
Terry Lam

(with M. Mitzenmacher and G. Varghese)

  Millions of potentially interesting events

  How to get a coherent view despite bandwidth and
memory limits?

  Standard solutions: sampling and summarizing

2

Denial of Service Worm outbreak

  Need to collect infected stations for remediation

  Other examples of complete collection:

u  List all IPv6 stations

u  List all MAC addresses in a LAN
3

4

Slammer
Witty
…

signatures

Intrusion Detection System
(IDS)

Slammer A Witty B Slammer C

A B C

Management
 Station

5

  Challenges:

  Small logging bandwidth: L < < arrival rate B

e.g., L = 1 Mbps; B = 10 Gbps

  Small memory: M < < number of sources N

  e.g., M = 10,000; N=1 Million

  Opportunity:

  Persistent sources: sources will keep arriving at the logger

Sink

1

N
Memory M

B L

LOGGER

  Carousel: new scheme, with minimal memory can log
almost all sources in close to optimal time (N/L)

  Standard approach is much worse

u  ln(N) times worse in an optimistic random model

u  Adding a Bloom filter does not help

u  Infinitely worse in a deterministic adversarial model

6

7

IDS

memory

sink

•  Sources 2 and 3 are never collected if pattern repeats
•  1 is logged many times
•  In worst case, N – M (many!) sources can be missed

2 34 141

8

Bloom filter is necessarily small (M) compared to sources (N)

  Similar performance to a standard logger
u  Again, sources 2 and 3 are never collected because of timing

IDS

memory

sink

Bloom filter

1
42 341 4 1412 1
4

Clear
Bloom filter?

Congestion Control for Logging?

  When input traffic exceeds capacity, standard solution

is admission control: but it requires source cooperation

  What can a poor resource do to protect itself
unilaterally without cooperation from senders?

  Our approach: Randomized Admission Control.

u  Break sources into random groups and “admit” one
group at a time for logging

10

IDS

memory
Bloom filter

sink
1
33 3424 121

Carousel

3 3424 121

Hash to color the sources
say red and blue

Only red sources are
logged in this phase

11

IDS

memory
Bloom filter

sink

Carousel

134
22 3 43 1 134

Change color!

12

IDS

memory
Bloom filter

sink
1
3

Carousel

Bloom filter full
Increase Carousel colors

4
2 341 5 174678 8 148

  Partition
u  Hk(X): lower k bits of H(S), a hash function of a source S

u  Divide the population into partitions with same hash value

  Iterate
u  T = M / L (available memory divided by logging bandwidth)

u  Each phase last T seconds, corresponds a distinct hash value
u  Bloom filter weeds out duplicates within a phase

  Monitor (to find right partition size)
u  Increase k if Bloom filter is too full
u  Decrease k if Bloom filter is too empty

13

14

Linux PCAP

Snort Detection Engine

 Packet of
current color?

Packet in
Bloom filter?

Add packet to Bloom filter

Bloom filter
 overflow?

Snort output module

Increase colors
Reset timer

Clear Bloom filter

Bloom filter
 underflow?

Change color

Reset timer

Clear Bloom filter

Timer expires?

Drop
 packet

N

Y

N

Y

Y

Y

N

Reduce
colors

N

Y

N

Carousel

  Carousel is “competitive” in that it can collect almost all
sources within a factor of 2 from optimal time
u  N = sources, L = logging speed, optimal time = N/L
u  Collection time ≈ 2 N/L,

  Example: N = 10,000 M = 500, L = 100

15

Number of
logged

sources

Time (sec)
190 Optimal

  N = 10,000; M = 500; L = 100 items/sec

  Logistic model of worm growth 16

Time (sec)

Number of
logged

sources

400 3900 2100

Carousel is nearly ten times faster than naïve collector

Snort Experimental Setup

  Scaled down from real traffic: 10,000 sources, buffer
of 500, input rate =100 Mbps, logging rate = 1 Mbps

  Two cases: source S picked randomly on each packet
or periodically (1,2,3 . . 10,000, 1, 2, 3, . .)

Intel Xeon 2.8 GHz
8 cores, 8 GB RAM, 1 TB disk

traffic
generator Snort IDS

with and without Carousel

Signature P S
P log S

18

Time (sec) Time (sec)

(a) Random traffic pattern (b) Periodic traffic pattern

180 500 18000

3 times faster with random and 100 times faster with periodic

  Using 1 Mbit of memory, less than 5% of an ASIC

  Can be easily added to hardware IDS/IPS chipsets

19

Hash key
Compare: lower order

bits of hash = V?
Bloom filter

Timer T

V=V+1
clear

Carousel logging hardware

Key, record
from detector

To remote logger

  High speed implementations of IPS devices
u  Fast reassembly, normalization and regular expression

u  No prior work on scalable logging

  Alto file system: dynamic and random partitioning
u  Fits big files into small memory to rebuild file index after crash
u  Memory is only scarce resource

u  Carousel handles both limited memory and logging speed

u  Carousel has a rigorous competitive analysis

20

  Carousel is probabilistic: sources can be missed with
low probability  mitigate by changing hash function
on each Carousel cycle.

  Carousel relies on a “persistent source assumption”

u  Does not guarantee logging of “one-time” events

  Carousel does not prevent duplicates at the sink but
has fast collection time even in an adversarial model.

21

  Carousel is a scalable logger that
u  Collects nearly all persistent sources in nearly optimal time

u  Is easy to implement in hardware and software
u  Is a form of randomized admission control

  Applicable to a wide range of monitoring tasks with:
u  High line speed, low memory, and small logging speed

u  And where sources are persistent

22

