssh
d. tcp, udp FROM 192.168.1.236 TO 192.168.1.35 FOR ipp
e. tcp TO 192.168.1.126/25 FOR auth
f. icmp TO 192.168.1.126/25 OF TYPES destination-unreachable, parameter-problem, source-quench
g. tcp, udp TO 192.168.1.250 FOR domain
h. tcp, udp TO 192.168.1.251 FOR smtp
i. tcp TO 192.168.1.251 FOR smtps, imaps, pop3s
j. tcp TO 192.168.1.252 FOR www, https

Figure 2: Higher level policy for rules in Figure 1.

The problem with priority elimination is that it
generates a large number of rules. In the policy infer-
ence phase, we reduce the number of rules by group-
ing hosts, services, and protocols into (possibly over-
lapping) classes and merging rules containing same
class of objects. It is not sufficient to produce rule sets
with small number of rules as the complexity of the
generated rules also affects the complexity of the en-
tire rule set. Arbitrary merging of rules can lead to rule
sets which are very complicated. So this phase tries to
merge the rules such that the complexity of the in-
ferred policy is minimized. Finally, the inferred policy
is presented to the user.

Background
For concreteness, we describe the details of ipta-

bles. Almost every packet filtering firewall relies on
the type of rules used in iptables. Iptables [14] is the
user space command line program used to configure
the rule set in the netfilter framework in Linux 2.4.x
and 2.6.x. Netfilter framework enables packet filter-
ing, network address (and port) translation (NA[P]T)
and other packet mangling. Iptables can be used to
configure three independent tables – filter, nat, and
mangle, within the kernel. The filter table is used to
set up rules that are used for filtering packets, while
the nat table is consulted when a packet that creates a
new connection is encountered and the mangle for
specialized packet alteration.

In this paper, we are concerned only with the fil-
ter table which is used as a packet filtering firewall.
The filter table consists of ordered lists of rules that
are called chains. The order of rules in a chain deter-
mines their priority. There are three built-in chains in
the filter table. INPUT chain is used to filter packets
that are destined for the host on which the firewall is
running. OUTPUT chain is used to filter packets gen-
erated by the firewall host. FORWARD chain is used
to filter packets forwarded by the firewall host to other
hosts in the network. One powerful feature of iptables

is that it allows the user to define new chains in addi-
tion to the built-in ones. This allows the administrators
to group rules which together provide certain high-lev-
el function like protecting a subnet.

An iptables rule consists of matching criteria and
the target. Target specifies the action to be taken when
a packet satisfies the matching criterion. Matching cri-
teria is specified in terms of tests on the packet header
fields like destination IP address (dhost), source IP ad-
dress (shost), destination port (dport), source port
(sport), protocol (proto). Target can be any of the fol-
lowing: ACCEPT, QUEUE, REJECT, DROP, LOG or
name of a user defined chain.

Target ACCEPT means that the packet is to be
allowed to pass through the firewall. QUEUE passes
the packets on to the user space. For our purposes, se-
mantically QUEUE is similar to ACCEPT as the pack-
et is allowed to reach its destination. So we treat
QUEUE just like ACCEPT and omit it from our dis-
cussion. DROP and REJECT mean the packet is to be
denied. REJECT returns an icmp error packet to the
sender while DROP denies the packet without giving
any error indication. Target LOG on the other hand
just makes an entry to the log file when a matching
packet arrives. By specifying user defined chains as
targets, conditional call/return semantics can be added
to the firewall rule set.

Figure 3 shows a sample iptables rule set. All the
rules considered are for the FORWARD chain with a
default policy of REJECT. Rule 1 specifies that all
hosts from the network 192.168.1.0/24 are allowed to
connect to the host 120.240.18.1 using SMTP. Rule 2
specifies that host 120.240.18.1 can connect to the net-
work 120.240.20.0/24 using SMTP. This can be a real
world scenario where 192.168.1.0/24 is an internal
network of an organization, 120.240.20.0/24 is exter-
nal network and 120.240.18.1 is the SMTP server for
that organization. The rule set says that SMTP server
can send SMTP traffic to external network and inter-
nal hosts can send SMTP traffic to SMTP server but
not to the external network.

We represent the iptables rules in tabular format
for ease of understanding. Table 1 is the tabular repre-
sentation of the rules in Figure 3. We list all rules in a
table in the order of their priority. The columns indi-
cate the packet fields being tested. A rule is represent-
ed as a row with values for the packet fields being

21st Large Installation System Administration Conference (LISA ’07) 19



Inferring Higher Level Policies from Firewall Rules Tongaonkar, Inamdar, & Sekar

tested filled in the respective columns. If a rule does
not contain any test on a particular field, then that col-
umn has a wild-card character ‘‘*’’. A ‘‘*’’ for a field
indicates that any value of the field will match this
rule. The action associated with a rule is shown in the
last column. Note that we omit many fields like icmp-
type from examples to avoid clutter.

Even though our technique can be applied to
chains with default ACCEPT policy, all examples and
discussions assume that the chains have default RE-
JECT policy. Note that the chain name is shown above
the rules in the tabular format to make the tables more
understandable. In practice, we generate different rule
sets for different built-in chains.

1. IPTABLES -A FORWARD -s 192.168.1.0/24 -d 120.240.18.1 --dport 25 -j ACCEPT
2. IPTABLES -A FORWARD -s 120.240.18.1 -d 120.240.20.0/24 --dport 25 -j ACCEPT
3. IPTABLES -A FORWARD -j REJECT

Figure 3: iptables rule set 1.

# shost sport dhost dport target
FORWARD (Default: Reject)
1 192.168.1.0/24 * 120.240.18.1 25 ACCEPT
2 120.240.18.1 * 120.240.20.0/24 25 ACCEPT

Table 1: iptables rules in Figure 3 represented in tabular format.

-d 192.168.1.1 -s 192.168.1.3 --dport 22 -j ACCEPT
-d 192.168.1.2 -s 192.168.1.4 --dport 22 -j ACCEPT
-j REJECT

Listing 1: Sample iptables rule set as input.

Priority Elimination Phase

In this phase we take the rule set with priorities
and generate flattened rule set. Flattened rule set con-
tains rules which have no priority relation so they can
be arbitrarily reordered and merged to generate a com-
pact policy. The idea behind flattening of rules is sim-
ple. Consider a rule set RS with rules Ri such that pri-
ority of Ri is higher than the priority of Rj iff i < j. The
semantics of such a prioritized rule set are that a pack-
et is matched by a rule Rj iff it satisfies the matching
criteria of Rj and doesn’t satisfy the matching criteria
of any of the rules Ri such that i < j. In other words, a
packet can match a rule only if it is not matched by
any higher priority rule. For example, R3 can match a
packet only if R1 and R2 do not match it. Thus a prior-
itized rule set can be converted to a flattened rule set

by replacing Rj by
j−1

i=1
∧¬ Ri ∧ Rj, 2 ≤ j ≤ n where n is

the total number of rules in the set. In our example,
R1 will not be modified while R2 will be replaced by
¬ R1 ∧ R2 and R3 by ¬ R1 ∧ ¬ R2 ∧ R3.

The problem with the naive way of generating
flattened rules is that it can lead to exponential number
of rules. In [11], we developed a way of creating a di-
rected acyclic graph (DAG) called packet classifica-
tion automaton that avoids this exponential blowup.
We use the packet classification automaton to generate

flattened rule set. Here we describe the characteristics
of the automaton without going into the details of the
construction algorithm; which can be found in [11].

• each node (except the final nodes) is annotated
with a packet header field. This denotes that the
node performs a test on that field.

• the leaf nodes correspond to the action to be
performed when a packet is matched by a rule.
For example, for iptables the leaf nodes corre-
spond to the higher level actions allow and deny.
We map targets like ACCEPT, QUEUE, and
LOG to allow and REJECT and DROP to deny.
A path from the root to a leaf represents the
tests to be performed on a packet to match it
against the rule set and the action to be taken on
the packet.

• at each node the outgoing edges are labeled with
the different values specified for the packet head-
er field specified on the node.

• at each node there is an additional outgoing
edge called as ‘‘else’’ edge. This edge is taken
when a packet has a field value different from
any of the values listed in the other outgoing
edges from that node.

• nodes at the same height in different subgraphs
can have tests for different fields.
This automaton has the following interesting

properties:
• Property 1 Packet classification automaton is

equivalent to the prioritized rule set, i.e., any
packet that is allowed/denied by the rule set has
a path from root to allow/deny node in the au-
tomaton and vice versa.

• Property 2 If the input rule set is comprehen-
sive, i.e., for every packet there is a rule in the
rule set that matches it, then the automaton has
a path from root to a leaf for every packet.
Moreover, the path from root to leaf is unique.
We generate flattened rule set by considering all

paths from root to the leaves in the graph. Each path
corresponds to a rule in the flattened rule set. Consider
a iptables script with the three rules for FORWARD
chain shown in Listing 1.

20 21st Large Installation System Administration Conference (LISA ’07)



Tongaonkar, Inamdar, & Sekar Inferring Higher Level Policies from Firewall Rules

Figure 6 shows the packet classification automa-
ton for this sample rule set. Here each node is labeled
with the packet field being tested at that node.

0

1

19

42

64

2

reject

3

15

18 4 7 8 9 10 1112

13

accept

1416 17

20

41

21

27

37

40

23 24 2526

28

3629

30

3531 32 33 34

38

39

43

44

55

63

45 50

52

46 4748 49 51

53

54

56

6057

58

59

61

62

65

66

70 67

69 6871

Figure 4: Initial graph for network in the department.

0

1

19

42 64

2

2041

43

65

66 70

67 69

71

allow

46

44

55 63

455052

56 60

57 61

62

58

59 51

53

54

21 27

374023

36

28

38

39

29 3035

31 34

3

15

18

4

7 1113

1617 14

Figure 5: Pruned graph for graph in Figure 4.

Pruning

Figure 4 shows the packet classification automa-
ton for a firewall rule set with 65 rules for a small net-
work within our department. The bottom row has two
leaf nodes corresponding to the actions: allow and de-
ny. We can see that even for small sized rule set, there
are a large number of paths in the graph.

We prune this graph to reduce the number of
paths that we have to consider. The following are the
steps that we perform for pruning this graph.

1. We remove deny node and all incoming edges to
it. If this results in an intermediate node becom-
ing leaf node, then we remove that node and its
incoming edges. We recursively do this for all
ancestors of deny except the root node. Figure 7
shows the graph after deny node has been re-
moved from the graph in Figure 6. Now the
graph contains only paths from root to allow.
This means that the flattened rule set that we

generate from this graph is no longer comprehen-
sive. But this problem can be easily solved by
having a default reject policy for the flattened
rules, i.e., packets that are not matched by any
rule in the flattened rule set are discarded.

2. We do a bottom-up traversal of the graph and
merge equivalent states. We consider two states
r and s as equivalent if they have transitions to
the same state ti on label li for all outgoing
edges. For the graph in Figure 7, both the dport
nodes have an edge to allow for value 22. These
nodes are merged to get a graph as shown in
Figure 8.

3. The previous two steps create new opportuni-
ties for reducing the number of paths though
the graph. We can now merge multiple edges
which connect the same nodes. In the case
where the edge merging involves else edge, the
merged edge is labeled with else. A  special case
of this is when all outgoing edges from a node
can be merged with else edge. In this case the
node with the merged outgoing edges is re-
moved as the merged edge indicates that this

21st Large Installation System Administration Conference (LISA ’07) 21



Inferring Higher Level Policies from Firewall Rules To n g a o n k a r, Inamdar, & Sekar

transition is taken irrespective of the value of the
field in the removed node. This edge merging is
also done in a bottom up fashion.

Accept packets
a. TO [192.168.1.0 - 4], [192.168.1.8 - 255] FOR auth
b. TO [192.168.1.5 - 7] FOR auth, ssh

Listing 2: Policy 1.

Accept packets
a. TO 192.168.1.0/24 FOR auth
b. TO [192.168.1.5 - 7] FOR ssh

Listing 3: Policy 2 – More compact version of policy in Listing 2.

dhost

shost

192.168.1.1

shost

192.168.1.2

deny

else

dport

192.168.1.3

else dport

192.168.1.4

else

allow

22 else 22 else

Figure 6: Unpruned graph for sample rules.

Figure 5 shows the pruned graph corresponding
to the graph in Figure 4. We can read off all the paths
from the root to accept to get flattened rule set.

Policy Inference Phase

As the main goal of our research was to come up
with a compact representation of the rules, we asked
ourselves the following questions:

• how can we compare two representations of the
same rule set?

• how can we reduce the complexity of the flat-
tened rules?
In this section we present our answers to these

questions.

Complexity
We call a particular representation of rules as

policy. Intuitively, a policy that requires a bigger de-
scription is more complex. For example, consider an
organization which has 192.168.1.0/24 as the internal
network. It has rules that allow auth packets to all
hosts in the network and ssh packets only to the hosts
192.168.1.5, 192.168.1.6, and 192.168.1.7. These rules
can be represented as Policy 1 as shown in Listing 2. A
more compact way of representing these rules (Policy
2) is shown in Listing 3.

We capture this notion of how complicated a pol-
icy is by the following definition:

Definition 3: Complexity of a policy
• Data item is any value that is used in a rule.
• Complexity of a rule is the number of data

items present in the rule.
• Complexity of a policy is the sum of the com-

plexity of all rules in the policy.

dhost

shost

192.168.1.1

shost

192.168.1.2

dport

192.168.1.3

dport

192.168.1.4

allow

22 22

Figure 7: Graph with deny node removed from the
graph in Figure 6.

Data items refer to the different values of packet
fields present in the policy. For example, in the policy
given above, the data items are 192.168.1.0/24, [192.168.
1.5 -| 7], auth, and ssh. For the earlier policy the data
items are [192.168.1.0 - 4], [192.168.1.8 - 255], [192.168.1.
5 - 7], auth, and ssh. The complexity of rules in Policy 1
is 3 for rule a and 3 for rule b. We note that ranges such
as [192.168.1.5 - 7] are treated as a single data item and
hence contribute 1 to the complexity of a rule. Even
though our examples contain * for certain fields, they
are there just to increase readability. Our final policy (as
shown in Figure 2) does not contain any ‘‘*’’. There-
fore, ‘‘*’’ doesn’t contribute anything to the complexity
of a rule. Similarly, in Policy 2 the complexity of rules
a and b are 2 each. The complexity of Policy 2 is 4.
This is less than that of Policy 1 which is 6. Hence we
can say that Policy 2 is a more compact representation
than Policy 1.

Problem Statement
We describe the problem statement in this sec-

tion. At the end of priority elimination phase we have

22 21st Large Installation System Administration Conference (LISA ’07)



Tongaonkar, Inamdar, & Sekar Inferring Higher Level Policies from Firewall Rules

a large number of rules. We want to merge the rules in
such a way that the complexity of the generated rule
set is minimum. We can merge rules which have the
same values for all but one field by performing a
union operation over the field which has differing val-
ues in the rules. The main issue with merging rules is
that different subsets of rules can be merged on differ-
ent fields. So we need to select the subsets in such a
way that merging them leads to minimum complexity
of the entire rule set. This problem can be illustrated

dhost

shost

192.168.1.1

shost

192.168.1.2

dport

192.168.1.3 192.168.1.4

allow

22

Figure 8: dport node merged from graph in Figure 7.

Accept packets
{a{bc}}. 192.168.1.1, 192.168.1.10 TO 192.168.2.1 FOR http, smtp (5)
d. 192.168.1.10 TO 192.168.2.2 FOR smtp (3)
e. 192.168.1.10 TO 192.168.2.1, 192.168.2.2 FOR ssh (4)

Listing 4: Policy 3.

# shost dhost dport target
a 192.168.1.1, 192.168.1.10 192.168.2.1 80 ACCEPT
b 192.168.1.1 192.168.2.1 25 ACCEPT
c 192.168.1.10 192.168.2.1 25 ACCEPT
d 192.168.1.10 192.168.2.2 25 ACCEPT
e 192.168.1.10 192.168.2.1, 192.168.2.2 22 ACCEPT

Table 2: Sample flattened rule set.

Accept packets
{a{bc}}. 192.168.1.1, 192.168.1.10 TO 192.168.2.1 FOR http, smtp (5)
{{cd}e}. 192.168.1.10 TO 192.168.2.1, 192.168.2.2 FOR smtp, ssh (5)

Listing 5: Policy 4.

by considering the rule set shown in Table 2. We can
merge rules b and c on shost to get a new rule {bc}.
Note that we label a merged rule by concatenating the
labels of the original rules. We enclose the new label
in braces to indicate how the rules merged.4 We can
then merge {bc} with a to get rule {a{bc}}. This gives
the following policy (Policy 3) which has a complexi-
ty of 12; see Listing 4.

4The notation {bc} is different from {b, c} which means a
set containing the rules b and c

The complexity of each rule is written in paren-
thesis besides the rules. Since all the rules in the flat-
tened rule set have the same action, we can even gen-
erate overlapping rules to get a more compact policy.
We can merge rules a, b, and c as before to get rule
{a{bc}}, and also merge c and d on dhost followed by
{cd} with e on dport. Listing 5 shows policy (Policy
4), with complexity 10, that is obtained by merging
the rules in this way.

The Policy Complexity Definition is tied to the
way the rules are represented. Thus, the interesting
question is given a rule set, can we find an equivalent
representation which enforces the same security policy
but has lower complexity? Our goal is to find a repre-
sentation of the rule set that implements the same poli-
cy and has minimum complexity. A natural way to se-
lect the policy with minimum complexity is to assign
weights based on the complexity to all subsets of the
flattened rule set and select a minimum weight set
cover. The problem of determining the minimum
weight set cover is NP-complete. However, we have
found that fairly simple methods, based on exploiting
the structure of the flattened rules, yield good results
for finding a policy with low complexity.

Computing Weight of Subsets of Rules

Computing the complexity of all subsets of a rule
set is also very hard. To see this, consider that we have
a set of n rules. We want to find a policy with minimum
complexity for this rule set. To find the complexity of a
set containing n − 1 of these rules is similar to the origi-
nal problem.

In practice, we can avoid this problem as we do
not need to generate all subsets of rules in the original
rule set. To understand this consider original rule set
{a, b, c} such that rules a and b can be merged on cer-
tain field. Now the weight of {a, b} is the complexity
of the merged rule {ab}. But the weight of {b, c} is the
sum of the complexities of b and c. So we do not need

21st Large Installation System Administration Conference (LISA ’07) 23



Inferring Higher Level Policies from Firewall Rules Tongaonkar, Inamdar, & Sekar

to consider the weight of {b, c} if we have the weights
for {b} and {c}. This leads us to conclude that we
need to consider only the subsets of the original set in
which each rule merges with some other rule or with a
new merged rule. We maintain the subsets of rules that
we need to consider in a working set.

1. procedure GenerateWorkingSet(R) {
2. W = φ
3. for i = 1 to |R| do /*R = {r1, r2, . . . , rn} */
4. W =W∪ {ri} /* add all flattened rules to the working set */
5. end
6. for i = 1 to |W| do
7. for j = 1 to |W| do
8. S = MergeRules(wi, wj) /* wi, wj ö W */
0. if S ≠ φ

10. W =W∪ S /* add the new merged rule to the working set */
11. endif
12. end
13. end
14. returnW
15. }

Figure 9: Algorithm for Constructing Working Set.

Here we describe the algorithm shown in Figure
9 to generate the working set. Initially we have a set
R of flattened rules {r1, r2, . . . , rn}. We want to gener-
ate a set W that contains the subsets of R that we
need to consider for the minimum weight set cover
problem. We start by putting all singleton subsets of
R inW. For example in Figure 2,

W = {{a}: 4, {b}: 3, {c}: 3, {d}: 3, {e}: 4}.
Note that the value after ‘‘:’’ is the weight of the corre-
sponding set. For singleton sets, the weight is the same
as the complexity of the rule. Now we compare each
element in W with the other elements in W. If the
two elements under consideration can be merged, then
we merge them and add the new merged rule to the
working set. Now,
W = {{a}:4, {b}:3, {c}:3, {d}:3, {e}:4,

{bc}:4, {cd}:4 } .
We continue this process of merging and adding new
rules till no more rules can be added to W. In our ex-
ample, {bc} can be merged with {a} and {cd} with
{e}. After this no more merging is possible. So the fi-
nal set is
W = {{a}:4, {b}:3, {c}:3, {d}:3, {e}:4,

{bc}:4, {cd}:4, {a{bc}}:5, {{cd}e}:5} .

Merge Graphs
Comparing each element in W with all the other

elements is computationally expensive. We overcome
this problem by generating a graph, which we call as
merge graph, that allows us to avoid many compar-
isons. Merge graph is an acyclic graph which initially
contains nodes corresponding to the flattened rules
and no edges. As we merge rules, we add nodes corre-
sponding to the merged rules and edges from the new
node to the constituent rule nodes. For example, after
we add {bc} to W, we can represent W as a merge

graph as shown in Figure 10. The merge graph may
contain disconnected subgraphs. For each node in the

{a} {b} {c} {d} {e}

{bc}

Figure 10: Merge graph after adding {bc}.

{a} {b} {c} {d} {e}

{bc} {cd}

{a{bc}} {{cd}e}

Figure 11: Final merge graph.

graph, we compare it with only the nodes in other dis-
connected components. This way we avoid redundant
comparisons. In Figure 10, we compare the rule {bc}
with {a}, {d}, and {e}. This avoids redundant com-
parisons with {b} and {c}. For large rule sets with
multiple rules that merge, this optimization proves
very useful. Figure 11 shows the final merge graph for
our example.

Solving Minimum Weight Set Cover
Now that we have the working set we can find

the minimum weight set cover to get a policy with low
complexity. Conceptually we can think of each ele-
ment ofW as a set containing the rules that have been
merged to form that element. For the example in the
previous section,

24 21st Large Installation System Administration Conference (LISA ’07)



Tongaonkar, Inamdar, & Sekar Inferring Higher Level Policies from Firewall Rules

W = {{a}:4, {b}:3, {c}:3, {d}:3, {e}:4, {b,c}:4,
{c,d}:4, {a,b,c}:5, {c,d,e}:5} .

Our target is to find a set cover C = {c1, c2, . . . , ck},

i.e., CëW∧
k

i=1
∪ ci = R such that

k

i=1
Σ weight(ci) is

minimum.

Figure 12 shows our algorithm based on greedy
heuristics to solve the problem. We use a set, A, to
keep track of the rules that are covered as the set cover
C is built. For each set inW, we define,

cost(wi) =
weight(wi)

|wi/A|
where cost(wi) represents the cost incurred (in terms
of weight) per new rule that will be covered by includ-
ing a set wi in the set cover. In each iteration, we pick
a set wi that has the lowest cost (step 6 in our algo-
rithm). In our example, initially the cost is 4/1 = 4  for
{a}, 4/2 = 2 for {b, c}, 5/3 = 1. 67 for {a, b, c} and so
on. In case of a tie, we pick the set with higher cardi-
nality. This algorithm returns C = {{a, b, c}, {c, d, e}}
as the minimum weight set cover. We know that these
sets correspond to merged rules {a{bc}} and {{cd}e}.
So we can represent the rules in the example as Policy
4 as shown in the previous section.

1. procedure MinimumWeightSetCover(R, W ) {
2. A = φ /*AëR is the set of covered elements */
3. C = φ /* CëW is the solution set */
4. whileA ≠ R do /*A is not a set cover */
5. for i = 1 to |W|
6. compute cost(wi)
7. end
8. choose wi with minimal cost(wi)
9. A = A∪ wi /* rules in wi are covered */

10. C = C∪ {wi} /* add wi to solution set */
11. W = W / {wi} /* remove wi from working set */
12. end
13. return C
14. }

Figure 12: Algorithm for Minimum Weight Set Cover.

Related Work

There are many tools (e.g., Firmato [2], Shore-
wall [4], Firestarter [3]) that are available for generat-
ing low-level firewall rules from high-level policy.
Our technique can be used in conjunction with these
tools to help refactoring. These tools can be used to
generate firewall rules from scratch. If our technique
is combined with these tools then we can use these
tools to make changes to existing low level rules.

Fang [7] and ITVal [9] are tools that provide
querying facility. But it puts the onus on the system
administrator to figure out what queries to perform.
Lumeta Firewall Analyzer [12] solves this problem by
querying the system for all packets that can be ac-
cepted. The problem with this approach is that this re-
sults in a large amount of data being presented to the
user. In contrast, we try to present the result of our

analysis in a compact fashion to the administrator.
Moreover, it is easy to provide querying capability us-
ing our technique.

Yuan, et al. [13], Gouda, et al. [6], Al-Shaer, et
al. [1] have looked at the problem of identifying con-
figuration errors in the firewall rules. The problem
with these approaches is that the administrator has to
decide whether the alert generated by these tools are
due to rules that are put in intentionally or unintention-
ally. Our technique can help in solving this problem
by providing a high level view of the security policy.

Marmorstein, et al. [8] generate policy by group-
ing similar hosts. Our work is more general in the
sense that we can group together arbitrary things to
generate more compact representation. Golnabi et al.
[5] have looked at the problem of generating high lev-
el policy. But their approach is based on data mining
of firewall logs while we try to extract the policy from
the rules itself.

Conclusions

In this paper, we presented a new technique for
extracting high-level security policy from low-level
rules. Unlike previous techniques, our technique gen-
erates policy which is compact. This will help system
administrators to understand the existing low level
rule sets and encourage them to refactor the low-level
rules instead of making small changes to the rules set
when requirements change. This will make the rule
sets more manageable and will likely result in reduc-
ing the errors in configuration of firewalls. We also
presented a way for comparing whether one policy
representation is better than another. In our prelimi-
nary experiments, we obtained 50 flattened rules with
197 data items after the priority elimination phase
from a 65 rule firewall. The final inferred policy on
the other hand had just 21 rules with 129 data items.
These results indicate that we can generate high level
policy which is easier to understand and manage.

Acknowledgments

We would like to thank Mayur Mahajan for his
help in developing the graph library used for generating

21st Large Installation System Administration Conference (LISA ’07) 25



Inferring Higher Level Policies from Firewall Rules To n g a o n k a r, Inamdar, & Sekar

the flattened rules and for his work on pruning the
graphs. We would like to thank Weiqing Sun, Lorenzo
Cavallaro, and the anonymous reviewers for their in-
sightful comments.

This material is based upon work supported by
the NSF grants 0627687 and 0208877. The views and
conclusions contained here are those of the authors
and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either ex-
pressed or implied, of NSF.

Author Biographies

All The authors of this paper are members of the
Secure Systems Laboratory of Stony Brook and their
homepages are accessible on the web from the labora-
tory page at http://www.seclab.cs.sunysb.edu .

R. Sekar is currently Professor of Computer Sci-
ence and heads the Secure Systems Laboratory at
Stony Brook University. Prof. Sekar’s research inter-
ests include computer system and network security,
software and distributed systems, programming lan-
guages and software engineering. He can be reached
by email at sekar@cs.sunysb.edu .

Alok Tongaonkar is a Ph.D. student in the CS de-
partment at Stony Brook. His main research area is
computer security and is currently working on analyz-
ing and optimizing firewalls and intrusion detection
systems. He is available at alok@cs.sunysb.edu .

Niranjan Inamdar is a M.S. student in the CS de-
partment at Stony Brook. Niranjan does research in
the area of computer security. He can be reached via
email at niranjan@cs.sunysb.edu .

Bibliography

[1] Al-Shaer, Ehab and Hazem Hamed, ‘‘Discovery
of Policy Anomalies in Distributed Firewalls,’’
IEEE INFOCOM, 2004.

[2] Bartal, Yair, et al., ‘‘Firmato: A Novel Firewall
Management Toolkit,’’ IEEE Security and Policy,
1999.

[3] Firestarter, http://www.fs-security.com .
[4] Shorewall Firewall, http://www.shorewall.net .
[5] Golnabi, Korosh, et al., ‘‘Analysis of Firewall Pol-

icy Rule using Data Mining Techniques,’’ IEEE/
IFIP Network Operations and Management Sym-
posium, 2006.

[6] Gouda, Mohamed G. and Alex X. Liu, ‘‘Firewall
Design:Consistency, Completeness, and Compact-
ness,’’ International Conference on Distributed
Computing Systems, 2004.

[7] Mayer, Alain, et al., ‘‘Fang: A Firewall Analysis
Engine,’’ IEEE Symposium on Security and Pri-
vacy, 2000.

[8] Marmorstein, Robert and Phil Kearns, ‘‘Firewall
Analysis with Policy-Based Host Classification’’,
20th Large Installation Systems Administration
Conference, 2006.

[9] Marmorstein, Robert and Phil Kearns, ‘‘A Tool for
Automated Iptables Firewall Analysis,’’ Freenix
Tr a c k , USENIX Annual Technical Conference,
2005.

[10] Rubin, Aviel, Dan Geer, and Marcus Ranum, Web
Security Sourcebook, Wiley Computer Publish-
ing, 1997.

[11] Tongaonkar, Alok, ‘‘Fast Pattern-Matching Tech-
niques for Packet Filtering,’’ Master ’s Thesis Re-
port, Stony Brook University, 2004, http://www.
seclab.cs.sunysb.edu/seclab/pubs/theses/alok.pdf .

[12] Wool, Avishai, ‘‘Architecting the Lumeta Fire-
wall Analyzer,’’ 10th USENIX Security Sympo-
sium, 2001.

[13] Yuan, Lihua, et al., ‘‘Fireman: A Toolkit for Fire-
wall Modeling and Analysis,’’ IEEE Symposium
on Security and Privacy, 2006.

[14] Eychenne, Herve, iptables Man Page, March,
2002.

26 21st Large Installation System Administration Conference (LISA ’07)



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
    /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
    /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


