
MojaveComm: A Robust Group Communication Library

David Noblet ∗, Cristian Ţăpuş, and Jason Hickey
Computer Science Department, California Institute of Technology

{dnoblet,crt,jyh}@cs.caltech.edu

This paper introduces a fault-tolerant group communication
protocol that is aimed at grid and wide area environments. This
protocol has three layers: at the bottom, the first layer provides
basic reliability over regular IP-multicast; the second layer pro-
vides atomic multicast within a group of nodes; and the third layer,
sitting on top, guarantees the causal ordering of messages sent in
groups with overlapping membership. The protocol can be used
to implement sequential consistency. To prove the correctness of
our protocol we have used a combination of model checking and
mathematical proofs.

The major contributions of this work are: the design and im-
plementation of a totally distributed (no central point of failure)
group communication protocol with guarantees for a total ordering
of messages, and an associated demo.

In order for the protocol to provide these guarantees, it presents
the following abstractions. Primarily, the protocol assumes that the
system consists of some finite (though arbitrarily large) number
of processes, where each process has a unique identifier that is
persistent across failures. The protocol defines a group to be a set
of processes and a view (of a group) to be some subset of a group
membership. Processes may belong to several groups at the same
time.

The upper layer of the protocol relies on the existence of the to-
tal ordering of the messages delivered within each group (provided
by the middle layer). Additionally, it requires that messages sent
by one process to different groups become part of the total order
in each group in the same sequence in which the messages were
issued. For example, if a process were to send two messages, m1

and m2, to groups g1 and g2 respectively, then message m1 must
become part of the order in group g1 before m2 becomes part of the
order in group g2. It is important to notice that we do not require
that m1 is delivered before we can send m2; rather, we simply re-
quire that m1 obtains a sequence number before m2 does. While
there is a penalty for implementing this restriction we minimize the
cost by separating the message sequencing from the actual message
delivery.

Each group may have several views and the views can overlap.
Views are local to each process and they represent the local image
of the membership of the group from the perspective of the process.
In each group we implement the Virtual Synchrony model. When a
request to join a group is received by a process or when a process
leaves or is detected to have failed, the processes in the group
trigger a view change. The view change is a synchronization point
for the processes that survive it; it guarantees that membership
changes within a process group are observed in the same order
by all the group members that remain in the view. Moreover, view
changes are totally ordered with respect to all regular messages that
are sent in the system. This means that every two processes that
observe the same two consecutive view changes, receive the same
set of regular messages between the two view changes.

∗ student author

A process talks The same process wishes
to group Y to talk to group X

(a) Imposing an order on messages sent to different metadata
groups.

(b) A 3-way split of a virtual server group due to a network
failure.

(c) Three non-authoritative views merge to create a new
authoritative view.

Each process that wants to join a group starts as a singleton
view. It then contacts a directory service that provides hints as to
the current membership of the group. These hints are used by the
process to join other processes that belong to the same group. At
this layer of the protocol we do not discriminate between different
views of a group. It is only at the application level that one may
treat separate views of the same group differenly based on some
criteria. For example, one might want to allow only the members
of a given view (like the one with highest cardinality) of a group to
send or receive messages.

In order to provide an efficient communication mechanism for
the underlying communication facilities of the group communica-
tion protocol, we have implemented a reliable multicast layer on
top of the existing IP-multicast layer. In order to improve perfor-
mance of the protocol, we opt to use a NACK-based approach, thus
minimizing overhead (in the form of network traffic) in the absence
of dropped messages or other failure.


