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Abstract

System administrators use a variety of techniques to
track down and repair (or avoid) problems that occur in
the systems under their purview. Analyzing log files,
cross-correlating events on different machines, establish-
ing liveness and performance monitors, and automating
configuration procedures are just a few of the approaches
used to stave off entropy. These efforts are often stymied
by the presence of hidden dependencies between com-
ponents in a system (e.g., processes, pipes, files, etc). In
this paper we argue that system-level provenance (meta-
data that records the history of files, pipes, processes and
other system-level objects) can help expose these depen-
dencies, giving system administrators a more complete
picture of component interactions, thus easing the task
of troubleshooting.

KEYWORDS: troubleshooting; diagnosis; depen-
dencies; provenance; mental models.

1 Introduction

Most highly experienced system administrators can re-
member a time in their career when they were virtu-
ally clueless about the configuration of their systems.
Whether learning on the job as a junior sysadmin or
walking into a brand new infrastructure, nobody is ever
handed a comprehensive guide to “the way things work
around here.” Instead, sysadmins must slowly develop a
mental model of the systems in their care [6, 15]. They
study existing documentation and Internet sources, so-
licit expert advice, explore component interactions, and
much more. While this process is valuable in the long
run, it is also time-consuming and error prone, and com-
petes with the efficiency of whatever task is at hand (e.g.,
tracking down and fixing the root causes of problems).

Additionally, mental models are developed on an as-
needed basis and fail to account for hidden dependencies
between system components, resulting in large gaps and
inaccuracies.

This paper explores how system-level provenance can
effectively expose hidden dependencies, improve men-
tal models, and help improve the troubleshooting process
for system administrators. Our goal is to build a prove-
nance analysis engine that can automatically construct an
accurate, queryable map of component interactions for
single systems, networked sites, and beyond. Imagine ar-
riving at your desk on a Monday morning and being able
to explore what your site looks like based on provenance
collected over the weekend.

2 Dependencies

Efficient troubleshooting requires mental models that
are sufficiently accurate and complete to suggest proper
courses of action. One part of a good mental model is
a map of dependencies between the various components
in a system. At a high level, components can be thought
of as subsystems (e.g., the web subsystem depends upon
the filesystem). At the lowest level of abstraction, com-
ponents consist of programs and their individual config-
uration parameters. At this level, a good mental model
maps how parameter changes affect a program’s depen-
dencies.

For the purposes of this research, we loosely define
dependency as the relationship created when information
flows from one component to another in order for the re-
cipient of that information to function correctly. For ex-
ample, when a process loads a library, functions neces-
sary to the core behavior of the process are transmitted to
it from a file. The process is dependent upon the library
being loaded into some part of memory and being made
accessible. Likewise, when Apache starts, it reads neces-
sary parameters from an external source of information
(e.g., httpd.conf). Furthermore, Apache depends upon



its runtime environment to properly specify the location
of httpd.conf.

These are obvious examples of dependencies, but note
that the way in which we have defined dependency re-
quires a clear understanding of what it means for a com-
ponent to function correctly. Formally, functional cor-
rectness is determined by behavior: every input produces
correct output, where the output also comprises error
conditions. Thus, if a process outputs “file not found”
for some input, it may still be functioning correctly. But
this definition is too strict for our purposes.

System administrators have a general sense of how
components are supposed to behave, and they can usually
determine when something is awry. For example, mis-
configuration of one or more components is a frequent
cause of “abnormal” behavior. Formally, a DBMS that is
configured with a parameter that directs it to the wrong
dataset will produce the correct behavior for how it is
configured, i.e., it will still answer queries as directed,
etc. But the admin will see unexpected outputs because
the inputs were different than expected. This leads us
to an imprecise definition of “functioning correctly” as
“exhibiting expected behavior”.

3 The PASS Project

Digital provenance is metadata that describes the ances-
try or history of a digital object. In non-digital domains,
such as art curation, provenance is often collected man-
ually. But in the digital domain, we have the capabil-
ity to record provenance automatically. The provenance-
aware storage system (PASS) project [26] currently col-
lects system-level provenance from inside a running ker-
nel and builds a directed acyclic graph that describes an-
cestral relationships between files, pipes, and processes1.

The provenance graph would be virtually useless with-
out a way of extracting pertinent information. We have
developed a query language for graph-structured data
called PQL [14, 13], which is capable of expressing com-
plex queries with transitive closures. PQL operates on a
semi-structured data model that allows us to ask ques-
tions about ancestors and descendants as well as about
paths and subgraphs.

Consider the case in which we want to find all out-
puts of the sendmail daemon. The following SPARQL2

query produces the desired result:

SELECT ? o u t p u t WHERE {
p r o g f i l e ” / u s r / s b i n / s e n d m a i l ” ? p r o c e s s .
? o u t p u t o u t p u t−of ? p r o c e s s

} ;

1This includes variables and other information about the environ-
ment in which they execute.

2PQL is similar to SPARQL [32], an SQL-like query language for
RDF.
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Figure 1: A diagram of the PASS Architecture.

In this example, ?output and ?process are variables.
For every process that is an instantiation of sendmail,
the query will return the process’s output objects (e.g.
files, pipes, processes, etc) in the variable ?output. With
PQL or a similar graph query language, we can issue
simple queries such as the one in our example or com-
plex queries such as “find all objects that result from the
same (or similar) sequence of events”, which is a path
finding query.

If we think of files, pipes, and processes as system
components between which information flows, then the
provenance graph can be viewed as a graph of potential
dependencies. Nodes of the graph represent components
and edges represent a “may depend upon” relationship
from one component to another. In practical terms, for a
process P that reads from a file F , there exists a directed
edge from the descendant P to the ancestor F . Likewise,
if the same process writes to a pipe I, an edge from I to
P will be generated in the graph. The graph describes
only potential dependencies, because in the absence of
code and dataflow analysis, we cannot be certain that
any descendant depends upon its ancestors to function
correctly.

3.1 PASS Architecture
Figure 1 shows the PASS architecture.3 The intercep-
tor is a set of system call hooks that extract arguments
and other necessary information from kernel data struc-
tures, passing them to the observer. Currently, PASS
intercepts execve, fork, exit, read, readv, write,
writev, mmap, open, pipe, and the kernel operation
drop inode. These calls are sufficient to capture the

3The modified image and description of architecture are used with
permission from the authors [26].



rich ancestry relationships between Linux files, pipes,
and processes. In addition, applications can be compiled
to use libpass, which allows us to send application-
specific provenance directly to PASS.

This raw “proto-provenance” goes to the observer,
which translates proto-provenance into provenance
records. For example, when a process P reads a file A,
the observer generates a record that includes the fact that
P potentially depends upon A (i.e., a cross-reference to
A). The first time an object is created, the observer as-
signs to it a unique pnode identifier. A pnode number is
similar to an inode number except that it is never recy-
cled, even after an object is destroyed. This allows us to
maintain provenance for every object of interest that ever
existed. Suppose that files A and B and process P have
all been assigned pnodes. When P exits, its pnode must
be maintained so that the transitive potential dependency
of B upon A can be queried. The same logic holds for the
case in which A is deleted.

The analyzer then processes the stream of provenance
records to eliminate duplicates and cyclic dependencies.
Duplicates occur when a provenance object is used as
input multiple times in the same “session” by another
object. For example, after the initial read of pipe I by
process P, every further read creates a duplicate record
until the pipe is closed. Yet a record of the initial read is
all we require to posit a potential dependency.4 In similar
fashion, the provenance of a file F to which P has written
multiple times will only contain a single record of the
initial write.

Unless time travel is possible5, it is impossible for a
descendant object to affect its ancestor. This is why cy-
cles in the provenance graph must be broken or avoided
by the analyzer. PASS avoids cycles by versioning. At
the time of its creation, each provenance object is as-
signed a version number of 0. New versions of an object
will be assigned monotonically increasing numbers. If
process P reads from file F , and later writes to that same
file, the analyzer will avoid a cycle by versioning the
file’s provenance. If P reads the file again, the new record
for this event will contain a cross-reference to Fv1. That
is to say that once F is written, further provenance will
be collected only for subsequent new versions, and the
provenance of Fv0 will contain only whatever may have
happened to F prior to the write and that didn’t involve
a cycle. The versioning algorithm works well on cycles
of any length, involving any type of object at any version
level.

The PASS system is not limited to collecting prove-
nance from local storage. We have implemented exten-

4In general, this level of granularity imposes limitations on our abil-
ity to classify dependencies, i.e., we could keep the duplicates with a
timestamp for more accurate resolution.

5There is now strong evidence to suggest that it is not [40]!

sions that enable provenance collection from NFS shares
and Amazon’s S3 service [3]. This capability is espe-
cially important to the multitude of organizations that
have shifted their infrastructure into the cloud [27, 28].

Note that the interceptor is platform-specific by neces-
sity, but that the observer and analyzer can be separated
entirely from the operating system. The remaining com-
ponents of the PASS architecture are not germane to the
goals of this research. For a more complete description,
we direct the reader to several prior works [25, 26].

4 Troubleshooting

4.1 Related Work
In the past decade, there has been exciting research
on improving failure diagnosis for system administra-
tors. Some approaches use visualization to help opera-
tors rapidly detect and diagnose problems [36]. Others
use event correlation in log-file analysis to identify ex-
tant and potential problems [1, 12, 17, 20, 34]. Wang et
al. [37, 38] use comparisons of current system configu-
rations against golden state configurations that have been
generated via statistical analysis of machine populations.
The HPC community has made significant strides in
tracking down and diagnosing the root causes of failures
in grids and clusters [2, 9, 31, 39]. Most of these ap-
proaches rely upon log analysis and can be extremely
effective, especially in prescribed domains. However,
log analysis may suffer from several drawbacks, includ-
ing a lack of operational context (expected behavior); a
“butterfly” effect on log messages that stem from small
changes; corrupted messages; inconsistent log formats;
and asymmetric log reports [29].

In the absence of formal documentation, sysadmins
have few resources for determining the dependencies
of a program. There exist tools that support static ex-
traction of dependencies via analysis of package man-
agement repositories [18] and program images [35], but
these have quite limited capabilities. For example, the
former tool relies upon the correctness of package pre-
requisite information, and the latter tool only exposes
compile-time dependencies.

Some tools [7, 33] are able to automatically construct
operational dependency models by actively perturbing
or probing live systems. Active perturbation involves
performing multiple transactions or injecting “problems”
outside of normal operation and tracking the affected
components by observing likely execution paths. These
methods are invasive, with the potential to cause un-
wanted load or unforeseen failures, and thus may be un-
tenable in a production environment.

There are also many other approaches for exposing
complex dependencies and causal relationships in dis-



tributed systems[4, 8, 11, 30], but their ability to docu-
ment, present, and query the models they build is limited.
This makes them ill-suited for improving mental models
and for generalized system and site-wide troubleshoot-
ing.

Two research projects reflect well the philosophy we
wish to propagate. PDA is a tool for automated prob-
lem determination developed at IBM [16]. The tool starts
with high-level health indicators that trigger custom-built
probes when something is awry. The probes are built
manually via analysis of trouble-ticket corpora. Their
use-case scenarios reveal that a large number of prob-
lems fall into several categories to which standard trou-
bleshooting procedures can be applied and perhaps even
automated. We are optimistic that these categories will
also manifest in our provenance graphs.

We recently discovered a tool that is similar–both in
concept and implementation–to the framework we pro-
pose in this paper, but more narrow in scope and no
longer actively developed. BackTracker [19] is designed
to analyze system intrusions by tracing chains of events
from a detection point (e.g., a suspicious process) back
through a dependency graph to likely points of entry. The
goal is to document the attack vectors that expose un-
known vulnerabilities. Similar to our approach, the graph
is constructed by intercepting and recording the informa-
tion in system calls. The authors also provide several
security-specific methods by which to prioritize and fil-
ter large portions of the dependency graph to help the
user along. The requirements for system troubleshoot-
ing are more general, thus our work may be viewed as
an attempt to address a superset of the issues tackled by
BackTracker.

Although one may assume that documentation is avail-
able for general-use tools, many organizations develop
in-house solutions. When these solutions are intended
for internal use only, there is little economic incentive
to create polished user interfaces or comprehensive doc-
umentation; tools must simply be “good enough.” As
the number of internal libraries, scripts, and programs
increases, making changes to the system becomes in-
creasingly difficult. For example, deleting old libraries
becomes virtually impossible when sysadmins have lit-
tle knowledge of what programs utilize which libraries.
The complexity of these poorly understood systems will
continue to grow without bound as long as they are ac-
tively developed. Sysadmins in this situation would ben-
efit greatly from a comprehensive and explorable graph
of component dependencies.

4.2 A “Simple” Example

As suggested earlier, a clear and accurate system model
is paramount to troubleshooting. Although sysadmins al-

ready troubleshoot in the absence of such models, their
efforts have been significantly hindered by complexity.
When something fails in a system, knowing where to
look first is usually a “gimme”. Under progressively
greater pressure, knowing where to look second, third,
fourth, and so on, requires experience and perseverance.

For example, in most UNIX distributions, the re-
solver, which sends DNS queries to translate names
into IP addresses, loads its configuration from the file
/etc/resolv.conf. Traditionally, this file was edited
manually. In modern distributions such as Ubuntu, the
file is now automatically generated and modified by the
NetworkManager daemon. Various options for the net-
work manager can be configured via GUI or the com-
mand line, but not resolver-specific options. Instead,
if the host obtains its network configuration via DHCP,
changes to resolv.conf are governed by the network
manager’s communication with the dhclient daemon,
using D-Bus IPC6. The behavior of dhclient is in turn
configured via the file /etc/dhcp3/dhclient.conf.

Given the dependencies just described, where does the
system administrator look when she determines there is
a problem with name resolution? The first place she
may look is resolv.conf. Luckily for her, there is
a comment in the file that states it has been automati-
cally generated by the network manager. However, this is
where the trail goes lukewarm. The manual page for the
network manager says nothing about the resolver. Per-
haps the sysadmin recalls that name resolution failures
can be symptomatic of DHCP misconfiguration, lead-
ing her to check the dhclient manpage and subsequently
dhclient.conf. She may find some useful information
there, but she is hard pressed to discover that the net-
work manager is modifying the resolver’s configuration
by talking to the DHCP client. Also, dhclient.conf
may have been configured by an automated script. The
trail goes cold until Google is consulted and a solution is
discovered. But this is unsustainable as a standard proce-
dure for troubleshooting; eventually, even Google is out
of answers.

Using a provenance graph (Figure 2) and the right
query types (or tools we build specifically for this pur-
pose), our fearless administrator would more quickly dis-
cover the dependencies in our example. Let us walk
through the troubleshooting session once more with the
help of provenance. The graph has been trimmed and
condensed for clarity, so the steps taken in an actual ses-
sion may be more involved. Also, the following analysis
suggests that we are able to collect provenance for re-
mote sockets. This is not currently the case for PASS,
but we are working on such a mechanism.

6The D-Bus implements inter-process communication (IPC) via
Unix sockets, with each endpoint represented as an inode object and
two file objects in the kernel.
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Figure 2: A partial provenance graph representing potential
dependencies between components involved in Linux name
resolution.

We may safely start at the network manager node
(hereafter referred to as netman), since we already know
the source of the generated resolv.conf. The ancestors
of netman include a socket endpoint (a “special” file) and
various other inputs, one of which will be a configuration
file. We can probably safely exclude the configuration
file, because there is nothing in netman’s documentation
about resolver options. But why has netman received in-
formation from a socket via the D-Bus? It has obviously
communicated with another process. Here is where we
run into a slight snag: D-Bus often has a plethora of
socket endpoints as inputs (in addition to other inputs),

so how can we determine the right ancestor? In many
cases we may not be able to directly identify the most
important ancestor but we can probably narrow down our
choices.

One possibility involves checking timestamps of the
provenance edges between objects of interest. In this
case we could compare the timestamp of outputs to net-
man’s socket endpoint with the timestamps of D-Bus in-
puts from any of its ancestors. We would discard D-Bus
inputs that occurred after outputs to the socket as well as
inputs that occur too long before outputs. Other techni-
cal solutions are also possible, including the recording of
socket descriptors in provenance objects.

Once we have reasonably narrowed our choices, we
will have to rely on experience to take us the rest of the
way. Knowing that our machine receives network con-
figuration parameters via DHCP will allow us to discard
many other D-Bus ancestors, such as the audio, printing,
and display subsystems. Once we reach the dhclient an-
cestor, we can determine which of its configuration op-
tions found in dhclient.conf are likely to be involved
in name resolution.

The D-Bus example represents one of the worst-case
scenarios in tracing root causes. The problem is twofold:
at any given time, the number of ancestors and descen-
dants of the daemon is usually very large, which re-
sults in an overwhelming path explosion; but the larger
problem is that valuable provenance is hidden inside the
D-Bus black box. For instance, if we had access to
the internal dbus object name that identifies the connec-
tion between two clients, we could easily narrow our
search to the real ancestors of the network manager. One
way in which to accomplish this would be to create a
provenance-aware version of D-Bus using the libpass

library. This may be feasible for a small portion of par-
ticularly “opaque” system programs with many distinct
inputs and outputs.

5 Ranking Dependencies

While the provenance of a process’s outputs depends
upon the process’s inputs, the process itself is not neces-
sarily dependent upon every input to function correctly.
For example, the program cat, which reads the contents
of an input stream, only depends upon three shared li-
braries to function correctly, yet a provenance graph in-
cludes edges to every distinct input object that cat opens.
Though the absence of these inputs may cause a script to
fail, none of them is essential to the core behavior of cat.
This is why we have described the provenance graph as
a graph of potential dependencies only.

A similar fact holds for many programs; almost every
file (or other input) that is necessary for them to function
properly is loaded with their image or shortly thereafter.



There are notable exceptions: programs such as Apache
and PERL frequently load modules on-demand; dae-
mons may reload their configuration files when a HUP
signal is received, but will rarely reload a library; and
shell scripts frequently defy all notions of predictability.

It would appear that the generated graph contains too
much information for our purposes. Too many “unim-
portant” edges will make troubleshooting more difficult.
Thus we need a way to limit the scope of our queries to
those ancestral objects that are most likely to have con-
tributed to the behavior or contents of a target descen-
dant.

5.1 Statistical Approaches
There is a statistical approach that will help us rank the
contribution to dependency made by individual edges,
full paths, and ancestral subgraphs.

Consider that any given snapshot of a provenance
graph represents events as they actually happened. Sup-
pose that we look at a snapshot of the provenance graph
generated between time t1 and time t2. We see an
edge from the process /usr/sbin/chpasswd to the file
/etc/pam.conf. We also see several edges leading
from other objects to chpasswd. Let us examine what
we know. We do not track information flow, so we do not
know what chpasswd did with information that it read
from pam.conf. We do not know if the process or its de-
scendants would have functioned correctly if pam.conf
was missing or contained different content. The graph
only tells us that the provenance of chpasswd and its de-
scendants depended upon pam.conf in its current state.

Let us assume that the process functioned correctly
during the snapshot period. How do we assign a depen-
dency rank to edges in the graph? One way might be to
take multiple snapshots at equally spaced intervals and
count the number of snapshots in which the edge of in-
terest appears. A high count would indicate a higher like-
lihood of dependence. While this may seem reasonable,
it will not work.

Recall that an object is uniquely identified by a pnode
number, which remains the same through successive ver-
sions (and even unto death). Once a node becomes a part
of the graph, it is never removed. Any edges connected
to the node remain in the graph as well. Thus, there is no
difference between snapshots except for the creation of
nodes and edges, and increases in object versions.

The correct approach takes advantage of the logical
separation between provenance objects. A process is the
running instantiation of a particular program. As such,
two separate invocations of a program (processes) will
be assigned distinct pnodes and appear as distinct nodes
in the graph. Figure 3 shows an example of this scenario.

Process P1 has read file A, written file B and then

P
1

A

Pnode ID 43

P
2

Pnode ID 49

B

1              1

          1

1              1

/bin/P

Figure 3: Processes with distinct pnodes. The program P
(grouped processes) depends upon A with a ranking of 1 (thick
edge).

terminated. Some time later, process P2 takes the ex-
act same actions. Notice that both processes have a
provenance edge that points to the program executable
/bin/P. For all processes that have a given executable as
input, we can query whether or not they have a particular
input (A in this case). If the same input object appears in
the provenance of every process, then we declare that the
current version of the program depends upon the input
object with a ranking of 1.0. We denote this by group-
ing all such processes, drawing an edge from the group
to the file, and labeling the edge with its rank. Alterna-
tively, we can merge process nodes into a super-node to
keep the graph clean.

There will be cases where only some instances of a
program read from the same file. In these cases, only
those instances are grouped and an edge is drawn to the
file with a dependency rank given by

# of instances that read

total # of instances

We must not apply the same logic to rank the depen-
dency of files upon programs. We do not know for cer-
tain what happens to the information that is read from a
file by a process, e.g., whether it changes the behavior of
the process. By contrast, a file always depends upon the
process(es) that created and/or wrote to it. The reason is
that a file is a passive object whose existence and con-
tent is governed by processes only. There is never any
doubt that every bit of information in a file came from
the process(es) that wrote to it.7

7Note that conceptually, if a process Q removes from a file all infor-
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Figure 4: Dependency ranking for the path from wire-test to libc-2.4.so. The graph represents a mostly real provenance trace
but the edge ranks are for demonstration only. If the executable really compiled, it would be difficult to identify the discrepancy
between the two versions of libc.

Unnamed pipes are also passive objects that depend
with certainty upon the process(es) that create them. Like
processes, every new pipe is identified by a unique pn-
ode number, and there always exists an edge to the pro-
cess that created it. It might seem strange to claim that
a pipe depends upon the processes that write to it, espe-
cially since we think of it as a simple channel by which
processes communicate. The information sent to a pipe
is meant to be consumed by one or more processes dur-
ing the pipe’s (relatively fleeting) lifetime. Unlike a file,
none of the information in a pipe persists after it is torn
down. Nonetheless, except for the timeframe, a pipe is
serving one of the same purposes as a file; it is an infor-
mation conduit between two processes.

Since named pipes are implemented as device special
files, they remain usable after the process that created
them exits. Thus we can use the same grouping tech-
nique to identify all processes that read from the same
pipe, i.e., special file. With unnamed pipes, we need to
go a step further. They are only connected between two
single processes. It does not make much sense to claim
that a program reads from the same pipe on every in-
vocation. But we can claim that one program (i.e., every
process from the same executable) always receives infor-
mation from another program via a pipe, which implies
a high-ranking transitive dependency upon the writer by
the reader. A good way to represent this is to draw a di-
rected edge from the group of processes to the group of
pipes.

Armed with this metric, we can rank the potential de-
pendence of paths or ancestral subgraphs. A path ranking
is the average rank of all edges in the path. Similarly, a

mation written by another process P, we might want to say that the file
no longer depends upon P. But we have no way of representing this at
our current level of granularity.

subgraph ranking is the average rank of all edges in the
subgraph. For example, Figure 4 shows the rank of the
highlighted path from the wire-test executable back
to the ancestral file libc-2.4.so. We have omitted pro-
cess grouping for clarity. When we query for the can-
didates that are likely causes of root problems, our tools
should suggest exploration of the highest ranking paths
first (accounting for rank adjustments from rules, filters,
etc).

There are three caveats regarding this approach. First,
it is has yet to be empirically tested. But our knowl-
edge of operating systems provides a solid foundation.
Second, the approach requires a bootstrap period during
which rankings may be heavily influenced by existing
abnormal behavior. This has the potential to mislead sys-
tem administrators during analyses. We must therefore
provide the ability for admins to manually adjust rank-
ings in the graph, either permanently or via a “what-if”
mode in a query session. The last warning is that while
we expect the accuracy of rankings to improve over time,
a large number of abnormal events may throw certain
subgraph rankings into chaos at any time. We might be
able to mitigate this by having the provenance subsys-
tem alert us to statistical changes that exceed a certain
threshold.

5.2 Heuristics

Statistical methods (and others) will carry us a fair dis-
tance in compressing the query space. But there is no
reason to exclude existing knowledge about dependen-
cies or rules of thumb. We now present several observa-
tions that will help us improve our rankings and refine
our queries even further:



• Our current rules assign a dependency rank to edges
based upon how many instances of a program read
from the same input object. Informally, this says
that for an edge with a higher rank than another,
there is a greater chance that the input object affects
the program’s behavior.

We might make the assertion that all but the sim-
plest of daemons will always attempt to open and
read from their associated configuration files. But
note that if a daemon accepts a parameter that pre-
vents loading of config files or specifies a different
config file than the default (as many do), its input
edges may receive a much lower rank than expected.

Whether the daemon is dependent upon a specific
config file is usually conditioned upon its start-
ing parameters. Fortunately, PASS includes prove-
nance about the environment in which a program is
started. If we observe that a daemon always opens
the same configuration file in the presence of some
starting parameter, then we will be able to rank de-
pendencies for different instances of the daemon
(e.g., when ’-c’ is provided, the daemon always
loads config file C, but in the absence of ’-c’, the
daemon always loads config file A.). That is to say
that we will group processes as usual but the group
edge rank will indicate how many instances of the
program read from an input object when started
with a given parameter.

• The first-order dependencies of many programs are
known a priori, either via direct experience, docu-
mentation, or technical detail, e.g. statically-linked
programs. We can assign a rank of 1 to the out-
bound edges of these programs automatically upon
first invocation.

• Popular objects, as measured by descendant sub-
graph size, are less likely to be the singular cause
of a problem. It is a reasonable assumption that if
a popular object is the cause of a problem, descen-
dants along more than one path would exhibit unex-
pected behavior. In the case that we are only seeing
one or a few objects with unexpected behavior, we
can have our query engine dynamically reduce the
dependency ranking for paths or subgraphs that in-
clude popular ancestors. The triggers for such a re-
duction and the amount of rank reduction will need
to be determined by experiment.

Example: almost every program has libc as a core
library. This means that almost every edge that
points to the libc node will have a dependency
rank of 1. But this node is uninteresting exactly be-
cause so many programs depend upon it. If libc is

broken or missing, we are likely to know immedi-
ately.

• Edges to files residing in well-known configuration
directories or files with well-known names can be
labeled with a high rank when all other indicators
are equal or nearly so.

For example, if a program P opens a file called
logrotate.conf in directory /etc, then we have
two more pieces of evidence to support the assertion
that P depends upon logrotate.conf. The weight
of this evidence will need to be adjusted according
to several factors, which is left for future work.

Of course, we must also provide a means by which
we can fix the dependency or non-dependency of
an object upon another object. This allows us to
correct edges in the graph for which our algorithm
has failed. There may be a semi-automated way in
which to do this, which is also left for future work.

• Edges to files residing in well-known log directories
can be labeled with a low rank.

For example, /var/log/messages is a file that is
frequently written, but certain log viewing/analy-
sis/filtering/aggregation tools, such as Splunk, will
frequently read the file as well.8 In many cases, the
absence or corruption of a log will not affect the
proper functioning of the reading process. But it is
difficult to know how far such a failure might prop-
agate.

• Edges to files residing in well-known temporary di-
rectories can be labeled with a low rank.

By definition, programs should not rely upon any
data stored in a temporary directory (e.g. /tmp).
However, programs do sometimes use such direc-
tories to create temporary pipes or to communicate
information to themselves in the near future. These
kinds of dependencies will need to be reviewed.

• Edges to files that are created by and opened for
reading and writing in short intervals and across
multiple invocations by a single program may be
safely labeled with a low rank.

For example, applications such as Emacs create
backup files during editing. While the user may rely
upon such backups, Emacs does not require these
files to function correctly.

• Files that are created/written by an editor like vi are
not dependent upon vi. They are dependent upon

8Many of these tools avoid the local filesystem altogether by log-
ging to a centralized host via the network. In this case, provenance
would be captured using network service extensions to PASS.



the human being using vi. This is a dependency
that we can capture because we record the (E)UID
of every process. If the file is created or written
via shell redirection, we can still capture the depen-
dency based upon the shell owner.

• Files created or modified by a script are dependent
upon the script and probably many of its ancestors.
But the path must ultimately lead back to the pro-
cess that generated the script, whether manual or
automatic.

• Any troubleshooting tools we build can integrate
the use of whitelist, blacklist, Bayesian, and other
filters. These will give the user flexibility in their
queries and will certainly encourage use of the tool
for purposes other than troubleshooting.

Acting intelligently upon the given observations will
reduce the size and density of the query space. Note
that none of our algorithms or heuristics is modifying
the graph. Edge rankings will be applied only at query
time based upon specified rules and filters, and will be
computed in a lazy fashion. We do not want to rank one
million edges for a single query unless it is necessary.
For example, if a filter limits the query space to files in
a particular directory, we do not need to rank edges from
or to files in other directories, nor unnamed pipes.

As an example of where filtering may fail, suppose we
determine that a program is behaving abnormally. It has
file A as input, amongst others. A conventional rule of
thumb may lead us to filter based upon time; the pro-
gram was working until a certain point in time, so it is
reasonable to ask which process most recently wrote to
A around that time. But this may not help us because at
the granularity of our provenance, the information that
was most recently written to A might not be the infor-
mation that is causing a malfunction. It is possible that
some previous write is causing a malfunction. Perhaps
the program did not run during the period between the
previous write and the most recent write. Thus the ef-
fect of the previous write to A did not manifest until the
program was run again.

6 Under-specified Queries

Filters and rules will help, but they are not sufficient.
Even if we assume that the graph contains only actual
dependencies, we still need the ability to limit the scope
of under-specified queries. Such a query has the potential
to return a very large subgraph because it does not suffi-
ciently constrain ancestral breadth and depth. For exam-
ple, if we query on the full lineage of /var/log/dmesg,
we are likely to see all ancestors going back to installa-
tion of the operating system. Depending upon the con-

text, this may be unhelpful. The ability to specify queries
precisely assumes the existence of an excellent mental
model by which to navigate the provenance graph. As
the graph expands, “surgical” queries demand a familiar-
ity that is unsustainable without aid. Thus, our tool needs
to be able to guess at good places to stop in the lineage
of a target object.

Several researchers in our group are attempting to
tackle this problem based upon ideas inspired by web
search [23]. Provrank is an algorithm that judges the im-
portance of objects based upon their frequency across all
possible lineage queries. Objects with a high frequency
appear in too many lineage queries. Thus, if some pro-
cess appears in the query path of every descendant object
of interest, it does not add any important information to a
query result and represents a good cutoff point. Another
metric – frequency dissimilarity – captures the relative
frequency of an object. That is to say, it measures how
often an object appears in query results that contain ob-
jects of the same kind (based upon some criteria). Thus,
the bash shell will have a lower frequency dissimilar-
ity in queries that ask for the lineage of mkdir, than in
queries that ask for the lineage of a random user docu-
ment (i.e., the bash node would be a good cutoff point
for queries about user documents).

Further work is required in this area to help sysadmins
semi-automatically constrain their queries.

7 Building Tools

With a few decent algorithms under our belt, a gaggle of
heuristics, and a good working knowledge of operating
systems, what capabilities do we want for our tools and
their interfaces?

In our resolver example, we guided the reader through
a troubleshooting session that uses the provenance graph.
Although based on a real use case, the example was di-
rected and abbreviated for clarity. In a real session, a
sysadmin would need a guide as well; something to im-
prove their chances of diagnosing the problem.

Ideally, our tool must be able to present a relatively
small group of root-cause candidates. But we are also
helping admins build mental models. We expect to intro-
duce several interfaces that leverage web technologies as
well as the familiar command-line interface for conven-
tional programmatic control.

Since PQL is the primary method of querying the
provenance graph, we also plan to introduce a set of pre-
defined query classes that will help users learn how to
construct and refine more complex queries. A graphical
tool is in the works that will enable the construction of
queries via example as well.

Finally, integration is paramount. The user must be
able to build the toolchain with relative ease and con-



nect it to existing monitoring and troubleshooting frame-
works. For example, as problems are solved, relevant
snippets of the graph and associated queries can be en-
tered into a trouble ticket system and reviewed in subse-
quent incidents that exhibit similar symptoms.

7.1 Visualization

Provenance graphs can grow to enormous proportions,
which tends to work against building robust mental mod-
els. Visualization can dramatically improve the ability
for users to absorb and understand complex structures.
As such, it is one of the most important aids to prove-
nance analysis.

We have already built a tool called Orbiter [22] that
can, among other capabilities, display provenance graphs
with adjustable magnification, perform rudimentary fil-
tering (e.g., degree, object type, timestamp, etc) and
querying of ancestors and descendants, and summarize
subgraphs at customized levels of granularity. We plan to
extend Orbiter’s capabilities with query subgraph high-
lighting, regular expression filters, process grouping, an-
notations, and programmable views. We will encourage
system administrators to describe the most useful aspects
of the tool, as well as their thoughts on whether and how
to eliminate or improve its failings.

8 Future Work

The current implementation of PASS examines prove-
nance as expressed only via pipes, shared memory
(mmap), process environments, and the filesystem. Un-
fortunately, more sources of provenance (and potential
dependencies) are expressed via other information vec-
tors, e.g., signals, sockets, message queues, shared mem-
ory, semaphores, and exit codes. As a result, prove-
nance graphs generated by our implementation are not
comprehensive. We believe that analysis of network
I/O will prove to be a powerful technique. By track-
ing socket pairs, we can identify dependencies that span
physical machines. For example, a network-aware ap-
proach would be able to identify dependencies between
a web server and a DNS server. Expanding the collection
and analysis phases in this way will require considerable
effort.

Another drawback in our current implementation is
the inability to collect provenance from root volumes
or to aggregate provenance from multiple disparate vol-
umes. We are working to address these shortcomings
by building a new collection platform [21] based in the
Xen hypervisor [5] that obtains provenance directly from
system calls inside of guest VMs. We expect this re-
orientation to yield new benefits, which include support-

ing a better case for adoption than a patched Linux ker-
nel.

There are many other technologies that might be em-
ployed to help build and answer domain-specific trou-
bleshooting queries, including further analysis of graph
structure, more advanced statistical techniques, and a
community-based query database. We also plan to in-
corporate ideas from machine-learning, not only to help
conduct semi-automatic analyses of provenance graphs
and provide better dependency rankings, but to augment
graphs with information gleaned from interactions of
system administrators with our tools [10, 24].

9 Conclusions

In our introduction, we made the claim that complete
and accurate mental models are necessary to most tasks
performed by system administrators, including trou-
bleshooting and maintenance. As such, any tool that aids
in the timely development of accurate mental models will
be of great benefit to sysadmins at both the junior and se-
nior level.

In this paper, we have explored the idea that analy-
sis of provenance graphs can aid system administrators
in troubleshooting problems that involve complex hidden
dependencies. We are confident that if system adminis-
trators are amenable to automatic provenance collection,
then this idea will emerge as an effective utility in every-
day system administration.
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11 Availability

A working prototype is not yet available. However, read-
ers are encouraged to periodically check the website be-
low for news and updates.

http://www.eecs.harvard.edu/syrah/pass/
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