SpecNet: Spectrum Sensing Sans Frontières

Anand Iyer*, Krishna Chintalapudi*, Vishnu Navda*, Ramachandran Ramjee*, Venkata N. Padmanabhan* and Chandra R. Murthy+

Spectrum Measurement Studies

- McHenry "NSF Spectrum Occupancy Measurement Project Summary"
 - Average occupancy ~5.2% in 30MHz 3GHz
- McHenry et.al. "Chicago Spectrum Occupancy Measurements & Analysis" [TAPAS 2006]
 - 17% occupancy in Chicago, 13% in New York
- China [MobiCom 2009], Singapore [CrownCom 2008], Germany, New Zealand, Spain...

Spectrum Measurement Studies

Spectrum heavily underutilized

Impact

Nov 4, 2008: FCC voted 5-0 to approve Opportunistic Spectrum Access (OSA) in licensed bands

FCC Approves White Space "Wi-Fi on Steroids"

FCC's Whitespace Ruling: The Real Wi-Fi Revolution Is About to Happen

BY KIT EATON Mon Sep 13, 2010

Sep 23, 2010: FCC determines final rules for the use of whitespaces. Removes mandatory sensing requirement

Get Ready to Innovate! FCC Approves White Spaces Rules

By Ryan Kim | Sep. 23, 2010, 9:19am PT | 12 Comments

FCC White Spaces Ruling Enables Super Wi-Fi

Networking | News | Wayne Rash, Friday, September 24, 2010
Tags: government agencies, Telecommunications Services, Wi-Fi, Wireless Networking

However...

- Studies conducted only at a handful of locations
 - Till date, only the US has allowed OSA
- Represent static spectrum occupancy
 - Future OSA devices may require dynamic spatio-temporal occupancy information
- Through evaluation of OSA proposals from the research community is hard
 - Little or no access to real-world data from cross-geographic locations

However...

- Studies conducted only at a handful of locations
 - Till date, only the US has allowed OSA

No infrastructure for measuring real-time spectrum occupancy across vast regions

- Through evaluation of OSA proposals from the research community is hard
 - Little or no access to real-world data from cross-geographic locations

SpecNet

"A first-of-its-kind platform that allows spectrum analyzers around the world to be networked and efficiently used in a coordinated manner for spectrum measurement as well as implementation and evaluation of distributed sensing applications"

SpecNet

Conduct remote spectrum measurements

Construction & maintenance of spatio-temporal usage maps

Deploy & evaluate real-time distributed sensing applications

Challenges

Expensive (\$10K - \$40K)

Limited availability

Support user demands

ds

Applications require quick detection

Complete tasks in minimal time

Overview

- Motivation
- SpecNet
 - Architecture
 - Components
 - Programmability
- Spectrum Analyzer Primer
- Key Challenge Resource Management
- Applications

SpecNet Operation

Low-level

GetDevices ReserveDevices RunCommandOnDevice

High-level

GetOccupancy GetPowerSpectrum FindPowerAtLocation LocalizeTransmitter

XML-RPC

Master Server

import xmlrpclib;
APIServer =
xmlrpclib.ServerProxy(http://bit.ly/Sp
ecNetAPI, allow_none=True);
devices = APIServer.GetDevices(None,
None);

Components

Slave Server

Components

Master Server

Programmability

- Sophisticated Users
 - ReserveDevices
 - RunCommandOnDevice
- Policy Users
 - GetPowerSpectrumHistory
 - GetOccupancyHistory
- Others (E.g. network operators)
 - LocalizeTransmitter
 - FindPowerAtLocation
 - GetPowerSpectrum
 - GetOccupancy

- Used to measure the spectral composition of waveforms
- Frequency span (Q) and Resolution Bandwidth (RBW, ρ)

- Used to measure the spectral composition of waveforms
- Frequency span (Q) and Resolution Bandwidth (RBW, ρ)

- Often users are interested in determining which parts of the spectrum are in use.
 - Distinguish between signal and noise

- Often users are interested in determining which parts of the spectrum are in use.
 - Distinguish between signal and noise

 Noise floor determines the detection range of a spectrum analyzer

Lowering noise floor helps in detecting transmitters farther away

Overview

- Motivation
- SpecNet
 - Architecture
 - Components
 - Programmability
- Spectrum Analyzer Primer
- Key Challenge Resource Management
 - When multiple devices are available, how should the scanning task be scheduled?
- Applications

Scan Time

- Depends on Frequency Span (Q) and RBW (ρ)
- Linear dependency on span, $T \propto Q$

Scan Time

• In theory inversely proportional to RBW, $T \propto \frac{1}{\rho}$ In practice... piece-wise linear!

a. Spectral Load Sharing

 S_1 and S_2 split the frequency span among themselves

If τ_i is the minimum scanning time per MHz for S_i

$$T = \max(\tau_1 Q_1, \tau_2 Q_2)$$

$$Q_1: Q_2 = \frac{1}{\tau_1}: \frac{1}{\tau_2}$$

b. Geographical Load Sharing

 S_1 and S_2 partition the region of interest

b. Geographical Load Sharing

 S_1 and S_2 partition the region of interest

SpecNet uses a numerical approximation

to Voronoi partitioning

b. Geographical Load Sharing

 S_1 and S_2 partition the region of interest

SpecNet uses a numerical approximation

to Voronoi partitioning

Scan time depends on detection range as:

$$T \propto d^{\gamma}$$

T decreases super-linearly

Geo-Spectral Performance

	Spectral	Geographical	Geo-Spectral
Time to detect (s)	1118	1205	526

Overview

- Motivation
- SpecNet
 - Architecture
 - Components
 - Programmability
- Spectrum Analyzer Primer
- Key Challenge Resource Management
- Applications
 - Remote Measurements
 - Primary Coverage Estimation
 - Spectrum Cop

#1. Doing Simple Scans

GetDevices([lat,lng,r])
GetPowerSpectrum(device_id,Fs,Fe,Nf)

Remote Measurement Studies

Remote Measurement Studies

Remote Measurement Studies

How does the FM band look like in Bangalore, India **NOW**?

#2. Spectrum Cop

- Quickly detect violators
 - Simplicity in writing complex real-time sensing applications requiring coordination

- Use <u>GetOccupancy</u> to get an occupancy list in the desired frequency span
- For each occupied frequency band, do finer scans using <u>GetPowerSpectrum</u> by setting a lower RBW,
- Feed the results to <u>LocalizeTransmitter</u> to locate the transmitter.

#2. Spectrum Cop

- Quickly detect violators
 - Simplicity in writing complex real-time sensing applications requiring coordination

```
# Find occupancy in desired region
bound = [lat, lng, radius];
options = [lat, lng, radius, min power to detect];
occupancy list = APIServer.GetOccupancy(bound,
start frequency, end frequency, min power detect);
# Get power spectrum for transmitter frequency
for occupancy in occupancy list:
    if (occupancy['Occupied'] == 1):
        new f start = occupancy['Frequency'] - 250e3;
        new f end = occupancy['Frequency'] + 250e3;
        devices = APIServer.GetDevices(bound, None);
        for device in devices:
            locs.append([device['Latitude'],
                        device['Longitude']]);
            results[device['ID']] = APIServer.
             GetPowerSpectrum(device['ID'],
             new f start, new f end,
             options); # Actual call in new thread.
        break:
# Localize transmitter based on power measurements
for r in results:
        powers.append(max(r));
print APIServer.LocalizeTransmitter(bounds, locs,
powers, 'LDPL', [P, 3.0]);
```


Limitations

- Benefit to owners
 - Expensive devices
- Attenuation
 - 5-20 dB attenuation due to buildings
- Privacy/Security concerns
 - Fine-grained traffic monitoring/user-tracking not possible

Conclusion

- FCC ruling has spurred tremendous interest, both in academia and industry
- Key requirement is a measurement infrastructure that provides real data
- SpecNet fulfills this need by enabling a geographically distributed spectrum analyzer network

SpecNet requests your participation!
Please contact Anand Iyer (v-anandi@microsoft.com)
or Krishna Chintalapudi (krchinta@microsoft.com)