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Data deluge in Networks

Denial of Service Worm outbreak

o Millions of potentially interesting events

a2 How to get a coherent view despite bandwidth and
memory limits?

o Standard solutions: sampling and summarizing
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What if you want complete collection?@

a Need to collect infected stations for remediation
a Other examples of complete collection:

. List all IPv6 stations

. List all MAC addresses in a LAN



Example: worm outbreak
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m Challenges:
Small logging bandwidth: L < < arrival rate B
e.g., L=1 Mbps; B = 10 Gbps
w Small memory: M < < number of sources N
m €.9., M =10,000; N=1 Million
m Opportunity:
m Persistent sources: sources will keep arriving at the logger



Our results

o Carousel: new scheme, with minimal memory can log
almost all sources in close to optimal time (N/L)

a Standard approach is much worse
. In(N) times worse in an optimistic random model
. Adding a Bloom filter does not help
. Infinitely worse in a deterministic adversarial model
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Why the logging problem is hard w

IDS sink
o N e

memory

 Sources 2 and 3 are never collected if pattern repeats

 1is logged many times
* In worst case, N — M (many!) sources can be missed




Why the problem is still hard
with a Bloom filter
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o Similar performance to a standard logger
. Again, sources 2 and 3 are never collected because of timing

Bloom filter is necessarily small (M) compared to sources (N)
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Congestion Control for Logging

a When input traffic exceeds capacity, standard solution
IS admission control: but it requires source cooperation

a What can a poor resource do to protect itself
unilaterally without cooperation from senders?

a Our approach: Randomized Admission Control.

. Break sources into random groups and “admit” one
group at a time for logging



Our solution: Carousel

Hash to color the sources I DS
say red and blue
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Rotating the Carousel
IDS sink
B 1 B ,é - A

memory

) Change color!

Carousel

11



./\
How many colors in Carousel? @
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a Partition
H, (X): lower k bits of H(S), a hash function of a source S
. Divide the population into partitions with same hash value

o lterate
. T =M/L (available memory divided by logging bandwidth)
Each phase last T seconds, corresponds a distinct hash value
. Bloom filter weeds out duplicates within a phase

o Monitor (to find right partition size)

Increase k if Bloom filter is too full
. Decrease k if Bloom filter is too empty
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Snort implementation

[ Linux PCAP ]
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[ Snort Detection Engine]
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Theoretical results

a Carousel is “competitive” in that it can collect almost all
sources within a factor of 2 from optimal time
. N = sources, L = logging speed, optimal time = N/L
. Collection time = 2 NI/L,
o Example: N =10,000 M =500, L =100
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Simulated worm outbreaks
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Carousel is nearly ten times faster than naive collector




Snort Experimental Setup

Intel Xeon 2.8 GHz
8 cores, 8 GB RAM, 1 TB disk

( — Y
Signature
P » log S
traffic § J
generator Snort IDS

with and without Carousel

o Scaled down from real traffic: 10,000 sources, buffer
of 500, input rate =100 Mbps, logging rate = 1 Mbps

o Two cases: source S picked randomly on each packet
or periodically (1,2,3 .. 10,000, 1, 2, 3, ..)
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Snort results
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(a) Random traffic pattern
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(b) Periodic traffic pattern

3 times faster with random and 100 times faster with periodic
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Carousel design in hardware N

Carousel logging hardware

Compare: lower order

<
Key, record .
fromW Hash key )[ bits of hash = V? }%[Bloom fllterj > To remote logger

V=V+1

clear

a2 Using 1 Mbit of memory, less than 5% of an ASIC
o Can be easily added to hardware IDS/IPS chipsets
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Related work

a High speed implementations of IPS devices
Fast reassembly, normalization and regular expression
. No prior work on scalable logging

o Alto file system: dynamic and random partitioning
Fits big files into small memory to rebuild file index after crash
. Memory is only scarce resource
. Carousel handles both limited memory and logging speed
. Carousel has a rigorous competitive analysis
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Limitations of Carousel

a Carousel is probabilistic: sources can be missed with
low probability =» mitigate by changing hash function
on each Carousel cycle.

o Carousel relies on a “persistent source assumption”
. Does not guarantee logging of “one-time” events

a Carousel does not prevent duplicates at the sink but
has fast collection time even in an adversarial model.
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Conclusions

o Carousel is a scalable logger that
. Collects nearly all persistent sources in nearly optimal time

|s easy to implement in hardware and software
|s a form of randomized admission control

a Applicable to a wide range of monitoring tasks with:
High line speed, low memory, and small logging speed
. And where sources are persistent

)
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