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Abstract 

Provenance has been touted as a basis to establish trust in data. Intuitively, belief in a hypothesis should depend on how 

much one trusts the relevant data. However, current proposals to assess trust based solely on provenance are insufficient 

for rigourous decision making. We describe a model of provenance and belief that is necessary and sufficient to 

incorporate “trust in the data” in a way that supports normative inference. The model is based on the observation that 

provenance can be viewed as a causal structure which can be used to compute belief from assessments of the accuracy of 

sources and transformations that produced relevant data. In our model, data sources are like sensors with associated 

conditional probability tables. Provenance identifies dependencies among sensors. Together, this information allows 

construction of causal networks that can be used to compute the belief in a state of the world based on observation of data. 

This model formalizes the role of source accuracy, and provides a method for formally assessing belief that uses only 

information in the provenance store, not the contents of the data.  

1. Introduction 

The Open Provenance Model (OPM) [14] says, “We 

assume that provenance of objects (whether digital or not) 

is represented by an annotated causality graph”. While it 

is possible to argue about whether every provenance 

graph reflects true causality, this paper focuses on those 

domains in which reports about the world are collected 

and fused. In applications such as biosurveillance or 

global warming, we want to determine how much to 

believe derived data. 

Many assume that knowing the source of data and how it 

was manipulated, i.e., its provenance, is sufficient to 

allow a user of the data to make decisions based on how 

much they trust the data. Researchers are developing 

methods to use trust metrics on the assumption that they 

will exist. For example, Dai, et al. [4] assume that a 

measure of trust of a data item’s source(s) exist and 

propose to use it to return the most trustworthy results for 

a query.  

However, most provenance systems simply record the 

origin of data and the processes used to transform original 

data [1, 13]. In these systems, a user reviews the 

provenance of a data item and arrives at her personal 

belief in the veracity of data based on subjective 

assessment of its provenance. In other words, data 

veracity or trust is based on a “gut feeling” that is derived 

externally of provenance management systems. Even 

probabilistic databases [3, 7, 11] merely store the assigned 

probabilities and manipulate them appropriately during 

query execution, but do not provide for probability 

combinations through manipulations other than those 

described in the relational algebra. 

Previous works in computing trust [15] or data quality 

based on provenance [5, 8-10] require information that 

might exist in the data but is not in a typical provenance 

store. For instance, [15] require information such as the 

“reasonableness of data.” Moreover, many data quality 

metrics are based on content [8], uncertainty of the data 

[5], timeliness as calculated with data expiry age [10], or 

accuracy of the data [2], all of which are based on 

information in the data, not the provenance. Our proposed 

model is based solely upon information that uses and 

augments a provenance graph. Consider the following 

example. 

Example: While planning for a trip to Kilimanjaro, you 

notice a State Department advisory cautioning about a 

report of an outbreak of Dengue Hemorrhagic Fever 

(DHF). On the other hand, your favorite adventure hiking 

blog merely reports stomach flu.   

The provenance for these reports is in Figure 1. In light of 

the blog posting, might the State Department be 
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Figure 1: Provenance Information for Dengue Hemoragic 

Fever Symptoms Report 
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overstating the situation? Should you trust the report and 

alter your travel plans? 

With current models of provenance, our intrepid hiker has 

two options. The first is to view the provenance of the 

reports, assign a “gut feeling” about each based on the 

sources that contributed to the reports, and then fuse these 

to arrive at a belief in the final report.  The second option 

is to obtain the original reports, assess the accuracy, data 

quality, timeliness, etc. that went into creating those 

reports and use those assessments to determine if the 

reports correctly indicate existence of DHF symptoms. 

Unfortunately for our hiker, Option 1 incorrectly equates 

the (fused) accuracy of the report’s source(s) with the 

probability that DHF symptoms are present at 

Kilimanjaro and, therefore, exhibits the Base Rate Fallacy 

[17]. Option 2 requires more information than exists in 

the provenance store. Further, such information may not 

exist by the time a decision must be made. (It is 

impossible to measure the accuracy of a report on 

predicted corn consumption in 2010 until 2010 is over 

and the results have been tallied.) 

The main requirement is that the provenance system be 

extended to capture accuracy (sensitivity and specificity) 

of sources. When this is so, the computations needed to 

support decision making are straightforward and 

efficiently performed by off-the-shelf Bayesian network 

algorithms. Our model relies on information in the 

provenance store about how information is propagated 

through the graph, and how accurate each source is. This 

information is used to compute belief in derived data 

items. 

Section 2 describes the models that underlie our approach. 

The model developed to compute belief based upon 

provenance information is presented in Section 3. Section 

4 describes our planned future work and conclusions. 

2. Provenance Foundations 

We follow the OPM convention and represent artifact and 

process entities as nodes [14]. In particular we are 

concerned with artifacts, or data objects, and process 

nodes that are connected via edges or relationships. A 

lineage graph, then, is a triple, consisting of a graph 

identifier G, a set of nodes, N, and a set of edges, E. 

Provenance information forms a Directed Acyclic Graph 

(DAG). This paper is not concerned with the 

implementation of the graphs, which could be relational, 

RDF, XML, etc.  

3. Belief, Evidence, and Causality 

We are interested in using provenance to support decision 

making. For instance, should you go to Kilimanjaro, not 

go, or acquire additional data that might clarify your 

travel decision? If we are to use provenance to make such 

decisions in a rigorous manner, we must augment it with 

probabilities [12].  

In order to formalize our derivations, we employ 

propositional semantics. A proposition is a sentence 

expressing something true or false. Belief in a proposition 

is one’s subjective probability that the proposition is true. 

Notationally, belief in proposition C that there are 

symptoms of DHF at Kilimanjaro is written p(C).  

3.1. The influence of evidence on belief 

Belief often is not static; rather, it is influenced by 

evidence. In the example, it stands to reason that one’s 

prior belief in the presence of DHF symptoms at 

Kilimanjaro, p(C), might increase in light of one or both 

of the reports. Belief in proposition C in light of 

proposition E is written p(C|E) and called the conditional 

probability of C given E. The definition of conditional 

probability is: 

         (1)  

In words, the probability C is true (e.g., DHF symptoms 

are present at Kilimanjaro) given E (the State Department 

or blog report) is the proportion of the times one expects 

C and E to co-occur when E occurs. By division, p(C⋀E) 

= p(E|C) * p(C). Substituting this identity in (1) yields 

Bayes’ rule: 

    (2) 

Where p(E) = p(E|C) * p(C) + p(E| ¬C) * p(¬C). 

3.2. Source accuracy and weight of evidence 

Accuracy is the proportion of true results – both 

positive and negative – in all the results produced by a 

source. Thus, both components of accuracy, – a source’s 

true positive rate p(E|C) and a source’s true negative rate 

p(¬ E| ¬C) [equal to 1-p(E| ¬C)] are required to calculate 

belief in proposition C given evidence E. Note that p(C|E) 

is not equal to the accuracy of the source or the sources 

true positive rate p(E|C) or p(E). 

3.3. Causal chains 

In this exposition we denote evidence by E and the state 

of the world by C in part to evoke the idea that evidence 

(i.e., data) is an effect caused by a state of the world. In 

our example, E is either the State Department advisory or 

the blog report, and C is the disease symptom that 

engendered that report. 



The occurrence of a symptom DHF is likely not the 

primary concern of our hiker, but rather it is the 

possibility of the presence of DHF that is the ultimate 

concern. An advantage of causal models is that they can 

be extended to represent a chain of causes and effects that 

allows us to address sequences where the effects 

represented by data can be traced back to the original 

source.  

Let us denote the presence of DHF at Kilimanjaro by S. 

The causal network that captures the knowledge that S 

may have caused the symptom C that engendered report E 

is: S  C  E. 

Without going into details, note that Bayes’ rule is the 

normative way to compute p(S|C) and that using a chain 

of conditional probabilities it is straightforward to 

compute the belief p(S|E).
1
 

This means that provenance graphs such as depicted in 

Figure 1 can be translated into causal Bayesian networks 

that support inference about evidence provided by data.
2
  

3.4. Integrating causal reasoning with 

provenance 

One issue of significance is that causal networks begin 

someplace and that someone must provide the a priori 

probability of each node that has no parent. In our 

example, there are four such nodes. But notice that these 

nodes represent data and not what caused the data to be 

observed (possibly incorrectly). In reality, the state of 

interest to our hiker is DHF which may have caused the 

reports at the head of the provenance graph but is not 

represented in the graph. Without knowing the probability 

of DHF at Kilimanjaro before any evidence was acquired, 

it is impossible to compute p(DHF|reports). This 

illustrates that a provenance graph is not sufficient for 

inference; an external domain model must augment it.   

From the exposition above, it should be clear that for a 

single source of a single piece of data (about a single 

external cause) we require the probability the source will 

                                                           

1 In practice these computations are performed using algorithms that 
implement Bayesian belief networks and are available in a number of 

off-the-shelf systems. 

2 The translation from a provenance graph to a causal Bayesian network 
is direct since provenance forms a directed acyclic graph. 

report the data when the causing state is true and the 

probability the source might report the data when the 

causing state is not true (i.e., the probability the source 

issues an incorrect report). But our exposition was only 

about a single source and a single data item. There are 

only two other cases: 

 Figure 2(a) depicts single cause C, or multiple 

independent sources of data. This graph structure 

means that p(C | E1 & … & En) = p(C|E1) * … * 

p(C|En). Therefore, to support inference we need only 

the individual conditional probabilities associated with 

each source (E nodes).  

 Figure 2(b) shows data derived from multiple sources. 

In this case, the conditional probabilities for E must 

specify the probability of each state of E for every 

possible combination of states of C1-Cn.  

3.4.1. Generating conditional probability tables 

There are three possible ways to enumerate such a 

conditional probability table. The least desirable is to ask 

an expert on the sources. This can be an onerous task 

prone to cognitive biases.  

A second way is to use a learning algorithm. For each 

combination of values of the C nodes, one would initially 

assign equal probability to each possible value of E. 

These probabilities would be updated as one obtained 

verification of the accuracy of the sources, as in [16]. The 

problem with this approach is that it requires knowledge 

of results which may be in short supply for rare events 

(e.g., how many times have you assessed the accuracy of 

health alerts by the US embassy in Tanzania?). 

A third way to produce such tables, which we are 

investigating in our research, is to create a set of causal 

models that utilize the probability of prior sources. For 

example, if all predecessors of E have a common ancestor 

in the provenance graph, that means they are not 

conditionally independent from node E’s point of view. In 

such a case p(E | C1), …, p(E | Cn), and p(E | C1 & … & 

C2) might be assumed to be approximately the same 

when C1-Cn are of the same class having members with 

approximately the same accuracy in repeating what the 

common source says.  

3.4.2. Independence and the Single Source Problem 

Utilizing the causal reasoning described above, a large 

problem in the provenance world is solved automatically: 

the single source problem. For example, knowing that an 

assertion that Iraq was developing weapons of mass 

destruction was based on a single source code-named 

“Curveball”, as opposed to four independent sources, 

might have influenced belief in the WMD assertion. 

Meanwhile, four independent sources should create a 

higher belief in the resulting report [6]. Because 

provenance is a DAG, this can be accounted for with 
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Figure 2: Sample Causal Graphs (a) single cause, (b) 

multiple sources 



conditional probabilities. Moreover, partial dependencies 

in the graph, such as the one that exists in Figure 1 (the 

Villiage clinic report is shared by many), are also 

automatically comprehended by the use of causal 

reasoning. 

3.4.3. Impact of Processes 

Processes have a large impact on the belief of their 

derived data. Consider in our example, the process 

“Embassy Forward”. Suppose this was done via a 

disenchanted intern, whose selection of what material to 

copy and forward was done haphazardly. The final Travel 

Advisory could look very different from one created by 

the bright, excited intern who fully read and understood 

the Tanzanian Ministry of Health’s report. Initially, all 

processes can use a default conditional probability table. 

However, these could be altered if some information is 

known about a specific process; e.g. the good intern’s 

conditional probability table would be the identity matrix 

while the bad intern’s table would give less credence to 

the information produced. Figure 3 contains samples of 

all three conditional probability tables for the “Embassy 

Forward” process. 

Default  Good Intern  Bad Intern 

E1\E2 T F  E1\E2 T F  E1\E2 T F 

T .9 .1  T 1 0  T .8 .2 

F .1 .9  F 0 1  F .4 .6 

Figure 3: Conditional Probability Tables for Default 

processes, and modifications when better background 

knowledge exists for the “Embassy Forward” process. E1 is 

the Tanzanian Report, E2 is the intern output. 

4. Conclusions and Future Work 

In this work, we highlight the need to formally model and 

compute trust utilizing provenance information. Unlike 

previous works, we rely purely upon the graphical 

structure contained in the provenance store to provide a 

base assessment of the belief in the final resulting data 

item. If the user has any extra knowledge about the 

quality of the processes utilized during transformations, 

this can be incorporated for a better calculation of belief, 

but is not required for a basic calculation. This approach 

has two major benefits. First, it decouples the assessment 

of belief from any information that is not directly stored 

in the provenance graph. Second, it gracefully accounts 

for independent, shared source and single-source reports. 

We intend to explore further areas of research. First, we 

wish to build on this work to refine the model for 

computing belief based on initial assessments of source 

quality (separate from the data produced by that source) 

as well as better automatic computation of process effect 

on transformed evidence. Second, we will apply these 

belief models to inform users of the likelihood of different 

hypothesis. For instance, we could use the belief in the 

reports, as discussed herein, to propose a hypothesis that 

better explains the evidence.  
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