USENIX Association

Proceedings of the
FREENIX Track:
2001 USENIX Annual
Technical Conference

Boston, M assachusetts, USA
June 25-30, 2001

THE ADVANCED COMPUTING SYSTEMS ASSOCIATION

© 2001 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1510548 5738 Email: office@usenix.org WWW: http://www.usenix.org
Rightsto individua papers remain with the author or the author's employer.
Permission is granted for noncommercia reproduction of the work for educational or research purposes.
This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

A Practical Scripting Environment for Mobile Devices

Brian Ward
Department of Computer Science
The Unwversity of Chicago

bri@cs.uchicago.edu

Abstract

Software development for small mobile devices con-
centrates on cross-compiling C into platform-specific
object code. Each platform has its own idiosyn-
crasies in setting up an application, memory man-
agement, display management, and so on. We present
a new programming approach based on dynamic
content generation that simplifies development of
common applications for mobile devices. This paper
introduces new software development tools intended
for mobile devices; our approach utilizes a compiler
and a multiplatform runtime environment. In the
text, we first note a few problems in mobile code
development, then briefly analyze a typical mobile
application. From this, we draw a similarity to a fa-
miliar programming model, and formulate what we
would like to borrow from that and apply to mobile
code development. Finally, we present the current
status of the project and its future plans.

1 Introduction

When a programmer gets a new toy like a Palm
handheld, one of the first things that comes to mind
is “I'd like to write some code for this.” “I’d like
to port foo to this” also comes to mind. However,
the harsh reality of mobile devices is that software
development really isn’t very convenient. A typi-
cal situation is that one writes the code in C on a
workstation, runs a cross-compiler on it, loads the
resulting binary into the device, then crashes the de-
vice without knowing very well what happened. For
the more popular devices, there are some additional
tools such as device emulators, but of course, this
doesn’t stop the code from crashing. These facilities
also do little to help figuring out the obscure ritual
required to print “Hello, World” nor do they help
in porting the code to other mobile platforms.

Graphical display on mobile devices, as with many
environments, isn’t convenient to do on a pixel-by-
pixel basis. Palm development in C addresses this
in part with ‘forms,” [8] which are specifications for
widget placement on the screen which the program-
mer pre-specifies separately. Unfortunately, the con-
sequence is that it impedes any dynamic flavor of the
display. This is fairly serious, since a mobile device
isn’t usually used to do any real computation—it is
usually there only to extract and display informa-
tion.

There are some alternatives to the C model, such as
Java2ME[3], but these have not been terribly pop-
ular because, for the most part, they have many of
the same problems (only the language has changed).

Most programmers would probably think highly of
a language like Python being available on the Palm.
However, there must be more to it than this, since
that has already been done[10]. Not only is there
is an acute lack of support for display techniques,
but since they were written for a much larger envi-
ronment such as Unix, they often have to be con-
siderably stripped down, with additional limitations
placed on what they can actually do.

Moreover, there is a lack of a cross-platform mo-
bile software development ‘for the rest of us.” Most
people write very simple programs and don’t want
to have to worry about memory management, heap
and record size limitations, and so on.

2 Application Analysis

Perhaps some illumination on this problem lies not
in the means to the end, but in the end itself. One
should look at the actual applications which run on
these devices and see how they work and what they
do.

Certain scripting languages like Python and Perl are
popular in part because they rather fit in quite well
with the shell interface of a Unix system. When at
a full-size machine, command-line batch processing
prevails. As we develop scripts, we run them over
and over again at our shell prompt, often redirect-
ing the output to other files, where we may look
at them with a pager program, a web browser, etc.
When satisfied with the output, we either continue
to run the scripts at a shell prompt or automate
them in some way (using cron jobs, window man-
ager macros, dynamic web pages, and so on).

Our observations show that mobile applications have
a much different interface model than those of the
typical Unix desktop. When a user runs an appli-
cation on a handheld, some sort of full-screen dis-
play usually appears- often, a menu of sorts. Then
one selects something that looks interesting and the
page either redisplays, or a new page appears to take
the place of the current. In a sense, it’s a “tap, read
screen, tap, read screen” sort of model. Because this
sounds a lot like “point and click,” we have an idea
of where to head to next.

3 We’ve Seen This Before

This interface model is remarkably similar to a pop-
ular strategy for larger web sites, that of so-called
‘dynamic content.” While the actual implementa-
tion language and detail vary, most of these web
sites boil down to code like this:

<? print_header(); 7>
Here’s some stuff:

<7
$fd = db_open("server", "dbname");
$result = db_query($£fd,
"select * from foo where bar = baz");

while ($row = db_fetchrow($result)) {
print $row[2] . " " . $row[1];
print "
\n";

}

db_close($£fd) ;

print_footer();
7>

This particular segment uses the PHP[9] language
between the <? ?> delimiters. The db* functions
are database access functions.

Most popular mobile applications do the same sort
of thing; this likeness is reinforced by the number
of personal organizer and directory web sites avail-
able (some of which can synchronize with mobile
devices).

Though they differ in syntax, implementation, and
style, the languages used on the web have one thing
in common. In addition to a set of built-in functions,
they each offer an interface to add additional func-
tions written in C. This model has proved popular
enough to inspire additional tools (e.g. SWIG[2])
meant to further bridge the gap. Due to this level
of support, the ‘core’ set of functions grows as the
language matures. This leaves the question of what
the core functions are. For example, Python aims
for a smaller core, while a PHP build attempts to
compile and include as many functions as possible
up front. Perl lies somewhere in between.

4 Intent

We therefore asked a question on what it take to
bring this sort of convenience to mobile platforms.
Previous research shows that mobile devices are in-
herently poorly-connected and resource-poor[11], so
we cannot rely on proxy servers to do the compu-
tation for us in real-time (the WAP model[12]), nor
can we simply start up a web server on the device
and then run a web browser (at least not yet).

An important aspect is ease of presentation. A
“Hello World” program should not be much more
the text itself. Augmenting this are the usual string

manipulation functions available in most scripting
languages, as well as interfaces to important system
functions (such as database access). This is one of
the most important advantages to Unix-based lan-
guages such as Python and Perl in web servers—they
not only have handy access to common library calls
to get the data that they but they also have sig-
nificant power and ease in producing any kind of
output required.

5 Design Overview

A system for doing just this is currently under devel-
opment. It consists of two parts: a parser / compiler
and virtual machine-interpreter. The former takes
representation descriptions along with a C/PHP-
like language (currently called HHL) and produces a
bytecode for the virtual machine-interpreter (named
VL).

The VL execution model is similar to the dynamic
web server example, which runs scripts once per
click and sends them to the web browser as a sim-
ple document. When the user runs a program, the
code is fed into VL. The immediate output of this
is a description of the on-screen content, which VL
then draws on the screen, in the same way that a
web browser might display HTML. If a whole new
page is desired (for example, we’re in an address
book listing we tap on an entry to bring up the
full entry), the whole process repeats for the new
page. However, in a mobile environment, we can
change a few of the rules. Since the machine which
generated the content also happens to be the one
displaying the content, all of the information about
is still in place. This allows us to update portions
of the screen without a full redisplay.

6 The HHL Language

A procedural language, HHL resembles PHP and
C. Its flow control constructs include if-then-else
and while. Variables begin with a dollar sign (e.g.
$stuff).

Functions are defined as in the following example:

function add($arg, $another_arg) {
global $scale;
return($scale * $arg * another_arg);

If the function returns no useful value (like a C void
function), return is not necessary. In addition to
these user-defined functions, the runtime environ-
ment provides a number of built-in functions, such
as atoi() for converting strings to integers, and
cellp(), used display modification. It is accept-
able to replace a builtin function with a user-defined
function within a single program.

There are two basic data types, strings and inte-
gers. In addition, the list type provides array- and
list-like functions.

7 Display

There are two stages to the display of information.
The first is a display specification which determines
the layout of the screen and what initially appears.
This corresponds to HTML in the web model, and
it employs SGML/HTML-like tags. As in a system
such as PHP, one can provide a static markup, with
HHL code, or a mixture of both.

Instead of using a complete markup language such
as HTML, we only employ a small number of tags.
In analyzing mobile applications, one HTML-like el-
ement stands out among others: the table. From
listboxes to buttons, almost anything can be re-
duced to a table with a user-defined action for taps
on the element. This is a pure code segment, mak-
ing the display a 2x2 matrix of numbers, 1 to 4:

<table c=2>
<c>1</c><c>2</c>
<c>3</c><Kc>4</c>

One can insert HHL code to create dynamic content:

<table c=2>

<7
$i = 1;
while ($i < 5) {
print "<c>$i</c>"
}
>

An important element of the display system is that
HHL code can interact with the display device and
use the information not only to adapt the current
screen geometry, but also to detect how much room
is left on the screen given the amount of informa-
tion already present. This example employs the
rows_left() function:

<table c=2>
<c>Row Number</c><c>Rows Left</c>
<7
$n = 0;
while ($i = rows_left()) {
print "<c>";
print $n;
print "</c><c>";
print $i;
print "</c>";
$n++;

?>

8 Actions and Display Updates

Now that we’ve described the display system’s ba-
sic infrastructure, we must sort out the details of
updates to a page. This is where our system most
deviates from the web model. We’ve described the
fact that we need to be more aware of our state.
A web browser isn’t very strong in this regard, nor
should it be, for security, consistency, and other rea-
sons. Typically, when the user clicks on something
in a page to update it, the page redisplays, send-
ing some state parameters back to the web server.
There are some ways to do non-critical browser-side
update features with Javascript, but the use of this
isn’t widespread due to mixed results.

Our system resembles the Tk toolkit’s system[7] to
a certain degree, but with some modifications for
a compiled language. After VL loads and runs an
application, it waits for an event, such as a display
tap or network activity. The event triggers an event-

handling function if applicable.

When defining a cell with the <c> tag, you may
provide a name and action, as in this example:

<table c=2>
<c name=example action=tap_me>Tap me.</c>
<c name=display></c>
<7
function tap_me($name) {
cellp(“"display", "Ow.")
}

7>

When the user taps on the “Tap me” cell, VL calls
tap_me ("example"). When the function completes
execution, the VL returns to the idle-event loop.

9 Implementation

9.1 HHL Compiler

The source code for the system has essentially three
pieces: the HHL compiler, which is much like the
source for any Unix utility, the platform-independent
core of VL, and the platform-specific support file
sets for each target. Excepting the lex and yacc
constructs, all code is ANSI Standard C.

A straightforward tool with few frills, the compiler
generates parse trees and massages them, then gen-
erates code in two distinct steps. Optimization leans
toward eliminating redundancy and space economy.
For example, because operations on strings tend
to involve multiple function calls and exercise the
memory management system, some of those oper-
ations are analyzed. Two sequential print state-
ments

print $strl . "</c>";
print "<c>" . $str2;

would normally generate around ten instructions to-
tal in the target code. By condensing this segment
into a single print statement, we can save three

instructions. Because this sort of optimization re-
quires certain semantic knowledge of builtin func-
tions, possibly leading to an unnecessarily complex
compiler, we aim only for a select few such tweaks.

At the moment, the compiler runs only on Unix
platforms; while in distinct components, its primary
use is on a desktop machine.

9.2 VL Core

VL’s development has been multiplatform from the
start, immediately forcing a distinction between the
front-end and computational components. Further-
more, to avoid code riddled with #ifdef directives,
some modules require separate files for certain func-
tions for each platform; the display and events in-
terfaces are two examples.

At first glance, the VL object code resembles that
of a normal microprocessor. It has register-like stor-
age locations, comparisons, branching, and other
common items. However, the design has a number
of amenities meant to simplify compilation from a
higher-level language. For example, in addition to a
regular execution stack, it has another stack for use
by operations and functions, not unlike the stack in
very old hardware architectures [1]. This not only
makes compiler implementation easier, but greatly
reduces object file size.

Also in the interest of object size reduction, the in-
structions are of variable length. A further assump-
tion is that much of the object code will consist of
function execution. Therefore, there is some empha-
sis on function call setup size, and the complexity
of returning a value. The storage location address-
ing scheme provides fast mapping from a storage
location address to the execution stack. Though
it is possible to implement nested functions using
traditional methods dating from Algol[6], they are
currently absent in HHL.

VL enforces types at run time. Each storage loca-
tion has a type, regardless of any memory manager’s
involvement. However, the type enforcement is not
overly strict. Function arguments do not undergo

typechecking during function execution. For user-
defined functions, this is not an issue. Any built-in
functions check their arguments as they see fit. For
example, since a string operation on a non-string
might cause a crash, string manipulation functions
should make sure that their arguments are indeed
strings. There is also no particular obligation to re-
turn run-time errors in the case of a type clash; if
atoi() gets an integer as its argument instead of a
string, it is perfectly acceptable to return that same
integer as the result instead of flagging an error.

In addition to the (lack of) obligation for types, a
builtin function does not need to check its number
of arguments. This has an advantage for functions
such as string append. We noted above that we
could save some instructions by condensing the two
print calls into one. In the original form, there are
actually four function calls—two print() and two
string appends. In the condensed form, there are
only one of each, where the string append has four
arguments instead of two.

The VL core module processes object code. The
front end hands the module a memory pointer to
the start of the code. The initialization function an-
alyzes the object header, and determines where exe-
cution should start. The header includes the names
of all functions called in the object code, offset ad-
dresses for program-defined functions, and a string
constant table. Following the header is the main
program code, and finally, the code of all program-
defined functions. The initializer makes a note of
where the code begins and ends, in the interest of
catching illegal program counter access.

The core module includes the instruction executer.
After it reads and runs each instruction, it updates
the program counter, and leaves an opportunity for
an event, such as a tap on the screen or program
interrupt. Allowing these interrupts only between
instructions simplifies the system not only because
we do not have to worry about half-executed in-
structions, but also cuts down on the complexity of
the interrupt handler for each platform.

9.3 VL Functions

Like the core, the VL builtin function framework
is also platform-independent. The builtin function
vector is a table of HHL function names paired with
real function addresses. For example, if the imple-
mentation of a builtin function were a C function
vl builtin print and the HHL name were print,
the entry in the table would be

{ "print", vl_builtin_print }

When the VL core initializes a program, it iden-
tifies all functions that the compiler assumed to
be builtin, and attempts to locate them within the
function vector. The core stores this location so
that it may call a builtin quickly during program
execution. We call this dispatching a function; the
builtin function dispatcher routine is also in the

To add a builtin function, one needs to write the
function with the prototype Int32 (Int32 argc,
Int32 offset), and place the function along with
its HHL name into the builtin function vector. argc
is the number of arguments given when the program
calls the function, and offset is the stack offset.
Here is an example which simply adds two argu-
ments together:

Int32 vl_builtin_add2
(Int32 argc, Int32 offset) {
vl_var i, j;

/* if num of args not 2, return null */
if (arge != 2) {
return(l);

= grab_var_with_type (offset);

= grab_var_with_type (offset+1);
s_push(*i.value + *j.value, VL_TYPE_INT)
return(0) ;

(SR

We see a number of features from this example.
First, we note a safety feature: as long as the dis-
patcher calls the function with a correct value for
argc, this function cannot walk off the edge of the
execution stack. The assignments to i and j illus-
trate how to access a the first and second arguments.
Finally, we see that there are two ways to exit from

a builtin function; with a return value of 1, indi-
cating that the function doesn’t have a meaning-
ful return value (such as void in C), or 0, meaning
that the function has put its return value on the
operation stack mentioned previously. If there are
code branches leaving the stack in different states as
above, this is not a problem. The dispatcher puts
the stack in order if necessary.

Simple builtin functions such as the one in this ex-
ample do not need to know about their target ar-
chitecture. However, there are cases in which func-
tion implementations are necessarily different, such
as the display interface. One may take several ap-
proaches in these cases. If the differences are mi-
nor, #ifdef preprocessor directives may suffice. If
there are large discrepancies, it may be necessary
to write each implementation separately, possibly
placing them in different source files.

10 Stability

10.1 General

One of our primary concerns is to keep programs
from causing an crash. In our case, this is an espe-
cially serious matter, mainly due to the operating
system support on some of our platforms. Since
they tend to be on smaller devices, several years be-
hind current processor computational power spec-
ifications, operating system designers must make
some sacrifices. Memory management is sometimes
weaker, in part due to a lack of hardware support.

But if scripting languages on a Unix desktop don’t
normally experience segmentation faults (other than
running dynamically-loadable modules), we should
expect to be capable of the same on a handheld.
This need not conflict with our interest in perfor-
mance. For instance, it is not necessary to do a
rigorous check on every bit of code upon initializa-
tion, seeing if the number of arguments are correct
for each instruction is valid, or if functions are called
with matching numbers of parameters. A problem
such as an invalid instruction pops up soon enough.
Other matters cannot be glossed over. For example,
each compiled-in string must be checked to see if it

appears as it is advertised: length matching string
header value, NULL character at end.

10.2 Type System

There are a few particular areas of VL to concen-
trate on; some rely on the stability of others. First,
in the VL core, we have a few basic data structures
to worry about. We have the execution and op-
eration stacks. A common set of access functions
can assure us that we will not run off the borders of
these. If we check the stack at each access, and make
sure that the stacks see no other accesses outside of
this function, we will not have an illegal memory
access.

Our type system presents some obstacles. A lan-
guage such as ML is strongly typed and doesn’t
need type information once the code is compiled[5].
Not only is our type system a mainly runtime affair,
but we have no reason to trust the compiled code,
for someone may have inserted a rogue instruction.
Therefore, we build our type security up from a few
base rules.

The first rule is that VL instructions may only set
the types of a limited set of data, and that only when
an instruction loads something into a storage area
(these are similar to assembly ‘Load Immediate’ in-
structions). Let’s assume that these two types are
numbers and compiled-in strings. Numbers present
no difficulty as far as memory is concerned, and any
safe operation or function will know to check to see if
a number is cause for concern. Compiled-in strings
have one precaution. Each such string is ultimately
represented by an index to a table created at pro-
gram initialization. If that index isn’t in the table
when a VL instruction sets this type, a runtime er-
ror occurs.

Furthermore, there is no other way to set a type
from an instruction. All instructions which shift
data around (e.g. to and from the stacks) work with
both data and type at once, keeping them together.

Therefore, with instructions alone, there is no way
to have a type mismatch that may cause an op-

eration or function to get bad data. This leaves
two questions: First, while this type system is safe,
wouldn’t one like to have more types? In addition,
can the builtin functions handle this?

Both questions may be answered at once. Builtin
functions are the key to more types. We've al-
ready talked about compiled-in strings; naturally,
we would like to have dynamically-allocated strings
as well. We can make a new rule: only builtin func-
tions may return the dynamically-allocated string
type. If these functions make certain that the string
data that they return is ‘real,” there is no danger in
passing it back to the VL core. No core instructions
may change the data without changing the type,
and as we already mentioned, they can’t change the
type to anything but the simple ones.

Assuming that our builtin functions don’t have any
bugs (and of course, we know that never happens),
this system suffices to keep bad data out of the
builting’ hands. But is it enough to assure that
our language is useful? With strings, it certainly is:
the only way one would ever get any string that’s
not known at compile time is to use a builtin such
as a database access function or string append. If
we can do similar things with network sockets, we
can achieve the same level of sophistication. Of
course, we don’t let VL instructions play with point-
ers. While this can hinder us in some programming
environments [4], our system is not intended to be
a platform for heavy-duty applications.

With this in mind, it is worthwhile to emphasize
that builtin functions must dutifully check their ar-
guments and return a valid data-type pair. If one
bad piece of data got into the mix, the result could
be catastrophic.

One more note about builtin functions and stabil-
ity is in order, pertaining to blocking operations.
On some platforms, blocked operations can interfere
with the operating system. If a program is busy
with something and doesn’t handle an event from
the operating system, application buttons may not
work, events may be dropped, the system may get
sluggish, or worse. Therefore, builtin functions have
something of an obligation to try to avoid blocking
operations, or if they must be busy for a period of
time, to try to service events if they come in. VL

provides an interface for this in its front end through
two function calls. One checks for pending events,
and the other services any such events.

11 Security Concerns

In a portable development environment, one should
explain any security measures because one can eas-
ily transfer code (HHL or VL object code) over a
network. Our general philosophy towards the mat-
ter is the same as for a normal scripting language
such as Perl or Python: if you want to run a pro-
gram you got off the net, you should be a little wary
of it. Moreover, this system is not intended as an
alternative to the world wide web; it is meant pri-
marily for small application development.

However, there is an extra danger because some po-
tential target platforms do not have the same no-
tions of users and system security as Unix. As a
regular Unix user, the most destructive thing you
can normally do is to erase all of your own files.
The system doesn’t care. But on a machine such as
a Palm handheld, you can not only erase all of your
files, but also the whole system.

One approach to this is just to offer the advice “back
up your data.” While hard to argue with, not every-
one does it, so can we provide more protection? At
this point, we offer a proposition on how one might
address this issue (no such system has been imple-
mented). Other languages such as Tcl have network
safety features when compiled in a certain way; they
simply disable builtin functions which may alter the
system. For example, we should make databases
read-only for an untrusted program, and even turn
the network functions off so that the data cannot
‘escape’ the system.

However, maybe we want to allow selective access,
as we’d like our programs to access personal data
and do something with it. We can flag any database
access and have the user manually confirm it the
first time through. Access control lists to certain
builtin functions and databases are another possibil-
ity. However, this leaves questions of how the user
will react to this; they may just develop a habit of

confirming everything that comes their way.

12 Sample Applications

So far we have talked much about the development
infrastructure, but little about the actual programs
that we intend to write in this system. Therefore, we
give some possibilities that are particularly suited to
mobile devices.

Custom Schedules. Part of the initial motivation
for this project came from the desire for something
better than paper train schedules. Various attempts
have been made to put train schedules on handhelds,
but apparently due to the formatting complexity,
these seem just like the paper schedules, only harder
to read. An invaluable schedule application would
quickly hone in on a certain route, remember it,
and perhaps most importantly, automatically find
the next trains based on the current time of day.

There are schedules on the web which show some po-
tential features. For example, some transport agen-
cies’ sites allow the user to click on a station to bring
up information about that station—address, phone,
and so on. This would be a simple function for our
application to mirror, as it is only a page redisplay.

Network Monitoring. Because there is nothing

to stop builtin functions from accessing network data,
it should be possible to run network monitoring pro-

grams on VL. In addition to the usual socket inter-

face, the creative network administrator may wish

to customize their VL, adding specialized builtin

functions to filter through a large amount of net-

work data and return only items of interest (remem-

ber that a handheld’s display isn’t large enough to

display much).

Simple Games. An unofficial (and not often stated)
measure of a development tool is the quality of the
games that it can produce. Clearly, VL isn’t terri-
bly suited for 3-D animated action games, but it
can easily accommodate static games. Examples
of these include the minesweeper type games, card
games, and the ever-popular DopeWars.

Palm OS" Emulator

Size: 978

Figure 1: VL on Palm

13 Operation

The HHL compiler runs on Unix-like systems; it acts
like any Unix compiler. VL, on the other hand,
runs on the PalmOS platform as well as Unix. The
compiler is named hhlc. Compiling a source file is
simple:

$ hhlc file.hhl

If there were no errors in the source, hhlc creates a
VL object file called out. Simple debugging may be
accomplished with a command-line version of VL,
simply called v1. This version has no graphical ca-
pabilities, therefore, it doesn’t require a display or
any extra hardware. Its primary function is debug-
ging; it reads text from the standard input, and if

the text matches the name of a cell, any defined
action for that cell executes. It’s therefore possible
to run through actions on programs by redirecting
standard output.

Unix VL only needs to read the output file that
the HHL compiler produces, but because PalmOS
is unfriendly to ‘alien files,” a Unix conduit is avail-
able for the code transfer into a PalmOS database.
Once you’re happy with the way the program runs
on Unix, one may try it out on the Palm. The

install-vlo program can transfer out to a hand-
held.

Assuming that the v1_palm.prc Palm application
which comes with the hhlc and VL distribution is
present, we’re ready to run the program there. Tap-
ping on VLPalm, and then the Go button starts up
the program. Figure 1 shows a simple program sim-
ilar to one illustrated in the Display section, one
that displays the number of rows remaining.

14 Current Status

The HHL compiler currently supports all core lan-
guage features (flow control constructs, user-defined
functions, basic types, and so on). Needing more
refinement are areas such as diagnostic output and
optimization. At the moment, HHL syntax errors
are flagged with the line number of the error, but
no real effort is made to attempt to zero in on the
actual problem. Similarly, not much care is taken to
process the parse trees created by hhl.y. If these
trees were to be massaged, cleaning up the inter-
nal representation of statement blocks, it would be
make some optimizations simpler.

VL’s frontiers lie primarily on one front: builtin
functions. Because the general framework for builtins
is in place, making it simple to add a new function,
adding these fuctions is an incremental process. In
particular, more string and display routines are in
order, as well as networking functions. While it
would be interesting to access certain platform spe-
cific features, such as interfacing the IR port on a
Palm handheld, this is not a high priority. General
functionality (and keeping builtins free of bugs) is

the current focus.

In addition to the builtin functions, work is cur-
rently underway on the VL ports to some other plat-
forms. Furthermore, one new modification adds a
graphic interface to the Unix stdio-based v1.

Finally, more work is needed in application manage-
ment.

15 Future Plans

After the system stabilizes to a certain point, there
are two avenues of development, both of which are
of particular interest to the open source community.
The first is to port VL to as many devices as possi-
ble. At the moment, Palm Computing has a lion’s
share of the market for small mobile devices, but in
addition to the prospect of supporting their com-
petitors by having true cross-platform code, there
is also an issue of hardware and software upgrades.
Bytecode written by the HHL compiler would (pre-
sumably) not be affected by these.

Another area of interest is in getting the HHL com-
piler itself ported to some VL target platforms. The
first advantage to this is that it allows for “true mo-
bile development.” One would no longer need to
run a compiler on another machine to create new
programs; if one so desired, they could write the
program on the target device. Moreover it also cre-
ate some interesting opportunity for interaction and
debugging. While playing with a program, it would
be possible to compile a new function and insert
it into the currently-running program on the fly, as
well as get more information about the current state
of the program.

Our environment currently focuses its attention to

hardware on handheld computers, in particular, those

that have a stylus. These devices are best suited for
our interaction model (based on screen taps, not
pressing buttons). Because the input is uniform,
we can concentrate on providing a consistent and
portable user interface. However, there are other
mobile devices capable of a VL port, such as cel-
lular telephones. One area of future work could be

adapting the input method to support devices with-
out a stylus or touch pad. Furthermore, the display
on mobile phones is much smaller than those on a
handheld computer, posing a question of how diffi-
cult it is to write programs that work on both dis-
play types without too many conditionals around
the display size.

16 Concluding Words

Current development tools for mobile platforms tend
to the somewhat painful side. Quite a bit of effort is
required in writing a program in a language such as
C or Java, and the result is often that the emphasis
shifts away from the information which is ultimately
destined for the screen. The HHL compiler and VL
runtime environment offer a content-based approach
to code development, with a model more like that
of the web, with the additional that platform pecu-
liarities can largely be ignored.

17 Availability

The tools are intended to be distributed as open
source. The prototype system, which consists of
the simple compiler and virtual machine, is available
from

http://www.o--o.net/comp/

References

[1] Barton, R. S. “A new approach to the func-
tional design of a computer,” Proc. Western
Joint Computer Conf. (1961), 393-396.

[2] Beazley, D. M. “SWIG: An easy to use tool
for integrating scripting languages with C and
C++,” Proc. 4th USENIX Tcl/Tk Workshop,
129-139.

[3] Java 2 Micro Edition.
http://java.sun.com/j2me/

[4]

[5]

[6]

[10]

[11]

[12]

Kernighan, B. “Why Pascal is not my fa-
vorite programming language,” original 1981;
appeared in Comparing and Assessing Pro-
gramming Languages, Prentice-Hall, 1984.

Milner, R. “A theory of type polymorphism in
programming,” Journal of Computer and Sys-
tem Sciences, Volume 17, 1978, 349-375.

Naur, P., Backus, J. W., Bauer, F. L., Green,
J., Katz, C., McCarthy, J., Perlis, A. J.,
Rutishauser, H., Samelson, K., Vauquois, B.,
Wegstein, J. H., van Wijngaarden, A., and
Woodger, M. “Revised report on the algorith-
mic language ALGOL 60,” Communications of
the ACM, 6(1) 1963, 1-17.

Ousterhout, J. K. Te¢l and the Tk Toolkit,
Addison-Wesley, 1994.

Rhodes, N., McKeehan, J. Palm Programming,
O’Reilley and Associates, 1999.

PHP Dynamic Hypertext Processor.
http://www.php.net/

Python to Palm Ports.
http://www.endeavors.com/pippy/
http://www.isr.uci.edu/
projects/sensos/python/

Satyanarayanan, M. “Mobile information ac-
cess,” IEEE Personal Communications, 3(1),
February 1996.

Wireless Application Protocol.
http://www.wap.com/

