
TightLip: Keeping Applications from Spilling the Beans
(presented with demo)

Aydan Yumerefendi∗, Benjamin Mickle, and Landon P. Cox
Duke University, Durham, NC

{aydan, bam11, lpcox}@cs.duke.edu

Managing the permissions of any shared space is chal-
lenging, even for highly skilled computer users. This
task is particularly daunting for untrained PC users, for
whom access control errors are routine and can lead to
damaging privacy leaks. A 2003 usability study of the
Kazaa peer-to-peer file-sharing network found that many
users share their entire hard drive with the rest of the In-
ternet, including email inboxes and credit card informa-
tion. Over 12 hours, the study found 156 distinct users
who were sharing their email inboxes. Not only were
these files available for download, but other users could
be observed downloading them.

This and similar compromises such as users inadver-
tently copying sensitive data into their public web space
present a different threat model than is normally as-
sumed by the privacy and security literature. In these
cases, data leaked due to access controlmisconfigura-
tionsrather than malice or buggy software. For example,
companies in the UK were reported to have banned their
employees from using Google Desktop because it allows
users to search across machines and can store sensitive
files on remote Google servers.

Neither secure communication channels nor host-
based intrusion detection would have prevented these
exposures. Furthermore, the impact of these leaks ex-
tends beyond the negligent users themselves since the
leaked data can and often does include previous com-
munication and transaction records involving principals.
No matter how careful any individual is, her privacy will
only be as secure as her least competent confidant. Prior
approaches to similar problems either rely on new pro-
gramming language features, making them incompatible
with legacy code or track “tainted” within a running pro-
cess, leading to prohibitively poor performance.

Thus, we are exploring a new approach to preventing
leaks due to access control misconfigurations through a
privacy management system calledTightLip. TightLip
helps users definewhat data is important andwho is
trusted, rather than forcing them to understand the com-

∗Student

plex dynamics ofhow data flows among their software
packages. We have divided the problem into two com-
plementary goals—first, to create file and host meta-
data, such as labels and group membership, and second,
to use this meta-data to alert users about potential leaks.
TightLip transparently labels sensitive files by searching
for data such as email and tax returns. Users only need
to be prompted when a potential breach occurs, which
should be rare.

Our current focus is on TightLip’s second goal of us-
ing labels to stop privacy leaks. Our approach relies on
a new operating system object called adoppelganger1

process. Doppelgangers are sandboxed copy processes
that inherit most, but not all, of the state of anoriginal
process. In TightLip, doppelgangers are spawned when
a process tries to read a sensitive file. The TightLip ker-
nel returns sensitive data to the original and scrubbed
data to the doppelganger.

The doppelganger and original then run in parallel
while the operating system monitors the sequence and
arguments of their system calls. If output buffers for the
two processes are the same, the output is independent of
the sensitive input with very high probability and is al-
lowed to pass. However, if output buffers are different,
they likely depend on their respective inputs. Routines
for handling divergence are policy-specific and based on
the trust level of the destination and the state of the dop-
pelganger.

We have implemented doppelgangers in a prototype
TightLip kernel and evaluated our approach through
micro-benchmarks and SpecWeb99 web server bench-
marks. The performance overhead in our micro-
benchmarks is several orders of magnitude less than
comparable taint-checking systems. SpecWeb99 results
show that Apache running on TightLip exhibits a negli-
gible 5% slowdown in request rate, response time, and
transfer rate compared to an unmodified server environ-
ment.

1From the Oxford English Dictionary: “the apparition of a living
person; a double, a wraith.”

1


