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Abstract

This paper proposes a static analysis technique for
detecting many recently discovered application vulner-
abilities such as SQL injections, cross-site scripting, and
HTTP splitting attacks. These vulnerabilities stem from
unchecked input, which is widely recognized as the most
common source of security vulnerabilities in Web appli-
cations. We propose a static analysis approach based on
a scalable and precise points-to analysis. In our system,
user-provided specifications of vulnerabilities are auto-
matically translated into static analyzers. Our approach
finds all vulnerabilities matching a specification in the
statically analyzed code. Results of our static analysis
are presented to the user for assessment in an auditing
interface integrated within Eclipse, a popular Java devel-
opment environment.

Our static analysis found 29 security vulnerabilities in
nine large, popular open-source applications, with two of
the vulnerabilities residing in widely-used Java libraries.
In fact, all but one application in our benchmark suite
had at least one vulnerability.Context sensitivity, com-
bined with improved object naming, proved instrumen-
tal in keeping the number of false positives low. Our
approach yielded very few false positives in our experi-
ments: in fact, only one of our benchmarks suffered from
false alarms.

1 Introduction
The security of Web applications has become increas-

ingly important in the last decade. More and more Web-
based enterprise applications deal with sensitive financial
and medical data, which, if compromised, in addition to
downtime can mean millions of dollars in damages. It is
crucial to protect these applications from hacker attacks.

However, the current state of application security
leaves much to be desired. The 2002 Computer Crime
and Security Survey conducted by the Computer Secu-
rity Institute and the FBI revealed that, on a yearly ba-
sis, over half of all databases experience at least one se-

curity breach and an average episode results in close to
$4 million in losses [10]. A recent penetration test-
ing study performed by the Imperva Application De-
fense Center included more than 250 Web applications
from e-commerce, online banking, enterprise collabo-
ration, and supply chain management sites [54]. Their
vulnerability assessment concluded that at least 92% of
Web applications are vulnerable to some form of hacker
attacks. Security compliance of application vendors is
especially important in light of recent U.S. industry reg-
ulations such as the Sarbanes-Oxley act pertaining to in-
formation security [4, 19].

A great deal of attention has been given to network-
level attacks such as port scanning, even though, about
75% of all attacks against Web servers target Web-based
applications, according to a recent survey [24]. Tra-
ditional defense strategies such as firewalls do not pro-
tect against Web application attacks, as these attacks rely
solely on HTTP traffic, which is usually allowed to pass
through firewalls unhindered. Thus, attackers typically
have a direct line to Web applications.

Many projects in the past focused on guarding against
problems caused by the unsafe nature of C, such as buffer
overruns and format string vulnerabilities [12, 45, 51].
However, in recent years, Java has emerged as the lan-
guage of choice for building large complex Web-based
systems, in part because of language safety features that
disallow direct memory access and eliminate problems
such as buffer overruns. Platforms such as J2EE (Java 2
Enterprise Edition) also promoted the adoption of Java
as a language for implementing e-commerce applications
such as Web stores, banking sites, etc.

A typical Web application accepts input from the user
browser and interacts with a back-end database to serve
user requests; J2EE libraries make these common tasks
easy to code. However, despite Java language’s safety, it
is possible to make logical programming errors that lead
to vulnerabilities such as SQL injections [1, 2, 14] and
cross-site scripting attacks [7, 22, 46]. A simple pro-
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gramming mistake can leave a Web application vulner-
able to unauthorized data access, unauthorized updates
or deletion of data, and application crashes leading to
denial-of-service attacks.

1.1 Causes of Vulnerabilities
Of all vulnerabilities identified in Web applications,

problems caused by unchecked input are recognized as
being the most common [41]. To exploit unchecked in-
put, an attacker needs to achieve two goals:

Inject malicious data into Web applications. Common
methods used include:

• Parameter tampering: pass specially crafted ma-
licious values in fields of HTML forms.

• URL manipulation: use specially crafted parame-
ters to be submitted to the Web application as part
of the URL.

• Hidden field manipulation: set hidden fields of
HTML forms in Web pages to malicious values.

• HTTP header tampering: manipulate parts of
HTTP requests sent to the application.

• Cookie poisoning: place malicious data in cookies,
small files sent to Web-based applications.

Manipulate applications using malicious data. Com-
mon methods used include:

• SQL injection: pass input containing SQL com-
mands to a database server for execution.

• Cross-site scripting: exploit applications that out-
put unchecked input verbatim to trick the user into
executing malicious scripts.

• HTTP response splitting: exploit applications that
output input verbatim to perform Web page deface-
ments or Web cache poisoning attacks.

• Path traversal: exploit unchecked user input to
control which files are accessed on the server.

• Command injection: exploit user input to execute
shell commands.

These kinds of vulnerabilities are widespread in today’s
Web applications. A recent empirical study of vulnera-
bilities found that parameter tampering, SQL injection,
and cross-site scripting attacks account for more than a
third of all reported Web application vulnerabilities [49].
While different on the surface, all types of attacks listed
above are made possible by user input that has not been
(properly) validated. This set of problems is similar to
those handled dynamically by the taint mode in Perl [52],
even though our approach is considerably more extensi-
ble. We refer to this class of vulnerabilities as the tainted
object propagation problem.

1.2 Code Auditing for Security

Many attacks described in the previous section can
be detected with code auditing. Code reviews pinpoint
potential vulnerabilities before an application is run. In
fact, most Web application development methodologies
recommend a security assessment or review step as a sep-
arate development phase after testing and before applica-
tion deployment [40, 41].

Code reviews, while recognized as one of the most
effective defense strategies [21], are time-consuming,
costly, and are therefore performed infrequently. Secu-
rity auditing requires security expertise that most devel-
opers do not possess, so security reviews are often car-
ried out by external security consultants, thus adding to
the cost. In addition to this, because new security errors
are often introduced as old ones are corrected, double-
audits (auditing the code twice) is highly recommended.
The current situation calls for better tools that help de-
velopers avoid introducing vulnerabilities during the de-
velopment cycle.

1.3 Static Analysis

This paper proposes a tool based on a static analy-
sis for finding vulnerabilities caused by unchecked in-
put. Users of the tool can describe vulnerability pat-
terns of interest succinctly in PQL [35], which is an easy-
to-use program query language with a Java-like syntax.
Our tool, as shown in Figure 1, applies user-specified
queries to Java bytecode and finds all potential matches
statically. The results of the analysis are integrated into
Eclipse, a popular open-source Java development envi-
ronment [13], making the potential vulnerabilities easy
to examine and fix as part of the development process.

The advantage of static analysis is that it can find all
potential security violations without executing the appli-
cation. The use of bytecode-level analysis obviates the
need for the source code to be accessible. This is espe-
cially important since libraries whose source is unavail-
able are used extensively in Java applications. Our ap-
proach can be applied to other forms of bytecode such as
MSIL, thereby enabling the analysis of C# code [37].

Our tool is distinctive in that it is based on a precise
context-sensitive pointer analysis that has been shown
to scale to large applications [55]. This combination of
scalability and precision enables our analysis to find all
vulnerabilities matching a specification within the por-
tion of the code that is analyzed statically. In contrast,
previous practical tools are typically unsound [6, 20].
Without a precise analysis, these tools would find too
many potential errors, so they only report a subset of er-
rors that are likely to be real problems. As a result, they
can miss important vulnerabilities in programs.
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Figure 1: Architecture of our static analysis framework.

1.4 Contributions
A unified analysis framework. We unify multiple,

seemingly diverse, recently discovered categories of se-
curity vulnerabilities in Web applications and propose an
extensible tool for detecting these vulnerabilities using a
sound yet practical static analysis for Java.

A powerful static analysis. Our tool is the first prac-
tical static security analysis that utilizes fully context-
sensitive pointer analysis results. We improve the state
of the art in pointer analysis by improving the object-
naming scheme. The precision of the analysis is effec-
tive in reducing the number of false positives issued by
our tool.

A simple user interface. Users of our tool can find
a variety of vulnerabilities involving tainted objects by
specifying them using PQL [35]. Our system provides a
GUI auditing interface implemented on top of Eclipse,
thus allowing users to perform security audits quickly
during program development.

Experimental validation. We present a detailed ex-
perimental evaluation of our system and the static analy-
sis approach on a set of large, widely-used open-source
Java applications. We found a total of 29 security errors,
including two important vulnerabilities in widely-used li-
braries. Eight out of nine of our benchmark applications
had at least one vulnerability, and our analysis produced
only 12 false positives.

1.5 Paper Organization
The rest of the paper is organized as follows. Section 2

presents a detailed overview of application-level security
vulnerabilities we address. Section 3 describes our static
analysis approach. Section 4 describes improvements
that increase analysis precision and coverage. Section 5
describes the auditing environment our system provides.
Section 6 summarizes our experimental findings. Sec-
tion 7 describes related work, and Section 8 concludes.

2 Overview of Vulnerabilities
In this section we focus on a variety of security

vulnerabilities in Web applications that are caused by
unchecked input. According to an influential sur-
vey performed by the Open Web Application Security
Project [41], unvalidated input is the number one secu-
rity problem in Web applications. Many such security

vulnerabilities have recently been appearing on special-
ized vulnerability tracking sites such as SecurityFocus
and were widely publicized in the technical press [39,
41]. Recent reports include SQL injections in Oracle
products [31] and cross-site scripting vulnerabilities in
Mozilla Firefox [30].

2.1 SQL Injection Example
Let us start with a discussion of SQL injections, one

of the most well-known kinds of security vulnerabilities
found in Web applications. SQL injections are caused
by unchecked user input being passed to a back-end
database for execution [1, 2, 14, 29, 32, 47]. The hacker
may embed SQL commands into the data he sends to the
application, leading to unintended actions performed on
the back-end database. When exploited, a SQL injection
may cause unauthorized access to sensitive data, updates
or deletions from the database, and even shell command
execution.

Example 1. A simple example of a SQL injection is
shown below:

HttpServletRequest request = ...;

String userName = request.getParameter("name");

Connection con = ...

String query = "SELECT * FROM Users " +

" WHERE name = ’" + userName + "’";

con.execute(query);

This code snippet obtains a user name (userName) by in-
voking request.getParameter("name") and uses it to
construct a query to be passed to a database for execution
(con.execute(query)). This seemingly innocent piece
of code may allow an attacker to gain access to unautho-
rized information: if an attacker has full control of string
userName obtained from an HTTP request, he can for
example set it to ’OR 1 = 1;−−. Two dashes are used
to indicate comments in the Oracle dialect of SQL, so the
WHERE clause of the query effectively becomes the tau-
tology name = ’’ OR 1 = 1. This allows the attacker
to circumvent the name check and get access to all user
records in the database. 2

SQL injection is but one of the vulnerabilities that
can be formulated as tainted object propagation prob-
lems. In this case, the input variable userName is con-
sidered tainted. If a tainted object (the source or any
other object derived from it) is passed as a parameter to
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con.execute (the sink), then there is a vulnerability. As
discussed above, such an attack typically consists of two
parts: (1) injecting malicious data into the application
and (2) using the data to manipulating the application.
The former corresponds to the sources of a tainted object
propagation problem and the latter to the sinks. The rest
of this section presents attack techniques and examples
of how exploits may be created in practice.

2.2 Injecting Malicious Data
Protecting Web applications against unchecked input

vulnerabilities is difficult because applications can obtain
information from the user in a variety of different ways.
One must check all sources of user-controlled data such
as form parameters, HTTP headers, and cookie values
systematically. While commonly used, client-side filter-
ing of malicious values is not an effective defense strat-
egy. For example, a banking application may present the
user with a form containing a choice of only two account
numbers; however, this restriction can be easily circum-
vented by saving the HTML page, editing the values in
the list, and resubmitting the form. Therefore, inputs
must be filtered by the Web application on the server.
Note that many attacks are relatively easy to mount: an
attacker needs little more than a standard Web browser
to attack Web applications in most cases.

2.2.1 Parameter Tampering
The most common way for a Web application to accept

parameters is through HTML forms. When a form is sub-
mitted, parameters are sent as part of an HTTP request.
An attacker can easily tamper with parameters passed to
a Web application by entering maliciously crafted values
into text fields of HTML forms.

2.2.2 URL Tampering
For HTML forms that are submitted using the HTTP

GET method, form parameters as well as their values ap-
pear as part of the URL that is accessed after the form is
submitted. An attacker may directly edit the URL string,
embed malicious data in it, and then access this new URL
to submit malicious data to the application.

Example 2. Consider a Web page at a bank site that al-
lows an authenticated user to select one of her accounts
from a list and debit $100 from the account. When the
submit button is pressed in the Web browser, the follow-
ing URL is requested:

http://www.mybank.com/myaccount?

accountnumber=341948&debit_amount=100

However, if no additional precautions are taken by the
Web application receiving this request, accessing

http://www.mybank.com/myaccount?

accountnumber=341948&debit_amount=-5000

may in fact increase the account balance. 2

2.2.3 Hidden Field Manipulation
Because HTTP is stateless, many Web applications

use hidden fields to emulate persistence. Hidden fields
are just form fields made invisible to the end-user. For
example, consider an order form that includes a hidden
field to store the price of items in the shopping cart:

<input type="hidden" name="total_price"

value="25.00">

A typical Web site using multiple forms, such as an on-
line store will likely rely on hidden fields to transfer state
information between pages. Unlike regular fields, hid-
den fields cannot be modified directly by typing values
into an HTML form. However, since the hidden field is
part of the page source, saving the HTML page, editing
the hidden field value, and reloading the page will cause
the Web application to receive the newly updated value
of the hidden field.

2.2.4 HTTP Header Manipulation
HTTP headers typically remain invisible to the user

and are used only by the browser and the Web server.
However, some Web applications do process these head-
ers, and attackers can inject malicious data into applica-
tions through them. While a normal Web browser will
not allow forging the outgoing headers, multiple freely
available tools allow a hacker to craft an HTTP request
leading to an exploit [9]. Consider, for example, the
Referer field, which contains the URL indicating where
the request comes from. This field is commonly trusted
by the Web application, but can be easily forged by an
attacker. It is possible to manipulate the Referer field’s
value used in an error page or for redirection to mount
cross-site scripting or HTTP response splitting attacks.

2.2.5 Cookie Poisoning
Cookie poisoning attacks consist of modifying a

cookie, which is a small file accessible to Web applica-
tions stored on the user’s computer [27]. Many Web ap-
plications use cookies to store information such as user
login/password pairs and user identifiers. This informa-
tion is often created and stored on the user’s computer af-
ter the initial interaction with the Web application, such
as visiting the application login page. Cookie poison-
ing is a variation of header manipulation: malicious in-
put can be passed into applications through values stored
within cookies. Because cookies are supposedly invisi-
ble to the user, cookie poisoning is often more dangerous
in practice than other forms of parameter or header ma-
nipulation attacks.

2.2.6 Non-Web Input Sources
Malicious data can also be passed in as command-

line parameters. This problem is not as important be-
cause typically only administrators are allowed to ex-
ecute components of Web-based applications directly
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from the command line. However, by examining our
benchmarks, we discovered that command-line utilities
are often used to perform critical tasks such as initializ-
ing, cleaning, or validating a back-end database or mi-
grating the data. Therefore, attacks against these impor-
tant utilities can still be dangerous.

2.3 Exploiting Unchecked Input
Once malicious data is injected into an application, an

attacker may use one of many techniques to take advan-
tage of this data, as described below.

2.3.1 SQL Injections

SQL injections first described in Section 2.1 are
caused by unchecked user input being passed to a back-
end database for execution. When exploited, a SQL in-
jection may cause a variety of consequences from leak-
ing the structure of the back-end database to adding new
users, mailing passwords to the hacker, or even executing
arbitrary shell commands.

Many SQL injections can be avoided relatively eas-
ily with the use of better APIs. J2EE provides the
PreparedStatement class, that allows specifying a
SQL statement template with ?’s indicating statement pa-
rameters. Prepared SQL statements are precompiled, and
expanded parameters never become part of executable
SQL. However, not using or improperly using prepared
statements still leaves plenty of room for errors.

2.3.2 Cross-site Scripting Vulnerabilities

Cross-site scripting occurs when dynamically gener-
ated Web pages display input that has not been properly
validated [7, 11, 22, 46]. An attacker may embed mali-
cious JavaScript code into dynamically generated pages
of trusted sites. When executed on the machine of a user
who views the page, these scripts may hijack the user ac-
count credentials, change user settings, steal cookies, or
insert unwanted content (such as ads) into the page. At
the application level, echoing the application input back
to the browser verbatim enables cross-site scripting.

2.3.3 HTTP Response Splitting

HTTP response splitting is a general technique that
enables various new attacks including Web cache poi-
soning, cross-user defacement, sensitive page hijacking,
as well as cross-site scripting [28]. By supplying unex-
pected line break CR and LF characters, an attacker can
cause two HTTP responses to be generated for one mali-
ciously constructed HTTP request. The second HTTP re-
sponse may be erroneously matched with the next HTTP
request. By controlling the second response, an attacker
can generate a variety of issues, such as forging or poi-
soning Web pages on a caching proxy server. Because
the proxy cache is typically shared by many users, this
makes the effects of defacing a page or constructing a

spoofed page to collect user data even more devastating.
For HTTP splitting to be possible, the application must
include unchecked input as part of the response headers
sent back to the client. For example, applications that
embed unchecked data in HTTP Location headers re-
turned back to users are often vulnerable.

2.3.4 Path Traversal
Path-traversal vulnerabilities allow a hacker to ac-

cess or control files outside of the intended file access
path. Path-traversal attacks are normally carried out via
unchecked URL input parameters, cookies, and HTTP
request headers. Many Java Web applications use files
to maintain an ad-hoc database and store application re-
sources such as visual themes, images, and so on.

If an attacker has control over the specification of these
file locations, then he may be able to read or remove files
with sensitive data or mount a denial-of-service attack
by trying to write to read-only files. Using Java secu-
rity policies allows the developer to restrict access to the
file system (similar to using chroot jail in Unix). How-
ever, missing or incorrect policy configuration still leaves
room for errors. When used carelessly, IO operations in
Java may lead to path-traversal attacks.

2.3.5 Command Injection
Command injection involves passing shell commands

into the application for execution. This attack technique
enables a hacker to attack the server using access rights
of the application. While relatively uncommon in Web
applications, especially those written in Java, this attack
technique is still possible when applications carelessly
use functions that execute shell commands or load dy-
namic libraries.

3 Static Analysis
In this section we present a static analysis that ad-

dresses the tainted object propagation problem described
in Section 2.

3.1 Tainted Object Propagation
We start by defining the terminology that was infor-

mally introduced in Example 1. We define an access path
as a sequence of field accesses, array index operations, or
method calls separated by dots. For instance, the result
of applying access path f.g to variable v is v.f.g. We
denote the empty access path by ε; array indexing opera-
tions are indicated by [].

A tainted object propagation problem consists of a set
of source descriptors, sink descriptors, and derivation
descriptors:

• Source descriptors of the form 〈m,n, p〉 specify
ways in which user-provided data can enter the pro-
gram. They consist of a source method m, parame-
ter number n and an access path p to be applied to
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argument n to obtain the user-provided input. We
use argument number -1 to denote the return result
of a method call.

• Sink descriptors of the form 〈m,n, p〉 specify un-
safe ways in which data may be used in the program.
They consist of a sink method m, argument number
n, and an access path p applied to that argument.

• Derivation descriptors of the form
〈m,ns, ps, nd, pd〉 specify how data propa-
gates between objects in the program. They consist
of a derivation method m, a source object given
by argument number ns and access path ps, and a
destination object given by argument number nd

and access path pd. This derivation descriptor spec-
ifies that at a call to method m, the object obtained
by applying pd to argument nd is derived from the
object obtained by applying ps to argument ns.

In the absence of derived objects, to detect potential vul-
nerabilities we only need to know if a source object is
used at a sink. Derivation descriptors are introduced to
handle the semantics of strings in Java. Because Strings
are immutable Java objects, string manipulation routines
such as concatenation create brand new String objects,
whose contents are based on the original String objects.
Derivation descriptors are used to specify the behavior of
string manipulation routines, so that taint can be explic-
itly passed among the String objects.

Most Java programs use built-in String libraries and
can share the same set of derivation descriptors as a
result. However, some Web applications use multiple
String encodings such as Unicode, UTF-8, and URL
encoding. If encoding and decoding routines propagate
taint and are implemented using native method calls or
character-level string manipulation, they also need to
be specified as derivation descriptors. Sanitization rou-
tines that validate input are often implemented using
character-level string manipulation. Since taint does not
propagate through such routines, they should not be in-
cluded in the list of derivation descriptors.

It is possible to obviate the need for manual specifica-
tion with a static analysis that determines the relationship
between strings passed into and returned by low-level
string manipulation routines. However, such an analy-
sis must be performed not just on the Java bytecode but
on all the relevant native methods as well.

Example 3. We can formulate the problem of detecting
parameter tampering attacks that result in a SQL injec-
tion as follows: the source descriptor for obtaining pa-
rameters from an HTTP request is:

〈HttpServletRequest.getParameter(String),−1, ε〉

The sink descriptor for SQL query execution is:

〈Connection.executeQuery(String), 1, ε〉.

To allow the use of string concatenation in the construc-
tion of query strings, we use derivation descriptors:

〈StringBuffer.append(String), 1, ε,−1, ε〉, and
〈StringBuffer.toString(), 0, ε,−1, ε〉

Due to space limitations, we show only a few descrip-
tors here; more information about the descriptors in our
experiments is available in our technical report [34]. 2

Below we formally define a security violation:

Definition 3.1 A source object for a source descriptor
〈m,n, p〉 is an object obtained by applying access path p
to argument n of a call to m.

Definition 3.2 A sink object for a sink descriptor
〈m,n, p〉 is an object obtained by applying access path
p to argument n of a call to method m.

Definition 3.3 Object o2 is derived from object o1,
written derived(o1, o2), based on a derivation descrip-
tor 〈m,ns, ps, nd, pd〉, if o1 is obtained by applying ps

to argument ns and o2 is obtained by applying pd to ar-
gument nd at a call to method m.

Definition 3.4 An object is tainted if it is obtained by
applying relation derived to a source object zero or more
times.

Definition 3.5 A security violation occurs if a sink ob-
ject is tainted. A security violation consists of a sequence
of objects o1 . . . ok such that o1 is a source object and ok

is a sink object and each object is derived from the pre-
vious one:

∀
0≤i<k

i : derived(oi, oi+1).

We refer to object pair 〈o1, ok〉 as a source-sink pair.

3.2 Specifications Completeness
The problem of obtaining a complete specification for

a tainted object propagation problem is an important one.
If a specification is incomplete, important errors will be
missed even if we use a sound analysis that finds all vul-
nerabilities matching a specification. To come up with a
list of source and sink descriptors for vulnerabilities in
our experiments, we used the documentation of the rele-
vant J2EE APIs.

Since it is relatively easy to miss relevant descriptors
in the specification, we used several techniques to make
our problem specification more complete. For example,
to find some of the missing source methods, we instru-
mented the applications to find places where application
code is called by the application server.

We also used a static analysis to identify tainted ob-
jects that have no other objects derived from them, and
examined methods into which these objects are passed.
In our experience, some of these methods turned out to
be obscure derivation and sink methods missing from our
initial specification, which we subsequently added.

USENIX Association276



3.3 Static Analysis
Our approach is to use a sound static analysis to find

all potential violations matching a vulnerability specifi-
cation given by its source, sink, and derivation descrip-
tors. To find security violations statically, it is necessary
to know what objects these descriptors may refer to, a
general problem known as pointer or points-to analysis.

3.3.1 Role of Pointer Information
To illustrate the need for points-to information, we

consider the task of auditing a piece of Java code for SQL
injections caused by parameter tampering, as described
in Example 1.

Example 4. In the code below, string param is
tainted because it is returned from a source method
getParameter. So is buf1, because it is derived from
param in the call to append on line 6. Finally, string
query is passed to sink method executeQuery.

1 String param = req.getParameter("user");

2

3 StringBuffer buf1;

4 StringBuffer buf2;

5 ...

6 buf1.append(param);

7 String query = buf2.toString();

8 con.executeQuery(query);

Unless we know that variables buf1 and buf2 may never
refer to the same object, we would have to conservatively
assume that they may. Since buf1 is tainted, variable
query may also refer to a tainted object. Thus a conser-
vative tool that lacks additional information about point-
ers will flag the call to executeQuery on line 8 as po-
tentially unsafe. 2

An unbounded number of objects may be allocated by
the program at run time, so, to compute a finite answer,
the pointer analysis statically approximates dynamic pro-
gram objects with a finite set of static object “names”. A
common approximation approach is to name an object by
its allocation site, which is the line of code that allocates
the object.

3.3.2 Finding Violations Statically
Points-to information enables us to find security viola-

tions statically. Points-to analysis results are represented
as the relation pointsto(v, h), where v is a program vari-
able and h is an allocation site in the program.

Definition 3.6 A static security violation is a sequence
of heap allocation sites h1 . . . hk such that

1. There exists a variable v1 such that
pointsto(v1, h1), where v1 corresponds to ac-
cess path p applied to argument n of a call to
method m for a source descriptor 〈m,n, p〉.

2. There exists a variable vk such that
pointsto(vk, hk), where vk corresponds to ap-

plying access path p to argument n in a call to
method m for a sink descriptor 〈m,n, p〉.

3. There exist variables v1, . . . , vk such that

∀
1≤i<k

: pointsto(vi, hi) ∧ pointsto(vi+1, hi+1),

where variable vi corresponds to applying ps to ar-
gument ns and vi+1 corresponds applying pd to ar-
gument nd in a call to method m for a derivation
descriptor 〈m,ns, ps, nd, pd〉.

Our static analysis is based on a context-sensitive Java
points-to analysis developed by Whaley and Lam [55].
Their algorithm uses binary decision diagrams (BDDs)
to efficiently represent and manipulate points-to results
for exponentially many contexts in a program. They have
developed a tool called bddbddb (BDD-Based Deductive
DataBase) that automatically translates program analy-
ses expressed in terms of Datalog [50] (a language used
in deductive databases) into highly efficient BDD-based
implementations. The results of their points-to analysis
can also be accessed easily using Datalog queries. Notice
that in the absence of derived objects, finding security vi-
olations can be easily done with pointer analysis alone,
because pointer analysis tracks objects as they are passed
into or returned from methods.

However, it is relatively easy to implement the tainted
object propagation analysis using bddbddb. Constraints
of a specification as given by Definition 3.6 can be trans-
lated into Datalog queries straightforwardly. Facts such
as “variable v is parameter n of a call to method m” map
directly into Datalog relations representing the internal
representation of the Java program. The points-to results
used by the constraints are also readily available as Dat-
alog relations after pointer analysis has been run.

Because Java supports dynamic loading and classes
can be dynamically generated on the fly and called reflec-
tively, we can find vulnerabilities only in the code avail-
able to the static analysis. For reflective calls, we use a
simple analysis that handles common uses of reflection
to increase the size of the analyzed call graph [34].

3.3.3 Role of Pointer Analysis Precision

Pointer analysis has been the subject of much compiler
research over the last two decades. Because determining
what heap objects a given program variable may point to
during program execution is undecidable, sound analy-
ses compute conservative approximations of the solution.
Previous points-to approaches typically trade scalability
for precision, ranging from highly scalable but imprecise
techniques [48] to precise approaches that have not been
shown to scale [43].

In the absence of precise information about pointers, a
sound tool would conclude that many objects are tainted
and hence report many false positives. Therefore, many
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1 class DataSource {

2 String url;

3 DataSource(String url) {

4 this.url = url;

5 }

6 String getUrl(){

7 return this.url;

8 }

9 ...

10 }

11 String passedUrl = request.getParameter("...");

12 DataSource ds1 = new DataSource(passedUrl);

13 String localUrl = "http://localhost/";

14 DataSource ds2 = new DataSource(localUrl);

15

16 String s1 = ds1.getUrl();

17 String s2 = ds2.getUrl();

Figure 2: Example showing the importance of context sensitivity.

practical tools use an unsound approach to pointers, as-
suming that pointers are unaliased unless proven other-
wise [6, 20]. Such an approach, however, may miss im-
portant vulnerabilities.

Having precise points-to information can significantly
reduce the number of false positives. Context sensitivity
refers to the ability of an analysis to keep information
from different invocation contexts of a method separate
and is known to be an important feature contributing to
precision. The effect of context sensitivity on analysis
precision is illustrated by the example below.

Example 5. Consider the code snippet in Figure 2.
The class DataSource acts as a wrapper for a URL
string. The code creates two DataSource objects and
calls getUrl on both objects. A context-insensitive an-
alysis would merge information for calls of getUrl on
lines 16 and 17. The reference this, which is consid-
ered to be argument 0 of the call, points to the object
on line 12 and 14, so this.url points to either the ob-
ject returned on line 11 or "http : //localhost/" on
line 13. As a result, both s1 and s2 will be considered
tainted if we rely on context-insensitive points-to results.
With a context-sensitive analysis, however, only s2 will
be considered tainted. 2

While many points-to analysis approaches exist, until
recently, we did not have a scalable analysis that gives
a conservative yet precise answer. The context-sensitive,
inclusion-based points-to analysis by Whaley and Lam is
both precise and scalable [55]. It achieves scalability by
using BDDs to exploit the similarities across the expo-
nentially many calling contexts.

A call graph is a static approximation of what methods
may be invoked at all method calls in the program. While
there are exponentially many acyclic call paths through
the call graph of a program, the compression achieved by
BDDs makes it possible to efficiently represent as many
as 1014 contexts. The framework we propose in this pa-
per is the first practical static analysis tool for security to
leverage the BDD-based approach. The use of BDDs has

query main()

returns
object Object sourceObj, sinkObj;

matches {
sourceObj := source();

sinkObj := derived*(sourceObj);

sinkObj := sink();

}

Figure 3: Main query for finding source-sink pairs.

allowed us to scale our framework to programs consist-
ing of almost 1,000 classes.

3.4 Specifying Taint Problems in PQL
While a useful formalism, source, sink, and deriva-

tion descriptors as defined in Section 3.1 are not a user-
friendly way to describe security vulnerabilities. Data-
log queries, while giving the user complete control, ex-
pose too much of the program’s internal representation
to be practical. Instead, we use PQL, a program query
language. PQL serves as syntactic sugar for Datalog
queries, allowing users to express vulnerability patterns
in a familiar Java-like syntax; translation of tainted object
propagation queries from PQL into Datalog is straight-
forward. PQL is a general query language capable of ex-
pressing a variety of questions about program execution.
However, we only use a limited form of PQL queries to
formulate tainted object propagation problems.

Due to space limitations, we summarize only the most
important features of PQL here; interested readers are re-
ferred to [35] for a detailed description. A PQL query is
a pattern describing a sequence of dynamic events that
involves variables referring to dynamic object instances.
The uses clause declares all object variables the query
refers to. The matches clause specifies the sequence of
events on object variables that must occur for a match.
Finally, the return clause specifies the objects returned
by the query whenever a set of object instances partici-
pating in the events in the matches clause is found.

Source-sink object pairs corresponding to static se-
curity violations for a given tainted object propagation
problem are computed by query main in Figure 3. This
query uses auxiliary queries source and sink used to
define source and sink objects as well as query derived∗
shown in Figure 4 that captures a transitive derivation re-
lation. Object sourceObj in main is returned by sub-

query derived*(object Object x)

returns
object Object y;

uses
object Object temp;

matches {
y := x |

temp := derived(x); y := derived*(temp);

}

Figure 4: Transitive derived relation derived?.
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query source()

returns
object Object sourceObj;

uses
object String[] sourceArray;

object HttpServletRequest req;

matches {
sourceObj = req.getParameter(_)

| sourceObj = req.getHeader(_)
| sourceArray = req.getParameterValues(_);

sourceObj = sourceArray[]

| ...

}

query sink()

returns
object Object sinkObj;

uses
object java.sql.Statement stmt;

object java.sql.Connection con;

matches {
stmt.executeQuery(sinkObj)

| stmt.execute(sinkObj)

| con.prepareStatement(sinkObj)

| ...

}

query derived(object Object x)

returns
object Object y;

matches {
y.append(x)

| y = _.append(x)
| y = new String(x)

| y = new StringBuffer(x)

| y = x.toString()

| y = x.substring(_ ,_)
| y = x.toString(_)
| ...

}

Figure 5: PQL sub-queries for finding SQL injections.

query source. Object sinkObj is the result of sub-query
derived? with sourceObj used as a sub-query param-
eter and is also the result of sub-query sink. Therefore,
sinkObj returned by query main matches all tainted ob-
jects that are also sink objects.

Semicolons are used in PQL to indicate a sequence of
events that must occur in order. Sub-query derived∗ de-
fines a transitive derived relation: object y is transitively
derived from object x by applying sub-query derived
zero or more times. This query takes advantage of PQL’s
sub-query mechanism to define a transitive closure re-
cursively. Sub-queries source, sink, and derived are
specific to a particular tainted object propagation prob-
lem, as shown in the example below.

Example 6. This example describes sub-queries
source, sink, and derived shown in Figure 5 that
can be used to match SQL injections, such as the one
described in Example 1. Usually these sub-queries are
structured as a series of alternatives separated by |. The
wildcard character _ is used instead of a variable name if

1 class Vector {

2 Object[] table = new Object[1024];

3

4 void add(Object value){

5 int i = ...;

6 // optional resizing ...

7 table[i] = value;

8 }

9

10 Object getFirst(){

11 Object value = table[0];

12 return value;

13 }

14 }

15 String s1 = "...";

16 Vector v1 = new Vector();

17 v1.add(s1);

18 Vector v2 = new Vector();

19 String s2 = v2.getFirst();

Figure 6: Typical container definition and usage.

the identity of the object to be matched is irrelevant.
Query source is structured as an alterna-

tion: sourceObj can be returned from a call to
req.getParameter or req.getHeader for an object
req of type HttpServletRequest; sourceObj may
also be obtained by indexing into an array returned by
a call to req.getParameterValues, etc. Query sink
defines sink objects used as parameters of sink methods
such as java.sql.Connection.executeQuery, etc.
Query derived determines when data propagates from
object x to object y. It consists of the ways in which
Java strings can be derived from one another, including
string concatenation, substring computation, etc. 2

As can be seen from this example, sub-queries
source, sink, and derived map to source, sink, and
derivation descriptors for the tainted object propagation
problem. However, instead of descriptor notation for
method parameters and return values, natural Java-like
method invocation syntax is used.

4 Precision Improvements
This section describes improvements we made to the

object-naming scheme used in the original points-to an-
alysis [55]. These improvements greatly increase the
precision of the points-to results and reduce the number
of false positives produced by our analysis.

4.1 Handling of Containers
Containers such as hash maps, vectors, lists, and oth-

ers are a common source of imprecision in the original
pointer analysis algorithm. The imprecision is due to the
fact that objects are often stored in a data structure al-
located inside the container class definition. As a result,
the analysis cannot statically distinguish between objects
stored in different containers.

Example 7. The abbreviated vector class in Figure 6
allocates an array called table on line 2 and vectors v1
and v2 share that array. As a result, the original analysis
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Figure 7: Tracking a SQL injection vulnerability in the Eclipse GUI plugin. Objects involved in the vulnerability trace are shown at the bottom.

will conclude that the String object referred to by s2
retrieved from vector v2 may be the same as the String
object s1 deposited in vector v1. 2

To alleviate this problem and improve the precision of
the results, we create a new object name for the inter-
nally allocated data structure for every allocation site of
the external container. This new name is associated with
the allocation site of the underlying container object. As
a result, the type of imprecision described above is elim-
inated and objects deposited in a container can only be
retrieved from a container created at the same allocation
site. In our implementation, we have applied this im-
proved object naming to standard Java container classes
including HashMap, HashTable, and LinkedList.

4.2 Handling of String Routines

Another set of methods that requires better object
naming is Java string manipulation routines. Methods
such as String.toLowerCase() allocate String ob-
jects that are subsequently returned. With the default
object-naming scheme, all the allocated strings are con-
sidered tainted if such a method is ever invoked on a
tainted string.

We alleviate this problem by giving unique names to
results returned by string manipulation routines at differ-
ent call sites. We currently apply this object naming im-
provement to Java standard libraries only. As explained
in Section 6.4, imprecise object naming was responsible
for all the 12 false positives produced by our analysis.

5 Auditing Environment
The static analysis described in the previous two sec-

tions forms the basis of our security-auditing tool for
Java applications. The tool allows a user to specify secu-
rity patterns to detect. User-provided specifications are
expressed as PQL queries, as described in Section 3.4.
These queries are automatically translated into Datalog
queries, which are subsequently resolved using bddbddb.

To help the user with the task of examining violation
reports, our provides an intuitive GUI interface. The in-
terface is built on top of Eclipse, a popular open-source
Java development environment. As a result, a Java pro-
grammer can assess the security of his application, of-
ten without leaving the development environment used
to create the application in the first place.

A typical auditing session involves applying the anal-
ysis to the application and then exporting the results into
Eclipse for review. Our Eclipse plugin allows the user to
easily examine each vulnerability by navigating among
the objects involved in it. Clicking on each object allows
the user to navigate through the code displayed in the text
editor in the top portion of the screen.

Example 8. An example of using the Eclipse GUI
is shown in Figure 7. The bottom portion of the
screen lists all potential security vulnerabilities re-
ported by our analysis. One of them, a SQL injec-
tion caused by non-Web input is expanded to show
all the objects involved in the vulnerability. The
source object on line 76 of JDBCDatabaseExport.java
is passed to derived objects using derivation methods
StringBuffer.append and StringBuffer.toString

USENIX Association280



until it reaches the sink object constructed and used on
line 170 of the same file. Line 170, which contains a
call to Connection.prepareStatement, is highlighted
in the Java text editor shown on top of the screen. 2

6 Experimental Results
In this section we summarize the experiments we per-

formed and described the security violations we found.
We start out by describing our benchmark applications
and experimental setup, describe some representative
vulnerabilities found by our analysis, and analyze the im-
pact of analysis features on precision.

6.1 Benchmark Applications
While there is a fair number of commercial and open-

source tools available for testing Web application secu-
rity, there are no established benchmarks for comparing
tools’ effectiveness. The task of finding suitable bench-
marks for our experiments was especially complicated
by the fact that most Web-based applications are propri-
etary software, whose vendors are understandably reluc-
tant to reveal their code, not to mention the vulnerabili-
ties found. At the same time, we did not want to focus on
artificial micro-benchmarks or student projects that lack
the complexities inherent in real applications. We fo-
cused on a set of large, representative open-source Web-
based J2EE applications, most of which are available on
SourceForge.

The benchmark applications are briefly described be-
low. jboard, blueblog, blojsom, personalblog,
snipsnap, pebble, and roller are Web-based bulletin
board and blogging applications. webgoat is a J2EE ap-
plication designed by the Open Web Application Secu-
rity Project [40, 41] as a test case and a teaching tool for
Web application security. Finally, road2hibernate is a
test program developed for hibernate, a popular object
persistence library.

Applications were selected from among J2EE-based
open-source projects on SourceForge solely on the ba-
sis of their size and popularity. Other than webgoat,
which we knew had intentional security flaws, we had
no prior knowledge as to whether the applications had
security vulnerabilities. Most of our benchmark appli-
cations are used widely: roller is used on dozens of
sites including prominent ones such as blogs.sun.com.
snipsnap has more than 50,000 downloads according
to its authors. road2hibernate is a wrapper around
hibernate, a highly popular object persistence library
that is used by multiple large projects, including a news
aggregator and a portal. personalblog has more than
3,000 downloads according to SourceForge statistics. Fi-
nally, blojsom was adopted as a blogging solution for
the Apple Tiger Weblog Server.

Figure 8 summarizes information about our bench-

Version File Line Analyzed
Benchmark number count count classes
jboard 0.30 90 17,542 264
blueblog 1.0 32 4,191 306
webgoat 0.9 77 19,440 349
blojsom 1.9.6 61 14,448 428
personalblog 1.2.6 39 5,591 611
snipsnap 1.0-BETA-1 445 36,745 653
road2hibernate 2.1.4 2 140 867
pebble 1.6-beta1 333 36,544 889
roller 0.9.9 276 52,089 989
Total 1,355 186,730 5,356

Figure 8: Summary of information about the benchmarks. Applica-
tions are sorted by the total number of analyzed classes.

mark applications. Notice that the traditional lines-of-
code metric is somewhat misleading in the case of ap-
plications that use large libraries. Many of these bench-
marks depend on massive libraries, so, while the appli-
cation code may be small, the full size of the application
executed at runtime is quite large. An extreme case is
road2hibernate, which is a small 140-line stub pro-
gram designed to exercise the hibernate object per-
sistence library; however, the total number of analyzed
classes for road2hibernate exceeded 800. A better
measure is given in the last column of Figure 8, which
shows the total number of classes in each application’s
call graph.

6.2 Experimental Setup
The implementation of our system is based on the

joeq Java compiler and analysis framework. In our sys-
tem we use a translator from PQL to Datalog [35] and the
bddbddb program analysis tool [55] to find security vio-
lations. We applied static analysis to look for all tainted
object propagation problems described in this paper, and
we used a total of 28 source, 18 sink, and 29 derivation
descriptors in our experiments. The derivation descrip-
tors correspond to methods in classes such as String,
StringBuffer, StringTokenizer, etc. Source and
sink descriptors correspond to methods declared in 19
different J2EE classes, as is further described in [34].

We used four different variations of our static analysis,
obtained by either enabling or disabling context sensitiv-
ity and improved object naming. Analysis times for the
variations are listed in Figure 9. Running times shown in
the table are obtained on an Opteron 150 machine with
4 GB of memory running Linux. The first section of

Pre- Points-to analysis Taint analysis
Context sensitivity proces- X X X X
Improved naming sing X X X X
jboard 37 8 7 12 10 14 12 16 14
blueblog 39 13 8 15 10 17 14 21 16
webgoat 57 45 30 118 90 69 66 106 101
blojsom 60 18 13 25 16 24 21 30 27
personalblog 173 107 28 303 32 62 50 19 59
snipsnap 193 58 33 142 47 194 154 160 105
road2hibernate 247 186 40 268 43 73 44 161 58
pebble 177 58 35 117 49 150 140 136 100
roller 362 226 55 733 103 196 83 338 129

Figure 9: Summary of times, in seconds, it takes to perform prepro-
cessing, points-to, and taint analysis for each analysis variation. Analy-
sis variations have either context sensitivity or improved object naming
enabled, as indicated by X signs in the header row.
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Sources Sinks Tainted objects Reported warnings False positives Errors

Context sensitivity X X X X X X
Improved object naming X X X X X X

jboard 1 6 268 23 2 2 0 0 0 0 0 0 0 0 0
blueblog 6 12 17 17 17 17 1 1 1 1 0 0 0 0 1
webgoat 13 59 1,166 201 903 157 51 7 51 6 45 1 45 0 6
blojsom 27 18 368 203 197 112 48 4 26 2 46 2 24 0 2
personalblog 25 31 2,066 1,023 1,685 426 460 275 370 2 458 273 368 0 2
snipsnap 155 100 1,168 791 897 456 732 93 513 27 717 78 498 12 15
road2hibernate 1 33 2,150 843 1,641 385 18 12 16 1 17 11 15 0 1
pebble 132 70 1,403 621 957 255 427 211 193 1 426 210 192 0 1
roller 32 64 2,367 504 1,923 151 378 12 261 1 377 11 260 0 1

Total 392 393 10,973 4,226 8,222 1,961 2,115 615 1,431 41 2,086 586 1,402 12 29

jboard blueblog webgoat blojsom personalblog snipsnap road2hibernate pebble roller
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Figure 10: (a) Summary of data on the number of tainted objects, reported security violations, and false positives for each analysis version. Enabled
analysis features are indicated by X signs in the header row. (b) Comparison of the number of tainted objects for each version of the analysis.

the table shows the times to pre-process the application
to create relations accepted by the pointer analysis; the
second shows points-to analysis times; the last presents
times for the tainted object propagation analysis.

It should be noted that the taint analysis times often
decrease as the analysis precision increases. Contrary
to intuition, we actually pay less for a more precise an-
alysis. Imprecise answers are big and therefore take a
long time to compute and represent. In fact, the context-
insensitive analysis with default object naming runs sig-
nificantly slower on the largest benchmarks than the most
precise analysis. The most precise analysis version takes
a total of less than 10 minutes on the largest application;
we believe that this is acceptable given the quality of the
results the analysis produces.

6.3 Vulnerabilities Discovered
The static analysis described in this paper reports a to-

tal of 41 potential security violations in our nine bench-
marks, out of which 29 turn out to be security errors,
while 12 are false positives. All but one of the bench-
marks had at least one security vulnerability. Moreover,
except for errors in webgoat and one HTTP splitting vul-
nerability in snipsnap [16], none of these security er-
rors had been reported before.

6.3.1 Validating the Errors We Found

Not all security errors found by static analysis or code
reviews are necessarily exploitable in practice. The error
may not correspond to a path that can be taken dynam-
ically, or it may not be possible to construct meaningful

malicious input. Exploits may also be ruled out because
of the particular configuration of the application, but con-
figurations may change over time, potentially making ex-
ploits possible. For example, a SQL injection that may
not work on one database may become exploitable when
the application is deployed with a database system that
does not perform sufficient input checking. Furthermore,
virtually all static errors we found can be fixed easily by
modifying several lines of Java source code, so there is
generally no reason not to fix them in practice.

After we ran our analysis, we manually examined all
the errors reported to make sure they represent security
errors. Since our knowledge of the applications was not
sufficient to ascertain that the errors we found were ex-
ploitable, to gain additional assurance, we reported the
errors to program maintainers. We only reported to ap-
plication maintainers only those errors found in the ap-
plication code rather than general libraries over which
the maintainer had no control. Almost all errors we re-
ported to program maintainers were confirmed, resulting
in more that a dozen code fixes.

Because webgoat is an artificial application designed
to contain bugs, we did not report the errors we found
in it. Instead, we dynamically confirmed some of the
statically detected errors by running webgoat, as well as
a few other benchmarks, on a local server and creating
actual exploits.

It is important to point out that our current analysis
ignores control flow. Without analyzing the predicates,
our analysis may not realize that a program has checked
its input, so some of the reported vulnerabilities may turn
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XXXXXXXSOURCES

SINKS
SQL injections HTTP splitting Cross-site scripting Path traversal Total

Header manip. 0 snipsnap = 6 blueblog: 1, webgoat: 1, pebble: 1, roller: 1 = 4 0 10
Parameter manip. webgoat: 4, personalblog: 2 = 6 snipsnap = 5 0 blojsom = 2 13
Cookie poisoning webgoat = 1 0 0 0 1
Non-Web inputs snipsnap: 1, road2hibernate: 1 = 2 0 0 snipsnap = 3 5

Total 9 11 4 5 29

Figure 11: Classification of vulnerabilities we found. Each cell corresponds to a combination of a source type (in rows) and sink type (in columns).

out to be false positives. However, our analysis shows all
the steps involved in propagating taint from a source to a
sink, thus allowing the user to check if the vulnerabilities
found are exploitable.

Many Web-based application perform some form of
input checking. However, as in the case of the vulnera-
bilities we found in snipsnap, it is common that some
checks are missed. It is surprising that our analysis did
not generate any false warnings due to the lack of pred-
icate analysis, even though many of the applications we
analyze include checks on user input. Two security er-
rors in blojsom flagged by our analysis deserve special
mention. The user-provided input was in fact checked,
but the validation checks were too lax, leaving room for
exploits. Since the sanitization routine in blojsom was
implemented using string operations as opposed to direct
character manipulation, our analysis detected the flow of
taint from the routine’s input to its output. To prove the
vulnerability to the application maintainer, we created
an exploit that circumvented all the checks in the vali-
dation routine, thus making path-traversal vulnerabilities
possible. Note that if the sanitation was properly imple-
mented, our analysis would have generated some false
positives in this case.

6.3.2 Classification of Errors

This section presents a classification of all the errors
we found. A summary of our experimental results is pre-
sented in Figure 10(a). Columns 2 and 3 list the number
of source and sink objects for each benchmark. It should
be noted that the number of sources and sinks for all of
these applications is quite large, which suggests that se-
curity auditing these applications is time-consuming, be-
cause the time a manual security code review takes is
roughly proportional to the number of sources and sinks
that need to be considered. The table also shows the
number of vulnerability reports, the number of false pos-
itives, and the number of errors for each analysis version.

Figure 11 presents a classification of the 29 secu-
rity vulnerabilities we found grouped by the type of the
source in the table rows and the sink in table columns.
For example, the cell in row 4, column 1 indicates
that there were 2 potential SQL injection attacks caused
by non-Web sources, one in snipsnap and another in
road2hibernate.

Overall, parameter manipulation was the most com-
mon technique to inject malicious data (13 cases) and

HTTP splitting was the most popular exploitation tech-
nique (11 cases). Many HTTP splitting vulnerabilities
are due to an unsafe programming idiom where the ap-
plication redirects the user’s browser to a page whose
URL is user-provided as the following example from
snipsnap demonstrates:

response.sendRedirect(

request.getParameter("referer"));

Most of the vulnerabilities we discovered are in appli-
cation code as opposed to libraries. While errors in ap-
plication code may result from simple coding mistakes
made by programmers unaware of security issues, one
would expect library code to generally be better tested
and more secure. Errors in libraries expose all applica-
tions using the library to attack. Despite this fact, we
have managed to find two attack vectors in libraries: one
in a commonly used Java library hibernate and another
in the J2EE implementation. While a total of 29 security
errors were found, because the same vulnerability vec-
tor in J2EE is present in four different benchmarks, they
actually corresponded to 26 unique vulnerabilities.

6.3.3 SQL Injection Vector in hibernate

We start by describing a vulnerability vector found
in hibernate, an open-source object-persistence library
commonly used in Java applications as a lightweight
back-end database. hibernate provides the function-
ality of saving program data structures to disk and load-
ing them at a later time. It also allows applications to
search through the data stored in a hibernate database.
Three programs in our benchmark suite, personalblog,
road2hibernate, and snipsnap, use hibernate to
store user data.

We have discovered an attack vector in code pertain-
ing to the search functionality in hibernate, version
2.1.4. The implementation of method Session.find re-
trieves objects from a hibernate database by passing
its input string argument through a sequence of calls to
a SQL execute statement. As a result, all invocations of
Session.find with unsafe data, such as the two errors
we found in personalblog, may suffer from SQL injec-
tions. A few other public methods such as iterate and
delete also turn out to be attack vectors. Our findings
highlight the importance of securing commonly used
software components in order to protect their clients.
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6.3.4 Cross-site Tracing Attacks

Analysis of webgoat and several other applications re-
vealed a previously unknown vulnerability in core J2EE
libraries, which are used by thousands of Java applica-
tions. This vulnerability pertains to the TRACE method
specified in the HTTP protocol. TRACE is used to echo
the contents of an HTTP request back to the client for
debugging purposes. However, the contents of user-
provided headers are sent back verbatim, thus enabling
cross-site scripting attacks.

In fact, this variation of cross-site scripting caused
by a vulnerability in HTTP protocol specification was
discovered before, although the fact that it was present
in J2EE was not previously announced. This type of
attack has been dubbed cross-site tracing and it is re-
sponsible for CERT vulnerabilities 244729, 711843, and
728563. Because this behavior is specified by the HTTP
protocol, there is no easy way to fix this problem at
the source level. General recommendations for avoiding
cross-site tracing include disabling TRACE functionality
on the server or disabling client-side scripting [18].

6.4 Analysis Features and False Positives
The version of our analysis that employs both context

sensitivity and improved object naming described in Sec-
tion 4 achieves very precise results, as measured by the
number of false positives. In this section we examine
the contribution of each feature of our static analysis ap-
proach to the precision of our results. We also explain
the causes of the remaining 12 false positives reported by
the most precise analysis version. To analyze the impor-
tance of each analysis feature, we examined the number
of false positives as well as the number of tainted objects
reported by each variation of the analysis. Just like false
positives, tainted objects provide a useful metric for an-
alysis precision: as the analysis becomes more precise,
the number of objects deemed to be tainted decreases.

Figure 10(a) summarizes the results for the four differ-
ent analysis versions. The first part of the table shows the
number of tainted objects reported by the analysis. The
second part of the table shows the number of reported
security violations. The third part of the table summa-
rizes the number of false positives. Finally, the last col-
umn provides the number of real errors detected for each
benchmark. Figure 10(b) provides a graphical represen-
tation of the number of tainted objects for different anal-
ysis variations. Below we summarize our observations.

Context sensitivity combined with improved object
naming achieves a very low number of false positives. In
fact, the number of false positives was 0 for all applica-
tions but snipsnap. For snipsnap, the number of false
positives was reduced more than 50-fold compared to the
context-insensitive analysis version with no naming im-
provements. Similarly, not counting the small program

jboard, the most precise version on average reported 5
times fewer tainted objects than the least precise. More-
over, the number of tainted objects dropped more that 15-
fold in the case of roller, our largest benchmark.

To achieve a low false-positive rate, both context sen-
sitivity and improved object naming are necessary. The
number of false positives remains high for most pro-
grams when only one of these analysis features is used.
One way to interpret the importance of context sensitiv-
ity is that the right selection of object “names” in pointer
analysis allows context sensitivity to produce precise re-
sults. While it is widely recognized in the compiler com-
munity that special treatment of containers is necessary
for precision, improved object naming alone is not gener-
ally sufficient to completely eliminate the false positives.

All 12 of the false positives reported by the
most precise version for our analysis were located
in snipsnap and were caused by insufficient preci-
sion of the default allocation site-based object-naming
scheme. The default naming caused an allocation site
in snipsnap to be conservatively considered tainted
because a tainted object could propagate to that al-
location site. The allocation site in question is lo-
cated within StringWriter.toString(), a JDK func-
tion similar to String.toLowerCase() that returns a
tainted String only if the underlying StringWriter is
constructed from a tainted string. Our analysis conser-
vatively concluded that the return result of this method
may be tainted, causing a vulnerability to be reported,
where none can occur at runtime. We should men-
tion that all the false positives in snipsnap are elim-
inated by creating a new object name at every call to,
StringWriter.toString(), which is achieved with a
one-line change to the pointer analysis specification.

7 Related Work
In this section, we first discuss penetration testing and

runtime monitoring, two of the most commonly used ap-
proaches for finding vulnerabilities besides manual code
reviews. We also review the relevant literature on static
analysis for improving software security.

7.1 Penetration Testing
Current practical solutions for detecting Web applica-

tion security problems generally fall into the realm of
penetration testing [3, 5, 15, 36, 44]. Penetration testing
involves attempting to exploit vulnerabilities in a Web
application or crashing it by coming up with a set of
appropriate malicious input values. Penetration reports
usually include a list of identified vulnerabilities [25].
However, this approach is incomplete. A penetration test
can usually reveal only a small sample of all possible se-
curity risks in a system without identifying the parts of
the system that have not been adequately tested. Gener-
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ally, there are no standards that define which tests to run
and which inputs to try. In most cases this approach is not
effective and considerable program knowledge is needed
to find application-level security errors successfully.

7.2 Runtime Monitoring
A variety of both free and commercial runtime mon-

itoring tools for evaluating Web application security are
available. Proxies intercept HTTP and HTTPS data be-
tween the server and the client, so that data, including
cookies and form fields, can be examined and modified,
and resubmitted to the application [9, 42]. Commercial
application-level firewalls available from NetContinuum,
Imperva, Watchfire, and other companies take this con-
cept further by creating a model of valid interactions be-
tween the user and the application and warning about vi-
olations of this model. Some application-level firewalls
are based on signatures that guard against known types
of attacks. The white-listing approach specifies what
the valid inputs are; however, maintaining the rules for
white-listing is challenging. In contrast, our technique
can prevent security errors before they have a chance to
manifest themselves.

7.3 Static Analysis Approaches
A good overview of static analysis approaches applied

to security problems is provided in [8]. Simple lexical
approaches employed by scanning tools such as ITS4 and
RATS use a set of predefined patterns to identify poten-
tially dangerous areas of a program [56]. While a signif-
icant improvement on Unix grep, these tools, however,
have no knowledge of how data propagates throughout
the program and cannot be used to automatically and
fully solve taint-style problems.

A few projects use path-sensitive analysis to find er-
rors in C and C++ programs [6, 20, 33]. While capa-
ble of addressing taint-style problems, these tools rely on
an unsound approach to pointers and may therefore miss
some errors. The WebSSARI project uses combined un-
sound static and dynamic analysis in the context of ana-
lyzing PHP programs [23]. WebSSARI has successfully
been applied to find many SQL injection and cross-site
scripting vulnerabilities in PHP code.

An analysis approach that uses type qualifiers has
been proven successful in finding security errors in C
for the problems of detecting format string violations
and user/kernel bugs [26, 45]. Context sensitivity sig-
nificantly reduces the rate of false positives encountered
with this technique; however, it is unclear how scalable
the context-sensitive approach is.

Much of the work in information-flow analysis uses a
type-checking approach, as exemplified by JFlow [38].
The compiler reads a program containing labeled types
and, in checking the types, ensures that the program
cannot contain improper information flow at runtime.

The security type system in such a language enforces
information-flow policies. The annotation effort, how-
ever, may be prohibitively expensive in practice. In
addition to explicit information flows our approach ad-
dresses, JFlow also deals with implicit information flows.

Static analysis has been applied to analyzing SQL
statements constructed in Java programs that may lead
to SQL injection vulnerabilities [17, 53]. That work an-
alyzes strings that represent SQL statements to check for
potential type violations and tautologies. This approach
assumes that a flow graph representing how string values
can propagate through the program has been constructed
a priori from points-to analysis results. However, since
accurate pointer information is necessary to construct an
accurate flow graph, it is unclear whether this technique
can achieve the scalability and precision needed to detect
errors in large systems.

8 Conclusions
In this paper we showed how a general class of se-

curity errors in Java applications can be formulated as
instances of the general tainted object propagation prob-
lem, which involves finding all sink objects derivable
from source objects via a set of given derivation rules.
We developed a precise and scalable analysis for this
problem based on a precise context-sensitive pointer
alias analysis and introduced extensions to the handling
of strings and containers to further improve the preci-
sion. Our approach finds all vulnerabilities matching the
specification within the statically analyzed code. Note,
however, that errors may be missed if the user-provided
specification is incomplete.

We formulated a variety of widespread vulnerabili-
ties including SQL injections, cross-site scripting, HTTP
splitting attacks, and other types of vulnerabilities as
tainted object propagation problems. Our experimental
results showed that our analysis is an effective practical
tool for finding security vulnerabilities. We were able to
find a total of 29 security errors, and all but one of our
nine large real-life benchmark applications were vulner-
able. Two vulnerabilities were located in commonly used
libraries, thus subjecting applications using the libraries
to potential vulnerabilities. Most of the security errors
we reported were confirmed as exploitable vulnerabili-
ties by their maintainers, resulting in more than a dozen
code fixes. The analysis reported false positives for only
one application. We determined that the false warnings
reported can be eliminated with improved object naming.
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