
The Expandable Network Disk

Athicha Muthitacharoen Robert Morris M. Frans Kaashoek
{athicha,rtm,kaashoek}@csail.mit.edu

Many organizations posses large data sets that need to be on-
line but do not require the highest possible performance. It
often makes sense to store this data on low-end commod-
ity servers or on idle disk space of servers primarily used
for something else (for example, compute servers). Once the
amount of storage required grows beyond a few disks’ worth,
a cluster storage system starts to be attractive. An ideal clus-
ter storage system would present a disk-like interface com-
patible with existing file systems (perhaps via iSCSI), keep
running despite the failure of a few bricks, recover quickly
after correction of a temporary failure that does not disturb
disk contents, and expand transparently to file systems.

Efficient handling of temporary failures is particularly im-
portant when the cluster is composed of non-dedicated bricks
that may be rebooted due to the needs of their primary func-
tion, or when large collections of inexpensive bricks have fre-
quent failures of parts such as power supplies and network
connectivity. A temporary brick failure poses two questions.
First, how will redundancy be maintained for data written
during the failure that would ordinarily be replicated on the
failed brick? Second, when the failed brick recovers, how
will the system know which of the blocks it stores are out of
date, and which can safely be used? Petal [1] and FAB [2],
two existing cluster storage systems, do not maintain full re-
dundancy during temporary failures, and restore redundancy
by copying newly written blocks to a recovering brick. A
primary contribution of this paper is to maintain full redun-
dancy during temporary failures and to avoid the expense of
having to bring a recovered brick up to date.

This abstract presents END (the Expandable Network Disk).
END appears to a file system as a giant physical disk, ac-
cessible through a standard block-level I/O interface; as a
result, END supports existing disk file systems without mod-
ification. END only commits physical storage as blocks are
written, so that its apparent address space can be much larger
than the amount of physical storage. Each file system stored
in END would also be created with a size large enough to
accommodate future expansion. Thus, as storage needs in-
crease over time, an administrator can add new bricks and
existing file systems will automatically have access to more
storage.

END uses a two-layer design, in which storage “bricks” hold
two kinds of information. The lower layer stores replicated
immutable “chunks” of data, each indexed by a key equal to a
hash of its content. The upper layer maps each block address
to the key of its current content; each mapping is held on two
bricks using primary-backup replication. A brick that stores
the address mapping of a given block typically does not also
store the chunk holding the block’s current content. This sep-
aration gives END the flexibility to store chunks on whatever
brick is convenient; the immutability of chunks means that
END can retrieve the chunk for a key from any brick without
worrying about whether it has been kept up to date.

Several benefits spring from END’s separation of the muta-
ble address mappings from the content-addressed storage of
immutable data. First, the separation allows fast recovery
from failures. END needs to move only the address mappings
among bricks during reconfiguration, not the data; and since
the mappings are small compared to the data, reconfiguration
is quick. Second, END can handle temporary brick failures
efficiently. If a brick fails but soon recovers with disk con-
tents intact, END can immediately take advantage of the data
chunks stored on the brick’s disk. Since the chunks are im-
mutable, they cannot get out of date even if the correspond-
ing blocks were written while the brick was off-line. Third,
END can store content-addressed data chunks on any brick,
so it can always fully replicate written data, even while bricks
are off-line. Fourth, this flexibility allows END to spread the
load away from bricks with full disks. Finally, a newly added
brick can gradually pick up its share of data chunks. It does
not need to copy all the chunks in an address range to start
serving requests.

Experiments with our END prototype show that bulk write
operations on a file system stored on an END system of 4
bricks has slightly better performance than on a single-disk
file system. As expected, END’s performance is worse for
small file system operations. END’s bulk write through-
put scales linearly with the number of bricks, and reaches
31MB/s with 10 bricks. END recovers from a single brick
failure in less than two minutes; writes completed afterwards
are fully replicated. END reincorporates a rebooting brick in
approximately one minute and is able to use the chunks al-
ready stored on the brick prior to its reboot. During a bulk
write workload, adding a new brick to END completes in
about one minute.

References
[1] E. K. Lee and C. A. Thekkath. Petal: Distributed virtual disks. In

ASPLOS, pages 84–92, Cambridge, MA, 1996.

[2] Y. Saito, S. Frolund, A. Veitch, A. Merchant, and S. Spence. FAB:
building distributed enterprise disk arrays from commodity compo-
nents. In ASPLOS, pages 48–58, 2004.


