Centrifuge: Integrated Lease

Management and Partitioning for
Cloud Services

Atul Adya — Google
John Dunagan — Microsoft
Alec Wolman — Microsoft Research

Enabling a Cloud-Based Rendezvous

Service

Incoming Request (from Devi Problems:

store my current IP=A . L eq-
How to assign responsibility for

items to app servers? (partitioning)

[Front-end J How to deal with addition,
Web server
removal, & crashes of app servers?

How to avoid requests for the same
item winding up at different
servers? (use leases)

W/ How to adapt to load changes?

Application Server| |Application Server ApplicationServer
(In-Memory) (In-Memory) oo (In-Memory)

Centrifuge: Reusable Component for

Interactive Cloud Services

Targets class of services with these characteristics:
Interactive (needs low latency)
App servers operate on in-memory state

Application tier operates on cached data: the truth is
hosted on clients or back-end storage

Services use many small objects

Even the most popular object can be handled by one
server

Replication not needed to handle load

Centrifuge’s Contributions

Prior systems implement leasing and partitioning
separately

We show that integrating leasing and partitioning
allows scaling to massive numbers of objects
This integration requires us to rethink the
mechanisms and API for leasing

Manager-directed leasing
Non-traditional APl where clients cannot request leases

Centrifuge internals
Results from live deployment

Centrifuge Architecture

Front-end Front-end Front-end
Lookup Library Lookup Library)| ® ® ® | |Lookup Library

Lookups: /
Front-End

Web Servers

/ Centrifuge \

Manager Service

Owners: O%
Middle Tier \ /
Application Serve\

[Owner Library [Owner Library oo [Owner Library
In-Memory Server| {In-Memory Server In-Memory Server
6

How Does Centrifuge’s Leasing Scale?

Need to issue leases for very large # of objects
Lease per object will lead to prohibitive overhead

Centrifuge manager hands out leases on ranges

Use consistent hashing to partitiq” Centrifuge)

: N GRAHEHSHS bR Manager Service
Owner Library a
In-Memory Servet; O
One lease (one range) per virtual g%
\—> _/
Single mechanism: manager-directed Teasing handles
both leasing and partitioning

Clients Do Not Request Leases in the

Centrifuge API

Lookup API
URL Lookup(Key key)
void LossNotificationUpcall(KeyRange[] lost)

Incoming Request:
Owner API Find Device “D”

bool CheckLeaseNow(Key key, out LeaseNum leaseNum)
bool CheckLeaseContinuous(Key key, LeaseNum leaseNum)

Front-end Front-end . F"ront -end
Lookup Library Lookup leﬁg?c Legselo ‘.oo up b%?glle
2.P rm app||c 0N oneration
LOOkUp("D”) -S> 4 nt |P addr
3.CheckLease (“D”, handle)

[Owner Library [Owner Library oo [Owner Library
Server “m1” Server “m2” Server “m6”

Why Recover From Clients

(as opposed to Replication)?

Servers in datacenter environment are stable

Benefits

Much cheaper to avoid holding multiple copies in RAM
Avoids complexity/performance issues of quorum protocols

Doesn’t add extra complexity:

Need a mechanism to tolerate correlated failures anyway
(e.g. security vulnerabilities, patch installation)

Cost

When an application server crashes, items are not
available until clients republish

How Does Centrifuge Support Recovery

From Clients?

When application server crashes, Lookups receive Loss
Notifications
Indicates which ranges are lost

Allows the application to determine which clients should
republish their state

Live Mesh services use this model

Rely on clients to recover state

10

Key Features of Centrifuge

Partitioning
Manager spreads namespace across Owners by assigning leases
Consistency

Leases ensure single-copy guarantee: at any time t,
for any key at most one Owner node

Recovery

Loss notifications enable app developer to detect and recover
from Owner crashes

Membership
Owners indicate liveness by requesting leases

Load Balancing
Manager rebalances namespace based on reported load

11

Centrifuge design

Results from live deployment

12

Lookups Prefetch the Manager’s Lease Table

Cached Lease Table
Current LSN:2

Loo!(up ——]lamatLSN 2

Lease Table

Manager

- |

| <

7

“Here are changes LSN 2->4” :

\

Current LSN:4
[0-1:0wner=A]
[1-2:0wner=B]
[2-9:0wner=C]
Change Log

Incremental protocol to synchronize Lookup and Manager lease tables

Lookups are fast: no need to contact Manager and incur delay

Manager load not dependent on incoming request load to Lookups

13

Lease Protocol is Robust and Safe

[Owner] [Manager]

. “Request Leases”

-

“Leases granted/recalled”

v
Robustness: Owners have multiple opportunities to retain their leases:

Leases requested every 15 seconds

Leases last 60 seconds
Takes 3 consecutive lost/delayed requests to lose the lease
Safety: owner never thinks it has the lease when the manager disagrees

Similar to previous lease servers, rely on clock rate synchronization
14

Centrifuge Manager Is Highly Available
and Supports Non-Deterministic Code

Manager Service

“Can | have the leader lease?”
Standby

Standby
llNo.lI

“Renew leader lease and
commit state update.”
llYes'"
Leader

Leader and
Lookups and
Standbys
Owners

15

Scalability of Implementation

Centrifuge designed to run in a single datacenter
Scalability target: ~1000 machines in 1 cluster

Beyond there, scale by deploying multiple clusters

16

Centrifuge design
Centrifuge internals

17

Live Mesh Deployment

First deployed in April 2008

Results cover 2.5 months: Dec '08 — Mar ‘09
1000 Lookups, 130 Owners

Manager = 8 servers

18

s the Centrifuge manager a scalability
pottleneck in steady-state?

How well does Centrifuge handle high-churn
events?

How stable are production servers?

19

Result: Steady-State Load is Low

Manager CPU Usage over 2.5 Months

Server 1 Server 2 Server 3

12/11/08 12/27/08 1/12/09 1/28/09 2/14/09 3/2/09

Manager Network Usage over 2.5 Months

Server 1 Server 2 Server 3

12/11/08 12/27/08 1/12/09 1/28/09 2/14/09 3/2/09 20

Correlated Failures Do Occur

Owner Restarts observed by Managers during Patch Rollout
140

120
100
80
60

40 Server 1 Server 2 Server 3

o
Live Owners

20

0
9:00 PM 9:30 PM 10:00 PM 10:30 PM 11:00 PM 11:30 PM

21

Result: Even for High Churn, Load is Moderate

Manager CPU usage during Patch Rollout

==Server 1 Server 2 Server 3

&)
CPU %

w,i,,".‘hleﬁ.‘ i

O VTN e ALY

9:00 PM 9:30 PM 10:00 PM 10:30 PM 11:00 PM 11:30 PM

Manager Network Usage during Patch Rollout

| Server1 -=Server 2 Server 3

9:00 PM 9:30 PM 10:00 PM 10:30 PM 11:00 PM 11:30 PM 22

Lost-Lease Statistics for 1.5 Months

From 1/15/09 through 3/2/09, no patch installations
How stable were the owners during this period?

Servers are very stable: only 10 lease-loss events
7 cases, servers recovered < 10 minutes

3 cases, servers recovered < 1 hour

23

Conclusions

Centrifuge simplifies building scalable
application tiers with in-memory state
Combining leasing and partitioning leads to a
simple and powerful protocol

Deployed within Live Mesh since April 2008,
in use by 5 different Live Mesh Services

Data center server stability enables the single
copy in RAM w/loss notifications

24

