Carousel --- Scalable and (nearly) complete collection of Information

Terry Lam

(with M. Mitzenmacher and G. Varghese)

Data deluge in Networks

- Millions of potentially interesting events
- How to get a coherent view despite bandwidth and memory limits?
- Standard solutions: sampling and summarizing

What if you want complete collection?

- Need to collect infected stations for remediation
- Other examples of complete collection:
 - List all IPv6 stations
 - List all MAC addresses in a LAN

Example: worm outbreak

Abstract model

Challenges:

- Small logging bandwidth: L < < arrival rate B
 </p>
 - e.g., L = 1 Mbps; B = 10 Gbps
- - e.g., M = 10,000; N=1 Million

Opportunity:

Persistent sources: sources will keep arriving at the logger

Our results

- Carousel: new scheme, with minimal memory can log almost all sources in close to optimal time (N/L)
- Standard approach is much worse
 - In(N) times worse in an optimistic random model
 - Adding a Bloom filter does not help
 - Infinitely worse in a deterministic adversarial model

Why the logging problem is hard

- Sources 2 and 3 are never collected if pattern repeats
- 1 is logged many times
- In worst case, N M (many!) sources can be missed

Why the problem is still hard with a Bloom filter

- Similar performance to a standard logger
 - Again, sources 2 and 3 are never collected because of timing

Bloom filter is necessarily small (M) compared to sources (N)

Congestion Control for Logging

- When input traffic exceeds capacity, standard solution is admission control: but it requires source cooperation
- What can a poor resource do to protect itself unilaterally without cooperation from senders?
- Our approach: Randomized Admission Control.
 - Break sources into random groups and "admit" one group at a time for logging

Our solution: Carousel

Rotating the Carousel

How many colors in Carousel?

Summary of Carousel algorithm

Partition

- $H_{\mathbf{k}}(X)$: lower k bits of H(S), a hash function of a source S
- Divide the population into partitions with same hash value

Iterate

- T = M / L (available memory divided by logging bandwidth)
- Each phase last T seconds, corresponds a distinct hash value
- Bloom filter weeds out duplicates within a phase

Monitor (to find right partition size)

- Increase **k** if Bloom filter is too full
- Decrease **k** if Bloom filter is too empty

Snort implementation

Theoretical results

- Carousel is "competitive" in that it can collect almost all sources within a factor of 2 from optimal time
 - N = sources, L = logging speed, optimal time = N/L
 - u Collection time ≈ 2 N/L,
- Example: N = 10,000 M = 500, L = 100

Time (sec)

Simulated worm outbreaks

Carousel is nearly ten times faster than naïve collector

Snort Experimental Setup

- Scaled down from real traffic: 10,000 sources, buffer of 500, input rate = 100 Mbps, logging rate = 1 Mbps
- □ Two cases: source S picked randomly on each packet or periodically (1,2,3 . . 10,000, 1, 2, 3, . .)

9

Snort results

3 times faster with random and 100 times faster with periodic

Carousel design in hardware

Carousel logging hardware

- Using 1 Mbit of memory, less than 5% of an ASIC
- Can be easily added to hardware IDS/IPS chipsets

Related work

- High speed implementations of IPS devices
 - Fast reassembly, normalization and regular expression
 - No prior work on scalable logging
- Alto file system: dynamic and random partitioning
 - Fits big files into small memory to rebuild file index after crash
 - Memory is only scarce resource
 - Carousel handles both limited memory and logging speed
 - Carousel has a rigorous competitive analysis

Limitations of Carousel

- □ Carousel is probabilistic: sources can be missed with low probability → mitigate by changing hash function on each Carousel cycle.
- Carousel relies on a "persistent source assumption"
 - Does not guarantee logging of "one-time" events
- Carousel does not prevent duplicates at the sink but has fast collection time even in an adversarial model.

Conclusions

- Carousel is a scalable logger that
 - Collects nearly all *persistent* sources in nearly optimal time
 - Is easy to implement in hardware and software
 - Is a form of randomized admission control
- Applicable to a wide range of monitoring tasks with:
 - High line speed, low memory, and small logging speed
 - And where sources are persistent

