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  Millions of potentially interesting events 

  How to get a coherent view despite bandwidth and 
memory limits? 

  Standard solutions: sampling and summarizing 
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Denial of Service Worm outbreak 



  Need to collect infected stations for remediation 

  Other examples of complete collection: 

u  List all IPv6 stations  

u  List all MAC addresses in a LAN 
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  Challenges: 

  Small logging bandwidth: L < < arrival rate B 

e.g., L = 1 Mbps; B = 10 Gbps 

  Small memory: M < <  number of sources N 

  e.g., M = 10,000; N=1 Million 

  Opportunity: 

  Persistent sources: sources will keep arriving at the logger 

Sink 
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N 
Memory M  

B L 

LOGGER 



  Carousel: new scheme, with minimal memory can log 
almost all sources in close to optimal time (N/L) 

  Standard approach is much worse 

u  ln(N) times worse in an optimistic random model 

u  Adding a Bloom filter does not help 

u  Infinitely worse in a deterministic adversarial model 
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IDS 

memory 

sink 

•  Sources 2 and 3 are never collected if pattern repeats 
•  1 is logged many times 
•  In worst case, N – M (many!) sources can be missed 
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Bloom filter is necessarily small (M) compared to sources (N) 

  Similar performance to a standard logger  
u  Again, sources 2 and 3 are never collected because of timing 
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memory 

sink 

Bloom filter 

1
42 341 4 1412 1
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Clear  
Bloom filter? 



Congestion Control for Logging? 

  When input traffic exceeds capacity, standard solution 

is admission control: but it requires source cooperation 

  What can a poor resource do to protect itself 
unilaterally without cooperation from senders? 

  Our approach: Randomized Admission Control. 

u  Break sources into random groups and “admit” one 
group at a time for logging 
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Hash to color the sources  
say red and blue 

Only red sources are  
logged in this phase 
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  Partition 
u  Hk(X): lower k bits of H(S), a hash function of a source S 

u  Divide the population into partitions with same hash value 

  Iterate 
u  T = M / L (available memory divided by logging bandwidth) 

u  Each phase last T seconds, corresponds a distinct hash value 
u  Bloom filter weeds out duplicates within a phase 

  Monitor (to find right partition size) 
u  Increase k if Bloom filter is too full 
u  Decrease k if Bloom filter is too empty  
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Linux PCAP 

Snort Detection Engine 
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  Carousel is “competitive” in that it can collect almost all 
sources within a factor of 2 from optimal time   
u  N = sources, L = logging speed, optimal time = N/L 
u  Collection time ≈ 2 N/L,  

  Example: N = 10,000 M = 500, L = 100 
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Number of  
logged 

sources 
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  N = 10,000; M = 500; L = 100 items/sec 

  Logistic model of worm growth 16 

Time (sec) 

Number of  
logged 

sources 

400 3900 2100 

Carousel is nearly ten times faster than naïve collector 



Snort Experimental Setup


  Scaled down from real traffic: 10,000 sources,  buffer 
of 500, input rate =100 Mbps, logging rate = 1 Mbps 

  Two cases: source S picked randomly on each packet 
or periodically (1,2,3 . . 10,000, 1, 2, 3, . . ) 

Intel Xeon 2.8 GHz 
8 cores, 8 GB RAM, 1 TB disk 

traffic  
generator Snort IDS 

with and without Carousel 

Signature       P          S 
P log S 



18 

Time (sec) Time (sec) 

(a) Random traffic pattern (b) Periodic traffic pattern 

180 500 18000 

3 times faster with random and 100 times faster with periodic 



  Using 1 Mbit of memory, less than 5% of an ASIC 

  Can be easily added to hardware IDS/IPS chipsets 
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  High speed implementations of IPS devices 
u  Fast reassembly, normalization and regular expression 

u  No prior work on scalable logging 

  Alto file system: dynamic and random partitioning 
u  Fits big files into small memory to rebuild file index after crash 
u  Memory is only scarce resource 

u  Carousel handles both limited memory and logging speed  

u  Carousel has a rigorous competitive analysis 
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  Carousel is probabilistic: sources can be missed with 
low probability  mitigate by changing hash function 
on each Carousel cycle. 

  Carousel relies on a “persistent source assumption” 

u  Does not guarantee logging of “one-time” events 

  Carousel does not prevent duplicates at the sink but 
has fast collection time even in an adversarial model. 
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  Carousel is a scalable logger that 
u  Collects nearly all persistent sources in nearly optimal time 

u  Is easy to implement in hardware and software 
u  Is a form of randomized admission control 

  Applicable to a wide range of monitoring tasks with: 
u  High line speed, low memory, and small logging speed 

u  And where sources are persistent 
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