Carousel --- Scalable and (nearly)
complete collection of Information

Terry Lam
(with M. Mitzenmacher and G. Varghese)

€)

@

Data deluge in Networks

Denial of Service Worm outbreak

o Millions of potentially interesting events

a2 How to get a coherent view despite bandwidth and
memory limits?

o Standard solutions: sampling and summarizing

7~
What if you want complete collection?@

a Need to collect infected stations for remediation
a Other examples of complete collection:

. List all IPv6 stations

. List all MAC addresses in a LAN

Example: worm outbreak

4)

Slammer

stammer {3 S "

signatures

\. J

Intrusion Detection System
(IDS)

Manaement
Station

Abstract model
LOGGER

Sink

v

Memory M

2L © 06 o -
vy
—

m Challenges:
Small logging bandwidth: L < < arrival rate B
e.g., L=1 Mbps; B = 10 Gbps
w Small memory: M < < number of sources N
m €.9., M =10,000; N=1 Million
m Opportunity:
m Persistent sources: sources will keep arriving at the logger

Our results

o Carousel: new scheme, with minimal memory can log
almost all sources in close to optimal time (N/L)

a Standard approach is much worse
. In(N) times worse in an optimistic random model
. Adding a Bloom filter does not help
. Infinitely worse in a deterministic adversarial model

o~ @

/\
Why the logging problem is hard w

IDS sink
o N e

memory

 Sources 2 and 3 are never collected if pattern repeats

 1is logged many times
* In worst case, N — M (many!) sources can be missed

Why the problem is still hard
with a Bloom filter

cer IDS

Bloom filter?

4
B I I <+ N I

memory

o Similar performance to a standard logger
. Again, sources 2 and 3 are never collected because of timing

Bloom filter is necessarily small (M) compared to sources (N)

&
4

J

Congestion Control for Logging

a When input traffic exceeds capacity, standard solution
IS admission control: but it requires source cooperation

a What can a poor resource do to protect itself
unilaterally without cooperation from senders?

a Our approach: Randomized Admission Control.

. Break sources into random groups and “admit” one
group at a time for logging

Our solution: Carousel

Hash to color the sources I DS
say red and blue

1
ENEERNEE 3 | s

|

memory

Only red sources are
logged in this phase
Carousel

10

Rotating the Carousel
IDS sink
B 1 B ,é - A

memory

) Change color!

Carousel

11

./\
How many colors in Carousel? @

IDS

4

& N

memory

P~ @

sink

(L]

Carousel

Bloom filter full

m Increase Carousel colors

12

/‘\.

a Partition
H, (X): lower k bits of H(S), a hash function of a source S
. Divide the population into partitions with same hash value

o lterate
. T =M/L (available memory divided by logging bandwidth)
Each phase last T seconds, corresponds a distinct hash value
. Bloom filter weeds out duplicates within a phase

o Monitor (to find right partition size)

Increase k if Bloom filter is too full
. Decrease k if Bloom filter is too empty

13

Snort implementation

[Linux PCAP]

v

[Snort Detection Engine]

. Carousel

Packet of
current color?

Timer expires?

Packet in
Bloom filter?

Drop
packet

Bloom filter
underflow?

[Add packet to Bloom filter]

v

| I Change color Reduce

. ncrease colors :

Bloom filter . Reset timer colors
Reset timer Cl BI filt

overflow? ear Bloom filter

Clear Bloom filter

[Snort output module J(——] 14

Theoretical results

a Carousel is “competitive” in that it can collect almost all
sources within a factor of 2 from optimal time
. N = sources, L = logging speed, optimal time = N/L
. Collection time = 2 NI/L,
o Example: N =10,000 M =500, L =100

10000 -

Number of s8ooo -
logged
sources 6000 -

4000 -

2000 i - -
Optimal 190

Time (sec) 15

O 1 T T 1 T 1
0 50 100 150 200 250 300

Simulated worm outbreaks

10000 — r g peravE—
P
il &
8000 i &
Number of j J?
logged _ :f o Source dynamics
sources ;
! Carousel
LR | 2 I R EE—— L LLEEbS Naive logger
—=— Naive logger
2000 with Bloom filter
400 2100 3900
0 T T T 1
0 1000 2000 3000 4000
Time (sec)

Carousel is nearly ten times faster than naive collector

Snort Experimental Setup

Intel Xeon 2.8 GHz
8 cores, 8 GB RAM, 1 TB disk

(— Y
Signature
P » log S
traffic § J
generator Snort IDS

with and without Carousel

o Scaled down from real traffic: 10,000 sources, buffer
of 500, input rate =100 Mbps, logging rate = 1 Mbps

o Two cases: source S picked randomly on each packet
or periodically (1,2,3 .. 10,000, 1, 2, 3, ..)

10000

Snort results

%) lf"—=——— !
8 ,l' = Snort instrumented
37500 - — with Carousel —
g =+ Standard Snort
& == Standard Snort
000 — with Bloom filter —
o
2500 -
£
Z
. 180 500
| [
0 500 1000 1500
Time (sec)

(a) Random traffic pattern

10000

7500

5000

2500

- T YT I Ty s
/”.O"“‘
" 0’.’
/o
Y 2
, ..
17
15
5
i = Snort instrumented
H with Carousel
4 “* Standard Snort

== Standard Snort
with Bloom filter

18000 ’ \

10000

20600
Time (sec)

|
30000

40000

(b) Periodic traffic pattern

3 times faster with random and 100 times faster with periodic

L &,
Carousel design in hardware N

Carousel logging hardware

Compare: lower order

<
Key, record .
fromW Hash key)[bits of hash = V? }%[Bloom fllterj > To remote logger

V=V+1

clear

a2 Using 1 Mbit of memory, less than 5% of an ASIC
o Can be easily added to hardware IDS/IPS chipsets

19

Related work

a High speed implementations of IPS devices
Fast reassembly, normalization and regular expression
. No prior work on scalable logging

o Alto file system: dynamic and random partitioning
Fits big files into small memory to rebuild file index after crash
. Memory is only scarce resource
. Carousel handles both limited memory and logging speed
. Carousel has a rigorous competitive analysis

20

Limitations of Carousel

a Carousel is probabilistic: sources can be missed with
low probability =» mitigate by changing hash function
on each Carousel cycle.

o Carousel relies on a “persistent source assumption”
. Does not guarantee logging of “one-time” events

a Carousel does not prevent duplicates at the sink but
has fast collection time even in an adversarial model.

21

Conclusions

o Carousel is a scalable logger that
. Collects nearly all persistent sources in nearly optimal time

|s easy to implement in hardware and software
|s a form of randomized admission control

a Applicable to a wide range of monitoring tasks with:
High line speed, low memory, and small logging speed
. And where sources are persistent

)

22

