
Typed Assembly Language 
for Implementing OS Kernels 

in SMP/Multi-Core Environments 
with Interrupts 

Toshiyuki Maeda and Akinori Yonezawa 

University of Tokyo 



Quiz 



Q. Can execution of the following 2 threads 
yield the result “r1 = 0 and r2 = 0”? 

Thread1: 
 st [x]  1 
 ld r1  [y] 

Thread2: 
 st [y]  1 
 ld r2  [x] 

0 

0 y: 

x: 
Address 

Initial state of 
shared memory 

[Environment] 
CPU: Intel Xeon X5570 (2.93GHz) x 8 
OS: Linux 



Q. Can execution of the following 2 threads 
yield the result “r1 = 0 and r2 = 0”? 

Thread1: 
 st [x]  1 
 ld r1  [y] 

Thread2: 
 st [y]  1 
 ld r2  [x] 

0 

0 y: 

x: 
Address 

Initial state of 
shared memory 

[Environment] 
CPU: Intel Xeon X5570 (2.93GHz) x 8 
OS: Linux 

A. Yes 



Quiz 2 



Q. How often does it occur? 

• 1. Once per second or more 

• 2. Once a minute 

• 3. Once an hour 

• 4. Once a day 

• 5. Once a month 

• 6. Once a year (or less) 
[Environment] 
CPU: Intel Xeon X5570 (2.93GHz) x 8 
OS: Linux 



Q. How often does it occur? 

• 1. Once per second or more 

• 2. Once a minute 

• 3. Once an hour 

• 4. Once a day 

• 5. Once a month 

• 6. Once a year (or less) 

A. 

[Environment] 
CPU: Intel Xeon X5570 (2.93GHz) x 8 
OS: Linux 



Typed Assembly Language 
for Implementing OS Kernels 

in SMP/Multi-Core Environments 
with Interrupts 

Toshiyuki Maeda and Akinori Yonezawa 

University of Tokyo 

Typed Assembly Language for 
Implementing Ad Hoc Synchronization 

Correctly 

or 



What is Typed Assembly Language (TAL)? 

• “Strongly-typed” assembly language 
– Its type-checking ensures two safety 

• Memory safety 

• Control-flow safety 

 

– Except for being typed, 
it is an ordinary assembly language 

 
• It was first introduced in the field of 

type-preserving compilation [Morrisett et al. 1999] 

http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf
http://www.cs.cornell.edu/talc/papers/tal-toplas.pdf


Overview of TAL’s framework: 
generating binary executables 

• TAL’s assembler generates 
not only binary executables, 
but also their type information 

Programs 
written in TAL TAL’ 

assembler 
Binary 

executables 

Types 



Overview of TAL’s framework: 
type-checking binary executables 

• TAL’s type-checker can type-check 
binary executables 

– utilizing type information generated 
by TAL’s assembler 

TAL’s type-
checker 

Binary 
executables 

Types Safe 

Unsafe 



TALK: TAL for Kernel [Maeda et al. 06, 08] 

• TAL whose type system is extended 
in order to implement OS kernels 

 

– Memory management (malloc/free) and multi-
thread management mechanisms can be written 
in TALK 

• It is impossible in conventional TALs 
– because they rely on external memory management (= GC) 

http://web.yl.is.s.u-tokyo.ac.jp/~tosh/talk/talk.pdf
http://www.springerlink.com/index/347631g5h2448178.pdf


Brief overview of TALK’s type system 

• Supports variable-length arrays as a language primitive 
– in order to represent memory regions 

 
• Keeps track of integer constraints 

(in the same way as dependent type [Xi et al. 99]) 

– in order to perform array-bound checking statically 

 
• Keeps track of pointer aliases 

(in the same way as alias type [Walker et al. 00]) 

– in order to realize safe strong update (explained in the next slide) 

 
• Introduces notion of split/concatenation of arrays 

– in order to integrate variable-length arrays and alias type 

http://www.cs.cmu.edu/~fp/papers/popl99.pdf
http://www.cs.cornell.edu/talc/papers/alias-recursion.pdf


What is strong update? 

• Memory operation 
that modifies types of memory regions 

 

– Memory management (e.g., malloc/free) 
can be viewed as strong updates 



Memory management as strong update 

• Example of memory reuse 

– Reusing “int*” as “int” 

int* reuse(int** o) 
{ 
   int* p = (int*)o; 
   *p = 42; 
   return p; 
} 



Memory management as strong update 

• Example of memory reuse 

– Reusing “int*” as “int” 

int* reuse(int** o) 
{ 
   int* p = (int*)o; 
   *p = 42; 
   return p; 
} 

int** 

int* 

int 

Reusing 
this region 



Memory management as strong update 

• Example of memory reuse 

– Reusing “int*” as “int” 

int* reuse(int** o) 
{ 
   int* p = (int*)o; 
   *p = 42; 
   return p; 
} 

42 

int* 

int 

int 

Strong update 



Memory management as strong update 

• Example of memory reuse 

– Reusing “int*” as “int” 

int* reuse(int** o) 
{ 
   int* p = (int*)o; 
   *p = 42; 
   return p; 
} 

42 

int* 

int 

int 

Strong update 

In general, strong updates 
are not always safe 

because pointer o may be used 
in other locations 



Memory management as strong update 

• Example of memory reuse 

– Reusing “int*” as “int” 

int* reuse(int** o) 
{ 
   int* p = (int*)o; 
   *p = 42; 
   return p; 
} 

42 

int* 

int 

int 

Strong update 

Alias type system ensures that 
this strong update is safe 

by ensuring that pointer o is not 
aliased with other pointers 

In general, strong updates 
are not always safe 

because pointer o may be used 
in other locations 



Problem of the original TALK 

• The original alias type system 
becomes unsound 
in SMP/Multi-core environments 



• The original alias type system 
does not keep track of pointer aliases 
between threads 

int* reuse(int** o) 
{ 
   int* p = (int*)o; 
   *p = 42; 
   return p; 
} 

Why unsound? 

Unsafe 
if pointer o is being 

used by other threads 



An approach to making it sound 

• Introduce synchronization primitives 

– Lock/unlock, synchronized block, atomic block, etc. 

int* reuse(int** o) 
{ 
   lock(L); 
   int* p = (int*)o; 
   *p = 42; 
   unlock(L); 
   return p; 
} 



An approach to making it sound 

• Introduce synchronization primitives 

– Lock/unlock, synchronized block, atomic block, etc. 

int* reuse(int** o) 
{ 
   lock(L); 
   int* p = (int*)o; 
   *p = 42; 
   unlock(L); 
   return p; 
} 

It doesn’t 
work 



Why doesn’t it work? 

• Sync primitives don’t help for safe strong update 

– They can ensure race-freedom etc., 
but don’t tell whether types are changed or not 

 

• Sync primitives are not available 
when implementing OS kernels 

– OS kernels should provide them 
by using low-level CPU instructions 



Our approach to safe strong update 
in SMP/multi-core environments (1 of 2) 

• Classify memory types 
into two kinds: 

– Local memory 

• Only a dedicated thread 
can access 

– Shared memory 

• Multiple threads 
can access 

Local 
Memory 

Local 
Memory 

Local 
Memory 

Shared 
Memory 

Thread Thread 

Thread 



Our approach to safe strong update 
in SMP/multi-core environments (2 of 2) 

• Local memory 
allows strong update 

– because other threads 
cannot access it 

 

• Shared memory 
does not allow strong update  

– Except for a certain condition 

Local 
Memory 

Local 
Memory 

Local 
Memory 

Shared 
Memory 

Thread Thread 

Thread 



When can we allow strong update 
of shared memory? 

• If types of shared memory are 
invariant before and after 
execution of a CPU instruction 
 

– Strong updates are allowed 
between 1 CPU instruction 
                 + pseudo instructions 

– Pseudo instructions 
= Instructions that affect types only 
   and have no runtime effects 

CPU instruction 

CPU instruction 

Pseudo 
instruction 

CPU instruction 

Pseudo 
instruction 

CPU instruction 

CPU instruction 

CPU instruction 

Execution flow 



When do we allow strong update 
of shared memory? 

• If types of shared memory are 
invariant before and after 
execution of a CPU instruction 
 

– Strong updates are allowed 
between 1 CPU instruction 
                 + pseudo instructions 

– Pseudo instructions 
= Instructions that affect types only 
   and have no runtime effects 

CPU instruction 

CPU instruction 

Pseudo 
instruction 

CPU instruction 

Pseudo 
instruction 

CPU instruction 

CPU instruction 

CPU instruction 

Execution flow 



When do we allow strong update 
of shared memory? 

• If types of shared memory are 
invariant before and after 
execution of a CPU instruction 
 

– Strong updates are allowed 
during 1 CPU instruction 
             + pseudo instructions 

– Pseudo instructions 
= Instructions that affect types only 
   and have no runtime effects 

CPU instruction 

CPU instruction 

Pseudo 
instruction 

CPU instruction 

Pseudo 
instruction 

CPU instruction 

CPU instruction 

CPU instruction 

Execution flow 



When do we allow strong update 
of shared memory? 

• If types of shared memory are 
invariant before and after 
execution of a CPU instruction 
 

– Strong updates are allowed 
during 1 CPU instruction 
             + pseudo instructions 

– Pseudo instructions 
= Instructions that affect types only 
   and have no runtime effects 

CPU instruction 

CPU instruction 

Pseudo 
instruction 

CPU instruction 

Pseudo 
instruction 

CPU instruction 

CPU instruction 

CPU instruction 

Execution flow 

With this approach, types appear to be invariant 
from the viewpoint of other threads 



Example: lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 



Example: lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

Thread 

(0, q) 

data q: 

p: 
Address 

Shared 
memory 

Local 
memory 



Example: lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

Thread 

(0, q) p: 
Address 

Shared 
memory 

Local 
memory 

data q: 



Example: lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

Thread 

(1, q) p: 
Address 

Shared 
memory 

Local 
memory 

data q: 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  ∃i.….(i, q)} 
(r1 : p, r2 : ??) 
 
 

State of the type checker 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  ∃i.….(i, q)} 
(r1 : p, r2 : 1) 
 
 

State of the type checker 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  (i, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : 1) 

State of the type checker 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  (i, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : 1) 

Strong update occurred: 
The type has to be reverted before 
executing the CPU instruction after the next 

State of the type checker 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  (1, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

State of the type checker 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  ∃i.….(i, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

State of the type checker 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  ∃i.….(i, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

The type is revered correctly 

State of the type checker 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  ∃i.….(i, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

State of the type checker 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  ∃i.….(i, q)} 
[q  data] 
(r1 : p, r2 : i) 
 

State of the type checker 



Example: type-checking lock acquisition 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 xchg [r1], r2 
 pack r1 
 bne r2, 0, lock 
 … 

{p  ∃i.….(i, q)} 
[q  data] 
(r1 : p, r2 : i) 
 

Succeed in extracting memory 
region q protected by a lock 

State of the type checker 



Example: type-checking lock release 

{p∃i.{qdata if [i==0]}. (i, q)} 
[qdata] 
(r1 : p) 
unlock: 
 unpack r1 
 mov [r1]  0 
 pack r1 
 … 



Example: type-checking lock release 

{p∃i.{qdata if [i==0]}. (i, q)} 
[qdata] 
(r1 : p) 
unlock: 
 unpack r1 
 mov [r1]  0 
 pack r1 
 … 

{p  ∃i.….(i, q)} 
[q  data] 
(r1 : p) 

State of the type checker 



Example: type-checking lock release 

{p∃i.{qdata if [i==0]}. (i, q)} 
[qdata] 
(r1 : p) 
unlock: 
 unpack r1 
 mov [r1]  0 
 pack r1 
 … 

{p  (i, q)} 
[q  data] 
(r1 : p) 

State of the type checker 



Example: type-checking lock release 

{p∃i.{qdata if [i==0]}. (i, q)} 
[qdata] 
(r1 : p) 
unlock: 
 unpack r1 
 mov [r1]  0 
 pack r1 
 … 

{p  (i, q)} 
[q  data] 
(r1 : p) 

State of the type checker 

Strong update occurred: 
The type has to be reverted before 
executing the CPU instruction after the next 



Example: type-checking lock release 

{p∃i.{qdata if [i==0]}. (i, q)} 
[qdata] 
(r1 : p) 
unlock: 
 unpack r1 
 mov [r1]  0 
 pack r1 
 … 

{p  (0, q)} 
[q  data] 
(r1 : p) 

State of the type checker 



Example: type-checking lock release 

{p∃i.{qdata if [i==0]}. (i, q)} 
[qdata] 
(r1 : p) 
unlock: 
 unpack r1 
 mov [r1]  0 
 pack r1 
 … 

{p  ∃i.….(i, q)} 
(r1 : p) 
 

State of the type checker 



Example: type-checking lock release 

{p∃i.{qdata if [i==0]}. (i, q)} 
[qdata] 
(r1 : p) 
unlock: 
 unpack r1 
 mov [r1]  0 
 pack r1 
 … 

{p  ∃i.….(i, q)} 
(r1 : p) 
 

The type is revered correctly and 
memory region q is successfully 

returned back to shared memory 

State of the type checker 



About CPU interrupts 

• CPU interrupts can be type-checked 
in a similar way 

• Interrupt handlers and interrupted programs 
can be viewed as concurrently running threads 

– Strong update is basically not allowed to 
shared memory between interrupters/interruptees 

• If interrupts are disabled using CPU’s interrupt flag, 
strong updates are allowed on the shared memory 



One limitation of our approach 
explained so far 

• Relaxed memory models of today’s CPU 
are not considered 

 

– Shared memory of relaxed memory consistency 
may violate memory safety property 



What is relaxed memory consistency? 

• In short, 
memory consistency models that allow 
effects of memory operations on one CPU 
to be observed in a different order 
from other CPUs 



Example of relaxed memory consistency 

• Execution of the following 2 threads can 
yield the result “r1 = 0 and r2 = 0” 

Thread1: 
 st [x]  1 
 ld r1  [y] 

Thread2: 
 st [y]  1 
 ld r2  [x] 

0 

0 y: 

x: 
Address 

Initial state of 
shared memory 



• Execution of the following 2 threads can 
yield the result “r1 = 0 and r2 = 0” 

Thread1: 
 st [x]  1 
 ld r1  [y] 

Thread2: 
 st [y]  1 
 ld r2  [x] 

0 

0 y: 

x: 
Address 

Effects of these instructions 
may be reordered in Thread2 

Effects of these instructions 
may be reordered in Thread1 

Example of relaxed memory consistency 



• Execution of the following 2 threads can 
yield the result “r1 = 0 and r2 = 0” 

Example of relaxed memory consistency 

Thread1: 
 st [x]  1 
 ld r1  [y] 

Thread2: 
 st [y]  1 
 ld r2  [x] 

0 

0 y: 

x: 
Address 

1 

2 

3 

4 

Effects of these instructions 
may be reordered in Thread2 



Example of relaxed memory consistency 

• Execution of the following 2 threads can 
yield the result “r1 = 0 and r2 = 0” 

Thread1: 
 st [x]  1 
 ld r1  [y] 

Thread2: 
 st [y]  1 
 ld r2  [x] 

0 

0 y: 

x: 
Address 

3 

4 

1 

2 

Effects of these instructions 
may be reordered in Thread1 



How to control memory reordering 
in relaxed memory consistency models? 

• Typically, utilize two mechanisms 
provided by today’s CPUs 

 

– Atomic memory operation mechanism 

• E.g., “lock” prefix on Intel Architecture 

 

– Memory ordering control mechanism 

• E.g., acquire/release 



Atomic memory operation 

• Memory operation 
whose effect is observed 
in an “all-or-nothing” way 
by other threads 



Memory ordering control 

• Acquire operation 

– Operation whose effect becomes observable from 
other threads before any succeeding operation 

 

• Release operation 

– Operation whose effect becomes observable from 
other threads after any preceding operation 



Example of memory ordering control 

• Execution of the following 2 threads never 
yields the result “r1 = 0 and r2 = 0” 

Thread1: 
 st [x]  1 
 release 
 acquire 
 ld r1  [y] 

Thread2: 
 st [y]  1 
 release 
 acquire 
 ld r2  [x] 

0 

0 y: 

x: 
Address 

Initial state of 
shared memory 



Example of memory ordering control 

• Execution of the following 2 threads never 
yields the result “r1 = 0 and r2 = 0” 

0 

0 y: 

x: 
Address 

Initial state of 
shared memory 

Thread1: 
 st [x]  1 
 release 
 acquire 
 ld r1  [y] 

Thread2: 
 st [y]  1 
 release 
 acquire 
 ld r2  [x] 

Thread2 always observes that 
y is read after x is written 

Thread1 always observes that 
x is read after y is written 



Our type-checking approach in order to 
support relaxed memory consistency 

(just an idea) 

• Check the following 2 constraints 
with type system 

 
– Only atomic memory operations are able to 

perform strong update on shared memory 

 

– Memory ordering control mechanisms are used properly 
when moving memory regions 
between shared memory and local memory 

– Shared memory  local memory: use acquire 

– Local memory  shared memory: use release 



Example of lock acquisition 
in a relaxed memory consistency model 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 



Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

{p  ∃i.….(i, q)} 
(r1 : p, r2 : ??) 
 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

{p  ∃i.….(i, q)} 
(r1 : p, r2 : 1) 
 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  (i, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : 1) 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  (i, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : 1) 

Memory region q is still not accessible 
because acquire is not performed 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  (1, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  (1, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

This memory operation on a 
shared memory region is OK 

because it is atomic 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  (1, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  (1, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

Memory region q now becomes 
accessible because 

acquire is performed 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  ∃i.….(i, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  ∃i.….(i, q)} 
[q  data 
      if [i == 0]] 
(r1 : p, r2 : i) 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  ∃i.….(i, q)} 
[q  data] 
(r1 : p, r2 : i) 
 

State of the type-checker 



{p∃i.{qdata if [i==0]}. (i, q)} 
(r1 : p) 
lock: 
 mov r2  1 
 unpack r1 
 atomic xchg [r1], r2 
 acquire 
 pack r1 
 bne r2, 0, lock 
 … 

Example of type-checking lock acquisition 
in a relaxed memory consistency model 

{p  ∃i.….(i, q)} 
[q  data] 
(r1 : p, r2 : i) 
 

Succeed in extracting memory 
region q protected by a lock 

State of the type-checker 



Related work (1/3) 

• Type-based approaches 
– A multithreaded typed assembly language 

[Vasconcelos et al. 2006] 

• It cannot be used to implement synchronization primitives 
and multi-thread management mechanisms themselves 
– Mutex locks and threading mechanisms 

are provided as language primitives 

– Type-based analysis of synchronization lock usage 
[Flanagan et al. 1999, 2007, Iwama et al. 2002, Grossman 2003, etc.] 

• They cannot be used to analyze synchronization primitives 
and multi-thread management mechanisms themselves 
– Their goals are to ensure race/deadlock- freedom 

» whereas our goal is limited to ensuring simple type safety 

http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://homepages.di.fc.ul.pt/~vv/papers/vasconcelos.martins_multithreaded-tal.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.95.2975&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.930&rep=rep1&type=pdf
http://portal.acm.org/citation.cfm?id=568182
http://portal.acm.org/citation.cfm?id=568182
http://portal.acm.org/citation.cfm?id=568182
http://www.cs.washington.edu/homes/djg/papers/cycthreads.pdf


Related work (2/3) 

• Separation logic approaches 

– Abstract Interrupt Machine (AIM) 
[Feng et al. 2008] 

• Utilizing separation logic 
in order to verify programs with CPU interrupts 
by maintaining invariants on interrupters/interruptees 
– SMP/multi-core environments are not considered 

– Concurrent Abstract Predicates 
[Dinsdale-Young et al. 2010] 

• Utilizing separation logic in order to handle invariants 
on shared memory between multiple threads 
– Relaxed memory consistency models are not considered 

http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://flint.cs.yale.edu/flint/publications/aim.html
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf
http://www.cl.cam.ac.uk/~vv216/papers/ecoop2010-concabspred.pdf


Related work (3/3) 

• Program verification 
for relaxed memory consistency models 

– Sober[Burckhardt et al. 2008] 

• A bounded model checker that checks 
whether a program on TSO satisfies SC 

– Boudol et al. 2009, Atig et al. 2010, etc. 

• Define semantics of relaxed memory models 
in operational-semantics styles for program verification 

http://research.microsoft.com/en-us/projects/chess/sober.pdf
http://research.microsoft.com/en-us/projects/chess/sober.pdf
http://research.microsoft.com/en-us/projects/chess/sober.pdf
http://research.microsoft.com/en-us/projects/chess/sober.pdf
http://hal.archives-ouvertes.fr/docs/00/42/03/52/PDF/gg-popl.pdf
http://hal.archives-ouvertes.fr/docs/00/42/03/52/PDF/gg-popl.pdf
http://hal.archives-ouvertes.fr/docs/00/42/03/52/PDF/gg-popl.pdf
http://research.microsoft.com/pubs/118651/popl175-atig.pdf
http://research.microsoft.com/pubs/118651/popl175-atig.pdf
http://research.microsoft.com/pubs/118651/popl175-atig.pdf


Conclusion and future work 

• We presented Typed Assembly Language 
for SMP/multi-core environments with CPU interrupts 
– Memory and control-flow safety can be verified 
– Sync primitives can be directly written in it 

• We also showed an idea of how to support 
relaxed memory consistency models 

 
• Future work : 

– Prove the soundness of our type system, 
particularly for the extension of relaxed memory models 

– Implement an OS kernel with our TAL 
– Extend the type system further in order to support 

more complex and efficient synchronization primitives 


