
UMview: View-OS implemented as a System Call Virtual Machine ‡

Renzo Davoli

University of Bologna

renzo@cs.unibo.it

Michael Goldweber

Xavier University

mikeyg@cs.xu.edu

Ludovico Gardenghi§

University of Bologna

gardengl@cs.unibo.it

1 Motivation

One component of the Virtual Square framework[12, 3, 4], is View-OS.
Traditional OS’s implement the global view assumption: any two processes
running on a computer share the same view of their execution environment.
This “global” view includes the meaning of pathnames, network stacks,
routing rules, devices etc. While processes may have different permissions
to access these resources, the naming scheme is the same. View-OS re-
moves the global view assumption. Each process in View-OS has its own
view of the execution environment, i.e. its own view of the networking
system, file systems, existing devices, inter-process communication, etc.
Furthermore, process view redefinition in View-OS can be selectively ap-
plied to specific portions of a processes’ view: e.g. a process can change
its view of the file system, or only on a subtree of the file system.

UMview1 is a user-mode implementation of key View-OS concepts as
a partial, modular, system call virtual machine (SCVM). A SCVM is
a process-virtual machine[10, 11] where processes run natively on the
processor and just the system calls are virtualized. User-Mode Linux
(UML)[5, 6], whose virtual monitor is an entire linux kernel loaded as
a process, is the canonical example of a SCVM.

UMview is a partial SCVM since it is possible to provide a process
with a view which is a mix of virtual and native entities. For example,
UMview supports the mounting of a virtual filesystem. Afterwards, the
processes’ view of the filesystem is composed of a virtual subtree rooted
at the mountpoint, in addition to the pre-existing filesystem. Unlike tra-
ditional kernel mounts, UMview mount effects are limited to the processes
running in the virtual machine. Furthermore, view modification actions,
like the mount operation example, can be nested.

UMview is a modular SCVM. Loadable modules provide suitable ab-
stractions for supporting specific virtualizations: e.g. file systems, devices,
networking systems, etc.

UMview provides a flexible and general purpose support for virtualiza-
tion. Using the View-OS concepts implemented as UMview modules one
can “unify” several pre-existing models of virtualization.

• chroot system call;

• system call interposition [14, 7, 9];

• fakeroot utility;

• virtual file systems [8, 15];

2 Current State of the Project

UMView runs in user-mode on vanilla GNU/Linux 2.6 kernels and sup-
ports binary compatibility with standard Linux executables. Though not
a complete View-OS implementation, UMview is a working and usable
proof-of-concept. Its current features provide highly useful extensions to
the traditional semantics of the underlying system.

Each specific virtualization is managed by a module, which can be
loaded/unloaded at run time. Currently, there are six modules:

umfuse allows mounting of FUSE file systems (including source code
compatibility with existing modules) without the need for kernel
FUSE support. Disk images, network mounts and other file systems
can be accessed by the user with no need for specific tools. umfuse

also supports nesting, i.e. one can mount a disk image which resides
on a second umfuse-mounted disk image or file system.

umlwipv6 extends the LWIPv6 user-level TCP/IP stack allowing for net-
work virtualization on a per-process basis; a process can see its own

‡Submitted for OSDI 2006 poster session. The poster presentation in-
cludes a live demo of the software, some kind of network access is preferred
during the presentation. This work was partially supported by the Web-
Minds FIRB project of the Italian Ministry of University, Research and
Education.

§student member of the research team
1Released under GPLv2 is available at the Savannah repository of the

View-OS project [13].

network stack (with separate IP address and routing rules). Connec-
tions with the real world are usually made via a VDE [2] connection.
Module composition is also supported; a virtual network can be used
to mount remote file systems with umfuse.

umdev implements virtual devices and adds support for I/O control sys-
tem call virtualization. Each special file or group is managed by a
sub-module. One of them is umdevmbr for hard disk MBR virtu-
alizations. Users can mount a disk image, partition it (accessing to
virtualized copies of block devices like /dev/hda), create file systems
on the new partitions (/dev/hda1, ...) and mount the resulting file
system with umfuse.

viewfs performs various kinds of transformations on the file system
namespace as seen by the process. Using viewfs one can hide por-
tions of the file system; e.g. to isolate the effect of malicious/ill-
behaving software on key data). It can also implement the copy-on-
write abstraction, allowing processes to operate on read-only portions
of the real file system in a safe manner.

umbinfmt is a user-mode implementation for binfmt support which lets
users choose a different “interpreter” for an executable depending on
the file extension or specific file pattern. For instance, QEMU [1] can
be used to run a Linux/i386 executable from a Linux/ppc command
shell.

Finally UMview also includes some optional kernel patches which aid
UMView performance. Since these optimizations can also be exploited
by other virtual machines (e.g. UML) these patches are currently under
consideration to be included in the official Linux kernel.

References

[1] F. Ballard. Qemu project home page.
http://fabrice.bellard.free.fr/qemu/.

[2] R. Davoli. Vde: virtual distributed ethernet. In Proceedings of Tri-
dentcom 2005, Trento, 2005.

[3] R. Davoli. Virtual square. In Proceedings of OSS2005. Open Source
Software 2005, Genova, 2005.

[4] R. Davoli and M. Goldweber. Virtual square in computer science
education. In Proceedings of ITiCSE05. Conference on Innovation
and Technology in Computer Science Education, Lisbon, 2005.

[5] J. D. Dike. User-mode linux. In Proc. of 2001 Ottawa Linux Sympo-
sium (OLS), Ottawa, 2001.

[6] J. D. Dike. Making linux safe for virtual machines. In Proc. of 2002
Ottawa Linux Symposium (OLS), Ottawa, 2002.

[7] T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A delegating ar-
chitecture for secure system call interposition. In Proc. Network and
Distributed Systems Security Symposium, February 2004.

[8] P. Miller. The plastic file system 1.9.
http://plasticfs.sourceforge.net/.

[9] N. Provos. Improving host security with system call policies. In 12th
USENIX Security Symposium, Washington, DC, August 2003.

[10] J. Smith and R. Nair. Virtual Machines: Versatile Platforms for
Systems and Processes. Morgan Kaufmann, 2005.

[11] J. E. Smith and R. Nair. The architecture of virtual machines. IEEE
COmputer, 38(5):32–38, May 2005.

[12] The V 2 project team. Virtual square home page.
http://www.virtualsquare.org.

[13] The View-OS project team. View-os savannah project.
http://savannah.nongnu.org/projects/view-os.

[14] D. A. Wagner. Janus: an approach for confinement of untrusted
applications. Technical Report CSD-99-1056, University of California,
Berkeley, 12, 1999.

[15] C. P. Wright and E. Zadok. Unionfs: Bringing File Systems Together.
Linux Journal, pages 24–29, December 2004.


