

In-node Software Rejuvenation for High Available Web System

Shinichi Kawamoto Tomohiro Nakamura Tsunehiko Baba
Hitachi Central Research Laboratory

{shinichi.kawamoto.bh, tomohiro.nakamura.qy, tsunehiko.baba.gc}@hitachi.com

1 Introduction

Resource leak is one of the most difficult bugs to fix. A
long period of running a Web application with resource
leak causes a system to crash or degrade its performance
considerably. Because computer resources, such as free
memory, file descriptors and database connections, are
completely exhausted. Software rejuvenation is a tech-
nique that reboots an operating system (OS) or an appli-
cation occasionally for freeing leaked resources [1].
Cluster based software rejuvenation, the combination of
reboot and failover, enables a system to continue proc-
essing requests during the reboot [2]. Before rebooting an
OS or an application running on one node of the clustered
Web system, requests to the node are redirected to the
other nodes of the system. Though this technique im-
proves availability of Web systems, the requests process-
ing performance during the reboot is degraded because of
a decline in the number of the request processing nodes.

Our goal is to develop a technique of minimum per-
formance overhead that can prevent Web systems from
crashing by resource leak. As the first step toward this
goal, we propose a technique called “in-node software
rejuvenation”.

2 In-node Software Rejuvenation

Our basic idea is to accomplish request processing on
the same node in which the rejuvenation is taking place.
Because the number of the request processing nodes does
not decrease during the rejuvenation, the performance
degradation will be smaller than that of cluster based
software rejuvenation.

The simultaneous execution of request processing and
rejuvenation on the same node requires an alternative
request processing environment. The alternative envi-
ronment takes over processing of all requests from the
original environment, and then the rejuvenation of the
original environment is started. An OS, an AP server and
a Web application are the candidates for the request proc-
essing environment. The alternative request processing
environment consumes additional server resources, such
as CPU, memory, and disk I/O for its invocation, execu-
tion and shutdown. To reduce the consumption of such
resources, the granularity of the environment must be fine.

Therefore, we chose the Web application as the request
processing environment.

Figure 1: Application server with the function of
in-node software rejuvenation

Three new modules Request Switch, Replace Manager

and Session Store are added to a Web application server to
enable the function of in-node software rejuvenation as
shown in Figure 1. Request Switch receives requests from
clients and transfers them to the current instance of a Web
application App1. Replace Manager instantiates an alter-
native Web application App2 occasionally and make Re-
quest Switch to transfer all received requests to App2 in-
stead of App1. When App1 completes the execution of all
received requests Replace Manager undeploys App1, and
consequently leaked resources are freed. Session Store
enables the sharing of HTTP session between the original
and its alternative Web application instances.

Experiments with our prototype show that both in-node
and cluster based software rejuvenation free leaked
memory correctly. The overhead of our technique is about
1%, and this is much smaller than the overhead 20% of
cluster based software rejuvenation.

We will demonstrate our prototype in the poster ses-
sion.

References
[1] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton. Soft-

ware Rejuvenation: Analysis, Module and Applications.
Proceedings of the 25th International Symposium on
Fault-Tolerant Computing, pp.381-390, Jun. 1995.

[2] V. Castelli, R. E. Harper, P. Heidelberger, S. W. Hunter, K. S.
Trivedi, K. Vaidyanathan, and W. P. Zeggert. Proactive
Management of Software Aging. IBM Journal of Research
and Development, Vol 45, No. 2, pp.311-332, Mar. 2001.

Request
Switch

Application Server

Session
Store

Deployer
Replace
Manager

Request from Clients
App1

App2

