Data
Structures
from the
-uture:

Bloom Fllters,
Distributed

Hash Tables,
and More!

Tom LEimoncellt;
Google NYE

tim@google.com

Thursday, November 11, 2010

Why am | here”?

| have no Idea.

Why are you here?

| have 3 theories...

Why are you here?

1. You thought this was

the Dreamworks talk.

Why are you here?

2. You re still arunk from

last night.

Thursday, November 11, 2010

Why are you here?

3. YOU cant manage what

you don t understand.

Overview

1. Hashes & Caches

7
3.

Sloom Filters

Distributed Hash Tables (

DHTS)

4. Key/Value Stores (NoSQL)

5. Google Bigtable

Disclaimer #1

There will be hand-waving.

The Presence of Slides
!_

Being Prepared”

Thursday, November 11, 2010

Disclaimer #2

You could learn most of
this from Wikipedia.

Really. Did | mention
they re talking about
shrek in the other room?

Disclaimer

My LISA 2008 talk also

contlicted with a talk from
Dreamworks.

To unaderstand this talk, you
must unaderstanda:

Hashes
Caches

Thursday, November 11, 2010

Thursday, November 11, 2010

What is a Hash?

-Size summary of a large
{ of data.

Thursday, November 11, 2010

Checksum

x Simple checksum:
x Sum the byte values.: Take the last digit of the total.
x Pros; Easy. Cons: Change order, same checksum.
x |mprovement: Cyclic:Redundancy Check

x Detects change in order.

Thursday, November 11, 2010

Hash

x “Cryptographically Unigue”
x Difficult to generate 2 files with the same MDS hash
x Even more difficult to make a “valid second file™:

x [he second file is‘a valid example of the same
format. (l.e. both are HTML files)

Thursday, November 11, 2010

How do crypto hashes
WOrk’?

“It works pecause of
Matt B

Thursday, November 11, 2010

Reversible/lrreversible
Functions

Thursday, November 11, 2010

Some common hashes

Thursday, November 11, 2010

=
VD5 L
SHAT <

SHA2)

AES-Hash @S

Thursday, November 11, 2010

Thursday, November 11, 2010

What is a Cache?

= Using a small/expensive/fast thing to make
a big/cheap/slow thing faster.

Thursday, November 11, 2010

S Database

R
Cache

Fast but
OAREHISIVE, Big, Slow, Cheap

Thursday, November 11, 2010

x Metric used to grade?
x The “hit rate”: hits / total queries

= How to tune?

x Add additional storage

x Smallest increment: Result size.

Thursday, November 11, 2010

x Suppose cache is X times faster

® ..but Y times more expensive

x Balance cost of cache vs. savings you can get:

x \Web cache achieves 30% hit rate, costs $/MB
x 33% of cachable traffic costs $/MB from ISP,
= \\/nat about non-cachable traffic?

= \Vhat about query size”

Thursday, November 11, 2010

units

= \/alue of next increment
IS less than the previous:

» 10 units of cache
achieves 30% hit rate

= +10 units, hit rate
goes to 32%

x +10 more units, hit
rate goes to 33%

Thursday, November 11, 2010

/________———)
//__——

Cache
Fast but

expensive. Big, Slow, Cheap

Thursday, November 11, 2010

Thursday, November 11, 2010

sleleatat 0

Eache

Fast but
exXpensive

Big, Slow, Cheap

Add new
data?

Delete data?

Modify data?

Thursday, November 11, 2010

NCACHE

Not found

Intelligent

Thursday, November 11, 2010

Bloom FEllters

Thursday, November 11, 2010

What is a Bloom Filter?

x Knowing when NOT to waste time seeking out data.

= [nvented in Burton Howard Bloom in 2070

Thursday, November 11, 2010

What is a Bloom Filter?

x Knowing when NOT to waste time seeking out data.

= [nvented in Burton Howard Bloom in 1970

Thursday, November 11, 2010

| Invented Bloom Eilters

when | was 10 years old.

Thursday, November 11, 2010

ZX AAA Road 695-8311
Travel 594-0700

Thursday, November 11, 2010

/________———)
//__——

Bloom

(Or, precocious |
10 year old) Big, Slow, Cheap

Thursday, November 11, 2010

Using the last 3 bits of hash:

Olson 000100001 000
Polk 000000000 001
Smith 001011101 010
Singh 001000011 011 ™

100

101
110 t4
111 o4

Thursday, November 11, 2010

Using the last 3 bits of hash:

Olson 000100001 000
Polk 000000000 001
Smith 001011101 010
Singh 001000011 011 v

100 4

Lakey 111110000 101
Baird 001011011 110 o
Camp 001101001 1171 o4
Johns 010100010
Burd 111000001
Bloom 110111000

Thursday, November 11, 2010

Using the last 4 bits of hash:

Olson 000100001 0000 1000
Polk 000000000 0001 1001
Smith 001011101 0010 1010w
Singh 001000011 0011 1011
0100y 1100

Lakey 111110000 0101 1101 o4
Baird 001011011 0110 1110w
Camp 001101001 0111 111104
Johns 010100010
Burd 111000001
Bloom 110111000 7/16 = 44%

Thursday, November 11, 2010

Thursday, November 11, 2010

Entries Bytes

8
10
32
o4
1283 1
200 32
1048576 131072
16777216 2M
4294967296 512M

<25% 1's

262144
4.1 Million

1 Billion

When to use? Sparse Data
When to tune: When more than x% are “1”

Pitfall: To resize, must rescan all-keys.

Minimum Increment doubles memory usage:

x Each increment is MORE USEFUL than the previous.

» But exponentially MORE EXPENSIVE!

Thursday, November 11, 2010

Bloom Flilter sample uses

x Databases: Accelerate lookups of Indices.
x Simulations: Often having, big, sparse databases.

x Routers: Speeds up route table lookups.

Thursday, November 11, 2010

Distributed Bloom Filters?

Thursday, November 11, 2010

Thursday, November 11, 2010

What if your Bloom FEllter is
out of date?

x New data added: BAD:. Clients may not see it.
» Data changed: Ok

x Data deleted: Ok. but not as efficient.

Thursday, November 11, 2010

How to perform updates?

Master calculates bitmap once.
Sends it to all clients

For a 20-bit table; that’s 130K. Smaller than most GIFs!

Reasonable for daily, hourly, updates.

Thursday, November 11, 2010

Terminal — bash — 80x24

$ cd ~/Library/Application\ Support/Google/Chrome
$ s -lh *Bloom*
-rw-r——r——@ 1 tlim 5000 6.2M Nov 10 15:05 Safe Browsing Bloom
@ 1 tlim 5000 1.8M Nov 10 15:05 Safe Browsing Bloom Filter 2
-rw-r——r——@ 1 tlim 5000 @B Nov 10 17:82 Safe Browsing Bloom_new

s |l

Thursday, November 11, 2010 46

Big Bloom Fllters of

96, 120 or 160 bits!

Bloom FEllters

Thursday, November 11, 2010

Hash Tables

Thursday, November 11, 2010

What iIs a Hash Table?

= [t's like an array.

x But the Index can be anything “hashable”.

Thursday, November 11, 2010

Hash tables

x Per| hash:
» Sthing{'b’} = 123;
» Sthing{’‘key2'} = "value2”;

» print Sthing{’'key2’};

» Python Dictionary: or “dict™:

x thing = {}

» thing['b’] = 123

» thing[’key2’'] = "“value2”
» print thing[‘key2’]

Thursday, November 11, 2010

hash(‘cow’) = 78825
hash(‘bee’) = 92eb5f hash(’sheep’) = 92ebbf

Bucket

781825 (“cow’, “mo0’)

92eb5f | (“bee”, “buzz”), (‘sheep’, ‘baah’)

Thursday, November 11, 2010

Hash Tables

Thursday, November 11, 2010

Distributed Hash Tables

(DHTSs)

What is a DHIT?

A hash table so big you have

to spread It over multiple of
machines.

Wouldn't an infinitely large

hash table be awesome?

Thursday, November 11, 2010

Web server

x [ookup(url) -=> page contents

x ‘Index.html’ == ‘<htmi><head>...

x ‘/images/smile.png’ -> 0x4d4d2a...

Thursday, November 11, 2010

Virtual Web server

x [ookup(vhost/url) => page contents

® ‘cnn.com/index.nhtml => ‘<html><he...’

= ‘fime.com/images/smile.png’ -> 0x4d...

Thursday, November 11, 2010

Virtual F TP server

x l[ookupthost:path/iile) -> file contents
® ‘fip.gnu.org:public/gecc.tgz’
® “fip.usenix.org:public/usenix.bib’

Thursday, November 11, 2010

NFS server

x |[ookup(host:path/file) => file contents

x ‘spvl:homertlim/Documents/foo. ixt’
-> file contents

x ‘srv2:home/lim/TODO. txt
-> file contents

Thursday, November 11, 2010

Usenet (remember usenet’?)

= [ooKkup(group:groupname:artnumber)
-> article

x [ookup('group:comp.sci.math:987 765’)
= [ooKkup(id:message-id) -> pointer

= [ookup(‘1d:foo-12345@uunet’) ->
‘group:comp.sci.math:987 765

Thursday, November 11, 2010

x [ookup(‘server:user:folder:NNNN)

-> email message

Thursday, November 11, 2010

Our DVD Collection

» hash(disc Image) -> disc image

x How do | find a particular disk?
x Keep a lookup table of name -> hash

x Benefit: Two people with the same DVD?
It only gets stored once.

Thursday, November 11, 2010

How would this work?

Thursday, November 11, 2010

Load it up!

Thursday, November 11, 2010

0100100111011001
000100010110001 1

11
10
00

1001110100110

11100010100101

007110000000001

Thursday, November 11, 2010

0100100111011001
000100010110001 1

1001110100110

11100010100101
007110000000001
01100001 1110717

11
10
00
00

0100000001 101071 1
0010711 1000000001
0011000101 111000

00010001011000
1001110100110
11100010100101
00110000000001

0010711 1000000001
0011000101 111000

Thursday, November 11, 2010

010010011107

1001110100717
111000101007

011000011110
010000000110

Thursday, November 11, 2010

Thursday, November 11, 2010

01001001110
000100010711

:
0

0011000000000100
0110000111101100
0100000001 101071 1
0010711 1000000001
0011000101 111000

1000101100071
1000000000100
0 0111000000001
. 1000101111000

'® '@ 0010011

]
10000711 1
0011101001101 1 00000001
1100010100101 1

0
>
:

11001
01100
01011

:
0

Thursday, November 11, 2010

Find: 0100100111011001.. 011 ©0®

/\

)10 011

001
ooo
000 / qu 011 9e
/ N)10 011
'0

o o
® o 00

Thursday, November 11, 2010

Find: 0100110111011

Thursday, November 11, 2010

®
Find: 010071 10111011... o 9

ROC
. 010 /
‘l]
001

)10 011
001

CRECE::::CE

il 001
000)10 foTiNe/ o
0/0[0
/ \ P
0/0[0
001

o o
® o 00

Thursday, November 11, 2010

Each host stores:

x All the data that “leat” there.

ne list of parent nodes talking to it.

ne list of children it kKnows about.

Thursday, November 11, 2010

Dynamically Adjusting:

» Data hashes in “clumps’ making some hosts
under-full and some hosts over-tull.

x Host running out of storage?

» Split in two. Give half the data to another
noae.

= HOst running out of bandwidth?

®x Clone data and load-balance.

Thursday, November 11, 2010

)10 011

\ 001 0 011 o/ w
000 01

)10 011

Thursday, November 11, 2010

Real DHIs in action

x Peer 2 Peer file-sharing networks.
x Content Delivery Networks (CDNs like Akamai)

x Cooperative Caches

Thursday, November 11, 2010

Distributed Hash Tables

(DHTSs)

Key/Value Stores

Thursday, November 11, 2010

Some commaon
Key/Value Stores

x “NoSQL”
x CouchDB
= MongoDB
x Apache Cassandra
= [errastore

Google Bigtable

Thursday, November 11, 2010

Emall Address

1515 Main
Street

Tom Limoncelli ~ tlim@google.com

Mary Smith mary@example.com 111 One Street

Joe Bond joe@007.com 7 Seventh St

Thursday, November 11, 2010

Tom Limoncelli tim@google.com 1515 Main Street

Mary Smitt .
User Transaction

Joe Bond
Tom Limoncelli Deposit

Mary Smith Deposit

Tom Limoncelli Withdraw

Thursday, November 11, 2010

Amount

Email Address

fom tim@google.com 1515 Main
Limoncelli googie. Street

Mary Si .
User Id Transaction Amount

Deposit 100

Deposit 200

Withdraw

Thursday, November 11, 2010

Email Address

fom tim@google.com 1515 Main
Limoncelli googie. Street

User Id Transaction Amount

Deposit 100

Deposit 240[0)

Withdraw

Thursday, November 11, 2010

Relational Databases

1st Normal Form
2nd Normal Form

3rd Normal Form

ACID: Atomicity, Consistency, Isolation, Durability

Thursday, November 11, 2010

Key/Value Stores

x Keys

x \/alues

x BASE: Basically Available, Soft-state, Eventually consistent

Thursday, November 11, 2010

Eventually’?

Who cares! This is the web; not payroll!

Change the address listed in:your profile.
Might not propagate to Europe for 15 minutes.
Can you fly to Europe in less than 15 minutes?

» And if you could, would you care?

Thursday, November 11, 2010

Key/Value example:

Key Value

tim@google.com BLOB OF DATA

mary@example.com BLOB OF DATA

joe@007.com BLOB OF DATA

Thursday, November 11, 2010

Key/Value example:

Key

tim@google.com

mary@example.com

joe@007.com

Thursday, November 11, 2010

Value

‘name’; “Tom Limoncelli’,
‘address’; ‘1515 Main Street’

‘name’: ‘Mary Smith’,
‘address’: ‘111 One Street’

‘name’: ‘Joe Bond’,
‘address’: ‘7 Seventh St’

Google Protobuf:

http://code.google.com/p/protobuf/

Key

tim@google.com

mary@example.com

joe@007.com

Thursday, November 11, 2010

Value

message Person {
required string name = 1;
optional string address = 2;
repeated string phone = 3;

}
{

‘name’: ‘Mary Smith’,
‘address’: ‘111 One Street’,
‘phone’: [201-555-3456", ‘908-444-11117]

‘name’; ‘doe Bond’,
‘phone’; ['862-555-9876]

Key/Value Stores

Thursday, November 11, 2010

Bigtable

Thursday, November 11, 2010

Bigtable

x (Google’s very very large database.
x OSDI'06
x Nhitp://lalns.google.com/papers/bigtable.htmil

x Petabytes of data across thousands of commodity
Servers.

x \Web indexing, Google Earth, and Google Finance

Thursday, November 11, 2010

Bigtable Keys

Can be very huge.

Don’t have to have avaluel (i.e the value is “null”)
Query by

x Key

x Key start/stop range (lexigraphical order)

Thursday, November 11, 2010

Long keys are cool.

Key
Main St/123/Apt1 Query range:
Start: “Main St/123”
Main St/123/Apt2 End: infinity

Main St/200

Thursday, November 11, 2010

Bigtable Values

x Values can be huge.: Gigabytes.
x Multiple values per key, grouped in “families’:

x “key:family:family:family:..."

Thursday, November 11, 2010

Families

= \Within a family:
x Sub-keys that link to:data.

x Sub-keys are dynamic: no need to pre-define.

x Sub-keys can be repeated.

Thursday, November 11, 2010

Example: Crawl the web

= For every URL:
Store the HIML at that location.
Store a list of which URLs link to that URL.

Store the “anchor text” those sites used.

ANCHOR TEXT

Thursday, November 11, 2010

x http://www.cnn.com

. <ntml> </html>

x Nttp://tomontime.com

x <html>

x <P>AS you may have read on <a href="http://
WWW.Ccnn.com”>my favorite news site there is...

Thursday, November 11, 2010

Family Another family

Key contents: anchor:tomontime.com anchor:cnnsi.com

com.cnn.www <html>... my favorite news site CNN

Key contents: anchor:everythingsysadmin.com

com.tomontime <html>... videos

Thursday, November 11, 2010

Each Family has its own...

x Permissions (who can read/write/admin)

x QoS (optimize for speed, storage diversity, etc.)

Thursday, November 11, 2010

Plus “time”

"contents:" "anchor:cnnsi.com" "anchor:my.look.ca"

. . I
SR [A I [R S e e '___!____1 _____

"<htmi>_."| —
"com.cnn.www" —htm T 3 | " ["CNN.com" ~-- g

x All updates are timestamped.
x Retains at least n recent updates or “never”.

x Expired updates are garbage collected “eventually”.

Thursday, November 11, 2010

Bigtable

Thursday, November 11, 2010

Further Reading:

x Bigtable:
x hitp://research.google.com
A visual guide to- NoSQL:

x Nhitp://blog.nahurst.com/visual-guide-to-nosql-
systems

= Hashlables, DHIS, everything else
x \Vikipedia

Thursday, November 11, 2010

Other futuristic topics:

x Stop using “locks?; eliminate all deadlocks:
x STM: Software Transactional Memory
x Centralized routing: (you’d be surprised)
x 2 minute overview: Www.openflowswitch.org
x (the 4 minute demo video is MUCH BETTER)
x “Network Coding”: nA2 more bandwidth?

x SciAm.com: “Breaking Network Logjams”

Thursday, November 11, 2010

Thursday, November 11, 2010

How to do a guery?

Thursday, November 11, 2010

VALUE
“{ legs=2, horns=0, covering="feathers’ }”
“{legs=4, horns=0, covering="fur’ }”
dog ‘{legs=4, horns=0, covering="fur’ }”

spider “{ legs=8, horns=0, covering="hair’ }”

unicorn “{ legs=4, horns=1, covering="‘hair’ }”

Thursday, November 11, 2010

“Which animals have 4 legs?”

= |[terate over entire list
= Open up:-each blob
x Parse data

= Accumulate list

Thursday, November 11, 2010

= VALUE
animal:bird “{legs=2, horns=0, covering=‘feathers’ }”
animal:cat “{ legs=4, horns=0, covering="fur’ }”
animal:dog “{legs=4, horns=0, covering="fur’ }”

animal:spider “{legs=8, horns=0, covering="‘hair’ }”

animal:unicorn “Ilegs=4, horns=1, covering=‘hair’ }”

legs:2:bird

legs:4:cat lterate:
legs:4:dog Start: “legs:4”
End: “legs:5” Up to, but not

including “end”

legs:4:unicorn

legs:8:spider

Thursday, November 11, 2010

legs=4 AND covering=fur

» More indexes + the “zig zag” algorithm.

» More Indexed atiributes = the slower insertions

x Automatic if you use AppEngine’s storage system

Thursday, November 11, 2010

