Typed Assembly Language
for Implementing OS Kernels
in SMP/Multi-Core Environments
with Interrupts

Toshiyuki Maeda and Akinori Yonezawa

University of Tokyo

Q. Can execution of the following 2 threads
vield theresult “rl = Oandr2 = 0”?

Threadl: Thread?2:
st [x] € 1 st [y] € 1
1d rl €« L[y] 1d r2 € [x]
o)

Initial state of X1 0
shared memory

Y| O
o %

[Environment]

CPU: Intel Xeon X5570 (2.93GHz) x 8
OS: Linux

Q. Can execution of the following 2 threads
vield theresult “rl = Oandr2 = 0”?

Threadl: Thread?2:
st [x] € 1 st [y] € 1
1d rl €« L[y] 1d r2 €& [x]

CPU: Intel Xeon X5570 (2.93GHz) x 8
OS: Linux

Quiz 2

Q. How often does it occur?

1. Once per second or more
2. Once a minute

3. Once an hour

4. Once a day

5. Once a month

6. Once a year (or less)

CPU: Intel Xeon X5570 (2.93GHz) x 8

[Environment]
OS: Linux

J

Q. How often does it occur?
A

e 1. Once per second or more

* 2. 0Once a minute

* 3. 0nce an hour

* 4, Once a day

* 5.0nce a month

* 6. Once a year (or less)

[Environment]
CPU: Intel Xeon X5570 (2.93GHz) x 8

OS: Linux

Typed Assembly Language
for Implementing OS Kernels
in SMP/Multi-Core Environments

with Interrupts
or

Typed Assembly Language for

Implementing Ad Hoc Synchronization
Correctly

What is Typed Assembly Language (TAL)?

e “Strongly-typed” assembly language

— Its type-checking ensures two safety
* Memory safety
* Control-flow safety

— Except for being typed,
it is an ordinary assembly language

e |t was first introduced in the field of
type-preserving compilation [Morrisett et al. 1999]

http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf

Overview of TALs framework:
generating binary executables
 TAL's assembler generates

not only binary executables,
but also their type information

Programs

written in TAL TAL’ ‘ .
Binary
assembler

executables

4

Overview of TAL's framework:
type-checking binary executables

* TAL's type-checker can type-check
binary executables

— utilizing type information generated
by TAL's assembler

[Types

Binary mmy ALSs type-

checker

executables

TAI_K: TAI_ fOr Kern6| [Maeda et al. 06, 08]

 TAL whose type system is extended
in order to implement OS kernels

— Memory management (malloc/free) and multi-
thread management mechanisms can be written
in TALK

* Itis impossible in conventional TALs

— because they rely on external memory management (= GC)

http://web.yl.is.s.u-tokyo.ac.jp/~tosh/talk/talk.pdf
http://www.springerlink.com/index/347631g5h2448178.pdf

Brief overview of TALK's type system

Supports variable-length arrays as a language primitive
— in order to represent memory regions

Keeps track of integer constraints
(in the same way as dependent type [Xi et al. 99])

— in order to perform array-bound checking statically

Keeps track of pointer aliases
(in the same way as alias type [Walker et al. 00])

— in order to realize safe strong update (explained in the next slide)

Introduces notion of split/concatenation of arrays
— in order to integrate variable-length arrays and alias type

http://www.cs.cmu.edu/~fp/papers/popl99.pdf
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf

What is strong update?

* Memory operation
that modifies types of memory regions

— Memory management (e.g., malloc/free)
can be viewed as strong updates

Memory management as strong update

 Example of memory reuse
— Reusing “1nt*” as “1nt”

1nt* reuse(int** o)

{
int* p = (1nt*)o;
*p = 42;
return p;

}

Memory management as strong update

 Example of memory reuse
— Reusing “1nt*” as “1nt”

_i

{

nt* reuse(dnt**

int* p = (int*)o;
*p = 42;
return p;

Reusing
this region

1nt**

1nt*

1nt

Memory management as strong update

 Example of memory reuse
— Reusing “1nt*” as “1nt”

1nt* reuse(int** 0)
{
int* p = (int*)o;
*p = 42:
) return p; Strong update
|

Memory management as strong update

 Example of memory reuse
— Reusing “1nt*” as “1nt”

1nt* reuse(int** 0)
{
int* p = (int*)o;
*p = 42:
) return p; Strong update

In general, strong updates

are not always safe

because pointer 0 may be used
in other locations

Memory management as strong update

 Example of memory reuse
— Reusing “1nt*” as “1nt”

: —— Alias type system ensures that
1nt* reuse(int** o) YPE 5y

{ this strong update is safe
int* p = (int*)o; by er.15ur|ng .that pomter.o is not
*p = 42: | aliased with o_ther pomt_e_r?-
return p; []

1 Strong update

In general, strong updates

are not always safe

because pointer 0 may be used
in other locations

Problem of the original TALK

* The original alias type system
becomes unsound
in SMP/Multi-core environments

Why unsound?

* The original alias type sys

tem

does not keep track of pointer aliases

between threads

Unsafe

if pointer O is being
used by other threads

1nt* reuse(int** 0)

{
int* p = (Int*)o;

)Oo*p = 42;

return p;
}

An approach to making it sound

* Introduce synchronization primitives

— Lock/unlock, synchronized block, atomic block, etc.

1nt* reuse(int** o)
{
Tock(L);
int* p = (Int*)o;
*p = 42;
unlock(L);
return p;
}

An approach to making it sound

* Introduce synchronization primitives

— Lock/unlock, synchronized block, atomic block, etc.

It doesn’t

work

Why doesn’t it work?

* Sync primitives don’t help for safe strong update

— They can ensure race-freedom etc.,
but don’t tell whether types are changed or not

* Sync primitives are not available
when implementing OS kernels

— OS kernels should provide them
by using low-level CPU instructions

Our approach to safe strong update
in SMP/multi-core environments (1 of 2)

e Classify memory types
into two kinds:

Local Local Local
Memory Memory Memory

— Local memory

* Only a dedicated thread
can access

— Shared memory Thread

* Multiple threads
can access

Shared
Memory

Our approach to safe strong update
in SMP/multi-core environments (2 of 2)

* Local memory
allows strong update

— because other threads
cannot access it

Local Local Local
Memory Memory Memory

* Shared memory Thread
does not allow strong update

— Except for a certain condition

When can we allow strong update
of shared memory?

* |f types of shared memory are
invariant before and after

CPU instruction

CPU instruction

execution of a CPU instruction TG
instruction
CPU instruction
— Strong updates are allowed Pseudo

instruction

between 1 CPU instruction
+ pseudo instructions

— Pseudo instructions
= Instructions that affect types only
and have no runtime effects

CPU instruction

CPU instruction

CPU instruction

\ 4

Execution flow

When do we allow strong update
of shared memory?

* |f types of shared memory are
invariant before and after
execution of a CPU instruction

CPU instruction

CPU instruction

Pseudo
instruction

CPU instruction

— Strong updates are allowed
between 1 CPU instruction
+ pseudo instructions

— Pseudo instructions
= Instructions that affect types only
and have no runtime effects

Pseudo
instruction

CPU instruction

CPU instruction

CPU instruction

il 11l

\ 4

Execution flow

When do we allow strong update
of shared memory?

* |f types of shared memory are
invariant before and after

CPU instruction

CPU instruction

execution of a CPU instruction TG
instruction
CPU instruction
— Strong updates are allowed Pseudo

instruction

during 1 CPU instruction
+ pseudo instructions

— Pseudo instructions
= Instructions that affect types only
and have no runtime effects

CPU instruction

CPU instruction

CPU instruction

\ 4

Execution flow

With this approach, types appear to be invariant

from the viewpoint of other threads

* |f types of shared memory are
invariant before and after T
execution of a CPU instruction T

instruction

CPU instruction

CPU instruction

— Strong updates are allowed Pseudo
during 1 CPU instruction netruction
+ pseudo instructions

— Pseudo instructions
= Instructions that affect types only
and have no runtime effects

CPU instruction

CPU instruction

CPU instruction

\ 4

Execution flow

Example: lock acquisition

{p~> 3d1.{g>data 1f [1==0]}.
(rl :

lTock:

p)

mov r2 < 1
unpack ril

xchg [rl], r2
pack ril

bne r2, 0, lock

(1, a)}

Example: lock acquisition

{p>3d1.{q>data if [1==0]}. (1, q)}

(rl : p)
lock: //i%mﬁ R
mov r2 <« 1 P=1 €0, CI) Shared

unpack ril q:| data memory
xchg [rl], r2 . /

pack ril
bne r2, 0, lock Thread g

Local
memory

Example: lock acquisition

{p>3d1.{q>data if [1==0]}. (1, q)}

(rl : p)
lock: /@dresz R
mov r2 € 1 P-1C0, a)

Shared

unpack rl memory
xchg [rl], r2 . /
pack ril
bne r2, 0, lock Thread g

d:| data Local

memory

Example: lock acquisition

{p>3d1.{q>data if [1==0]}. (1, q)}

(rl : p)
lock: /@dresz R
mov r2 € 1 P-1, a)

Shared

unpack rl memory
xchg [rl], r2 . /
pack ril
bne r2, 0, lock Thread g

d:| data Local

memory

Example: type-checking lock acquisition

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}

%gi_k p) State of the type checker
mov r2 €« 1 b > dJ1...(0,)}
unpack ri (rl : p, r2 : ?7)
xchg [rl], r2
pack ril
bne r2, 0, lock

Example: type-checking lock acquisition

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}

%gi_k p) State of the type checker
mov r2 &« 1 ip > J1...0, P}
unpack ril (rl : p, r2 : 1)
xchg [rl], r2
pack ril
bne r2, 0, lock

Example: type-checking lock acquisition

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}
%gi_k p) State of the type checker
mov r2 & 1 {ip > (0, g}
unpack ril [a > data
xchg [rl], r2 if [1 == 0]]
pack ril (rl : p, r2 : 1)
bne r2, 0, lock

Example: type-checking lock acquisition

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}

%gi_k p) State of the type checker
mov r2 & 1 {p > (O, @}
unpack ril g 2> data
xchg [rl], r2 if [1 == 0]]
pack ril rl : p, r2 : 1)
bne r2, 0, |

Strong update occurred:

The type has to be reverted before
executing the CPU instruction after the next

Example: type-checking lock acquisition

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}
%gi_k p) State of the type checker
mov r2 €« 1 ip> @, QI
unpack ri [q > data
xchg [rl], r2 it [1 ==_O]]
pack ril (rl : p, r2 : 1)
bne r2, 0, lock

Example: type-checking lock acquisition

lTock:

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}
(rl :

p) State of the type checker
mov r2 <« 1 {p 2> F1...0, @}
unpack ril [q > data
xchg [rl], r2 if [1 == 0]]
pack ril (rl : p, r2 : 1)

bne r2, 0, lock

Example: type-checking lock acquisition

lTock:

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}
(rl :

p) State of the type checker
mov r2 €« 1 2> di....Q, @i}
unpack ri ~> data
xchg [rl], r2 it [1 == 0]]
pack ril > p, r2 1)

bne r2, 0, lock |

L The type is revered correctly]

Example: type-checking lock acquisition

lTock:

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}
(rl :

p) State of the type checker
mov r2 &« 1 {ip 2> d1...(0, g}
unpack ril [q > data
xchg [rl], r2 it [1 == 0]]
pack rl (rl @ p, r2 : 1)

bne r2, 0, lock

Example: type-checking lock acquisition

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}

%gi_k p) State of the type checker
mov r2 & 1 {p > J1...(0, @}
unpack ril [> datal
xchg [rl], r2 (rI : p, r2 : 1)
pack ril
bne r2, 0, lock

Example: type-checking lock acquisition

lTock:

{p~> 3d1.{g>data 1f [1==0]}. (7, q)}
(rl :

p) State of the type checker
mov r2 &« 1 {ip 2> d1...(0, g}
unpack ril [> datal |
xchg [r1], r2 (kI @ p, r2 : 1)
pack ril

bne r2, 0, lock

~ ™
Succeed in extracting memory

region (protected by a lock
-),

Example: type-checking lock release

{p=> 3d1.{g>data 1if [1==0]}. (7, q)}
[g>data]
(rl : p)
unlock:
unpack ril
mov [rl] € O
pack rl

Example: type-checking lock release

{p=> 3d1.{g>data 1if [1==0]}. (7, q)}

E(:'fd'atpaj] State of the type checker
unTlock: {ip > Fi1...00, ¢}
unpack ril [g 2 data]
mov [rl] € O (rl : p)

pack rl

Example: type-checking lock release

{p=> 3d1.{g>data 1if [1==0]}. (7, q)}
[g>data]

State of the type checker

(rl : p)

unlock: {ip 2 (O, g}
unpack ri [g > data]
mov [rl] € O (rl : p)

pack rl

Example: type-checking lock release

{p=> 3d1.{g>data 1if [1==0]}. (7, q)}
[g>data]

State of the type checker

(rl : p)

unlock: {ip 2 (O, g}
unpack rl q 2> datal]
mov [rl] € O rl : p)
pack rl

,
Strong update occurred:

The type has to be reverted before
executing the CPU instruction after the next

Example: type-checking lock release

{p=> 3d1.{g>data 1if [1==0]}. (7, q)}
[g>data]

State of the type checker

(rl : p)

unlock: {p 2 (O, g}
unpack ril [g 2 data]
mov [rl] € O (rl : p)

pack rl

Example: type-checking lock release

{p=> 3d1.{g>data 1if [1==0]}. (7, q)}
[g>data]
(rl : p)
unlock: {p 2 F1...0, g}

unpack rl (rl : p)

mov [rl] € O

pack rl

State of the type checker

Example: type-checking lock release

{p=> 3d1.{g>data 1if [1==0]}. (7, q)}
[g>data]

State of the type checker

(rl : p)

unlock: {p 2 F1...0, g}
unpack rl 1 : p)
mov [rl] € O
pack rl

\

The type is revered correctly and)
memory region (is successfully
returned back to shared memory

\

About CPU interrupts

* CPU interrupts can be type-checked
in a similar way

* Interrupt handlers and interrupted programs
can be viewed as concurrently running threads
— Strong update is basically not allowed to
shared memory between interrupters/interruptees

* If interrupts are disabled using CPU’s interrupt flag,
strong updates are allowed on the shared memory

One limitation of our approach
explained so far

* Relaxed memory models of today’s CPU
are not considered

— Shared memory of relaxed memory consistency
may violate memory safety property

What is relaxed memory consistency?

* |n short,
memory consistency models that allow
effects of memory operations on one CPU
to be observed in a different order

from other CPUs

Example of relaxed memory consistency

e Execution of the following 2 threads can
vield theresult “rl = Oandr2 = 0”

/Address \
Initial state of X. ()
shared memory

Y| O
o /
Threadl: Thread?2:
st [x] € 1 st [y] € 1
1d r1 €« [y] 1d r2 €& [x]

Example of relaxed memory consistency

e Execution of the following 2 threads can
vield theresult “rl = Oandr2 = 0”

~

Effects of these instructions
may be reordered in Threadl
%

/Address
. . X.10
Effects of these instructions
may be reordered in Thread2 YA
-
Threadl:
st [x] € 1
1d r1 €« [y]

Thread?2:
st [y] € 1
1d r2 €& [x]

Example of relaxed memory consistency

e Execution of the following 2 threads can
vield theresult “rl = Oandr2 = 0”

(adress N
. . X110
Effects of these instructions
may be reordered in Thread2 YA
o o
Threadl: ! Thread?2:
st [x]él|4 2) st [y] €1
1d rl €« [yl/; ;) 1d r2 €« [x]

Example of relaxed memory consistency

e Execution of the following 2 threads can
vield theresult “rl = Oandr2 = 0”

/Address
X.

y:
-

0

0

~

)

Threadl:

st [x] € 1 |2
1d r1 € [y]/;

|

Effects of these instructions
may be reordered in Threadl

}

Thread?2:

4

1

st [y] € 1
1d r2 € [x]

How to control memory reordering
in relaxed memory consistency models?

* Typically, utilize two mechanisms
provided by today’s CPUs

— Atomic memory operation mechanism
* E.g., “lock” prefix on Intel Architecture

— Memory ordering control mechanism

* E.g., acquire/release

Atomic memory operation

* Memory operation
whose effect is observed
in an “all-or-nothing” way
by other threads

Memory ordering control

* Acquire operation

— Operation whose effect becomes observable from
other threads before any succeeding operation

* Release operation

— Operation whose effect becomes observable from
other threads after any preceding operation

Example of memory ordering control

* Execution of the following 2 threads never
vieldstheresult “rl = Oandr2 = 0”

/Address \
Initial state of X. ()
shared memory

Y:1 0
\)
Threadl: Thread?2:
st [x] € 1 st [y] € 1
release release
acquire acquire
1d rl €« [y] 1d r2 € [x]

Example of memory ordering control

* Execution of the following 2 threads never
vieldstheresult “rl = Oandr2 = 0”

/Address \
Initial state of X:1 0
shared memory
Thread?2 always observes that -1 0) Threadl always observes that
Yy is read after X is written X is read after Yy is written
. adl: Thread?2:
st [x] €1 st [y] €«
release release
acquire acquire
1d rl €« [y] 1d r2 €& [x]

Our type-checking approach in order to

support relaxed memory consistency
(just an idea)

* Check the following 2 constraints
with type system

— Only atomic memory operations are able to
perform strong update on shared memory

— Memory ordering control mechanisms are used properly
when moving memory regions
between shared memory and local memory

— Shared memory = local memory: use acquire
— Local memory = shared memory: use release

Example of lock acquisition
in a relaxed memory consistency model

{p> 3d1.{g>data 1if [1==0]}. (7, q)}
(rl : p)
lTock:

mov r2 €& 1

unpack ril

atomic xchg [rl], r2

acquire

pack ril

bne r2, 0, lock

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p>3i.{g>data if [i==0]}. (i, @)}
(rl : p) State of the type-checker
lTock:
mov r2 <« 1 fp > Fi...(, @}
unpack rl (rl : p, r2 : ??)
atomic xchg [r1], r2
acquire
pack rl
bne r2, 0, lock

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p>3i.{g>data if [i==0]}. (i, q)}
(rl : p) State of the type-checker
lTock:
mov r2 <« 1 fp > Fi...(, @}
unpack rl (rl : p, r2 : 1
atomic xchg [r1], r2
acquire
pack rl
bne r2, 0, lock

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p> 3d1.{g>data 1if [1==0]}. (7, q)}

%gi_k p) State of the type-checker
mov r2 <« 1 /{p > (1, q)}
unpack rl
atomic xchg [rl], r2
acquire (rl :p, r2 : 1)
pack ril
bne r2, 0, lock

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p> 3d1.{g>data 1if [1==0]}. (7, q)}
(I"l : p) State of the type-check
Tock : ype-checker
e i
mov r2 <« 1 ip > (1, q)}
unpack rl
atomic xchg [rl], r2
acquire
pack ril
bne r2, 0, lock

Memory region q is still not accessible
L because acquire is not performed

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p> 3d1.{g>data 1if [1==0]}. (7, q)}

%gi_k p) State of the type-checker
' 4
mov r2 < 1 {p > A, i}
unpack ril
atomic xchg [rl], r2 :
acquire (rl 2 p, r2 : 1)
pack ril
bne r2, 0, lock

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p> 3d1.{g>data 1if [1==0]}. (7, q)}

%gi_k p) State of the type-checker
' a
mov r2 €« 1 ip > A, g}
unpack ril
atomic xchg [rl], r2 :
acjquire \ﬁrl I p, r2 : 1)

k rl
e r2, 0, lock

shared memory region is OK
because it is atomic

Fhis memory operation on a

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p=> 3d1.{g>data 1f [1==0]}.
(rl : p)
lTock:
mov r2 < 1
unpack ril
atomic xchg [rl1],
acquire
pack ril
bne r2, 0, lock

r2

(1, a)}
State of the type-checker
ip> (1, @}
[2 data
if [1 == 0]]
(rl : p, r2 : 1)

Example of type-checking lock acquisition
in a relaxed memory consistency model

(rl
lTock:

{p>3d1.{q>data if [1==0]}. (1, q)}

: p) State of the type-checker
mov r2 <« 1 {ip > (1, q)}
unpack ril [> data

atomic xchg [rl], r2 if [1 == 0]]
acquire (f \: p, r2 : 1)

bne r2, 0, lock

pack ril

Memory region g now becomes
accessible because
acquire is performed

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p=> 3d1.{g>data 1f [1==0]}.
(rl : p)
lTock:
mov r2 < 1
unpack ril
atomic xchg [rl1],
acquire
pack ril
bne r2, 0, lock

r2

(1,)}

State of the type-checker
ip 2 Ji1...0, g}
[g 2 data

1f [1 == 0]]
(rl : p, r2 : 1)

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p=> 3d1.{g>data 1f [1==0]}.
(rl : p)
lTock:
mov r2 < 1
unpack ril
atomic xchg [rl1],
acquire
pack ril
bne r2, 0, lock

r2

(1,)}

State of the type-checker
{ip 2 d1...(0, g}
[g 2 data

1f [1 == 0]]
(rl : p, r2 : 1)

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p> 3d1.{g>data 1if [1==0]}. (7, q)}

%gi_k p) State of the type-checker
mov r2 &« 1 {p 2 F1...00, q)}
unpack ril [> data] |
atomic xchg [r1], r2 GI =52 : 1)
acquire
pack ril
bne r2, 0, lock

Example of type-checking lock acquisition
in a relaxed memory consistency model

{p=> 3d1.{g>data 1f [1==0]}.
(rl : p)
lTock:
mov r2 < 1
unpack ril
atomic xchg [rl1],
acquire
pack ril
bne r2, 0, lock

r2

Succeed in extracting memory
L region (protected by a lock

(1, a)}

State of the type-checker

{ip > Ji...(0, q)}
[q > data]
> 1)

(JlL : p, r2

|

Related work (1/3)

* Type-based approaches
— A multithreaded typed assembly language

[Vasconcelos et al. 2006]
* |t cannot be used to implement synchronization primitives
and multi-thread management mechanisms themselves
— Mutex locks and threading mechanisms
are provided as language primitives

— Type-based analysis of synchronization lock usage
[Flanagan et al. 1999, 2007, Iwama et al. 2002, Grossman 2003, etc.]

* They cannot be used to analyze synchronization primitives
and multi-thread management mechanisms themselves
— Their goals are to ensure race/deadlock- freedom
» whereas our goal is limited to ensuring simple type safety

http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.2975&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.930&rep=rep1&type=pdf
http://portal.acm.org/citation.cfm?id=568182
http://portal.acm.org/citation.cfm?id=568182
http://portal.acm.org/citation.cfm?id=568182
http://www.cs.washington.edu/homes/djg/papers/cycthreads.pdf

Related work (2/3)

e Separation logic approaches
— Abstract Interrupt Machine (AlM)

[Feng et al. 2008]

 Utilizing separation logic
in order to verify programs with CPU interrupts
by maintaining invariants on interrupters/interruptees

— SMP/multi-core environments are not considered

— Concurrent Abstract Predicates
[Dinsdale-Young et al. 2010]

 Utilizing separation logic in order to handle invariants
on shared memory between multiple threads
— Relaxed memory consistency models are not considered

http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf

Related work (3/3)

* Program verification
for relaxed memory consistency models

— Sobe I'[Burckhardt et al. 2008]

A bounded model checker that checks
whether a program on TSO satisfies SC

— Boudol et al. 2009, Atig et al. 2010, etc.

* Define semantics of relaxed memory models
in operational-semantics styles for program verification

http://research.microsoft.com/en-us/projects/chess/sober.pdf
http://research.microsoft.com/en-us/projects/chess/sober.pdf
http://research.microsoft.com/en-us/projects/chess/sober.pdf
http://research.microsoft.com/en-us/projects/chess/sober.pdf
http://hal.archives-ouvertes.fr/docs/00/42/03/52/PDF/gg-popl.pdf
http://hal.archives-ouvertes.fr/docs/00/42/03/52/PDF/gg-popl.pdf
http://hal.archives-ouvertes.fr/docs/00/42/03/52/PDF/gg-popl.pdf
http://research.microsoft.com/pubs/118651/popl175-atig.pdf
http://research.microsoft.com/pubs/118651/popl175-atig.pdf
http://research.microsoft.com/pubs/118651/popl175-atig.pdf

Conclusion and future work

 We presented Typed Assembly Language
for SMP/multi-core environments with CPU interrupts

— Memory and control-flow safety can be verified

— Sync primitives can be directly written in it

 We also showed an idea of how to support
relaxed memory consistency models

e Future work:

— Prove the soundness of our type system,
particularly for the extension of relaxed memory models

— Implement an OS kernel with our TAL

— Extend the type system further in order to support
more complex and efficient synchronization primitives

