A Sybil-Proof Distributed Hash Table

Chris Lesniewski-Laas M. Frans Kaashoek MIT

28 April 2010 NSDI

http://pdos.csail.mit.edu/whanau/slides.pptx

Distributed Hash Table

- Interface: PUT(key, value), $GET(key) \rightarrow value$
- Route to peer responsible for key

The Sybil attack on open DHTs

- Create many pseudonyms (Sybils), join DHT
- Sybils join the DHT as usual, disrupt routing

Contribution

- Whānau: an efficient Sybil-proof DHT protocol
 - GET cost: O(1) messages, one RTT latency
 - Cost to build routing tables: $O(\sqrt{N} \log N)$ storage/bandwidth per node (for N keys)
 - Oblivious to number of Sybils!
- Proof of correctness
- PlanetLab implementation
- Large-scale simulations vs. powerful attack

Division of labor

- Application provides integrity
- Whānau provides availability

- E.g., application signs values using private key
- Proc Get(key):
 Until valid value found:

Try value = Lookup(key)

Repeat

Approach

- Use a social network to limit Sybils
 - Addresses brute-force attack
- New technique: layered identifiers
 - Addresses clustering attacks

Two main phases

- SETUP: periodically build tables using social links
- LOOKUP: use tables to route efficiently

Social links created

Social links maintained over Internet

Random walks

Building tables using random walks

Routing table structure

- $O(\sqrt{n})$ fingers and $O(\sqrt{n})$ keys stored per node
- Fingers have random IDs, cover all keys WHP

From social network to routing tables

- Finger table: randomly sample $O(\sqrt{n})$ nodes
- Most samples are honest

Honest nodes pick IDs uniformly

Sybil ID clustering attack

[Hypothetical scenario: 50% Sybil IDs, 50% honest IDs]

Honest layered IDs mimic Sybil IDs

Every range is balanced in some layer

Two layers is not quite enough

Log n parallel layers is enough

- log n layered IDs for each node
- Lookup steps:
 - 1. Pick a random layer
 - 2. Pick a finger to query
 - 3. GOTO 1 until success or timeout

Main theorem: secure DHT routing

If we run Whānau's Setup using:

- 1. A social network with walk length = O(log n) and number of attack edges = O(n/log n)
- 2. Routing tables of size $\Omega(\sqrt{N \log N})$ per node

Then, for any input key and all but En nodes:

- Each lookup attempt (i.e., coin flip) succeeds with probability $\Omega(1)$
- Thus Get(key) uses O(1) messages (expected)

Evaluation: Hypotheses

- 1. Random walk technique yields good samples
- 2. Lookups succeed under clustering attacks
- 3. Layered identifiers are necessary for security
- 4. Performance scales the same as a one-hop DHT
- 5. Whānau handles network failures and churn

Method

- Efficient message-based simulator
 - Social network data spidered from Flickr, Youtube,
 DBLP, and LiveJournal (n=5.2M)
 - Clustering attack, varying number of attack edges

PlanetLab implementation

Escape probability

[Flickr social network: $n \approx 1.6M$, average degree ≈ 9.5]

Walk length tradeoff

[Flickr social network: $n \approx 1.6M$, average degree ≈ 9.5]

Whānau delivers high availability

[Flickr social network: $n \approx 1.6M$, $3\sqrt{n} \approx 4000$]

Everything rests on the model...

Contributions

- Whānau: an efficient Sybil-proof DHT
 - Use a social network to filter good nodes
 - Resist up to O(n/log n) attack edges
 - Table size per node: $O(\sqrt{N} \log N)$
 - Messages to route: O(1)

Introduced layers to combat clustering attacks